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ABSTRACT

Economic capital (EC) is a risk measure that has been used by financial firms to help determine capital
levels to hold to protect (with high probability) against large unexpected losses of credit portfolios. Given
a stochastic model for a portfolio’s loss over a given time horizon, the EC is defined as the difference
between a quantile and the mean of the loss distribution. We describe Monte Carlo methods for estimating
the EC. We apply measure-specific importance sampling to separately estimate the two components of the
EC, which can lead to much smaller variance than when estimating both terms simultaneously. We provide
Bahadur-type representations for our estimators of the EC, which we further exploit to establish central
limit theorems and asymptotically valid confidence intervals. We present numerical results for a simple
model to demonstrate the effectiveness of our approaches.

1 INTRODUCTION

Risk management aims to protect a financial institution from future uncertainties. For example, risk managers
employ various risk measures (e.g., Section 2.3 of McNeil et al. 2015) to help determine appropriate levels
of capital needed to be able to absorb (with high probability) large unexpected losses in credit portfolios
comprising loans, bonds, and other financial instruments subject to default. One such risk measure is
a quantile, also known as a percentile or value-at-risk (VaR). For a specified constant 0 < p < 1, e.g.,
p = 0.999, the p-quantile is the constant ξ such that there is probability p that the loss Y over a fixed time
horizon, e.g., one year, is less than ξ . Another example is the expected shortfall, also called the conditional
tail expectation or conditional value-at-risk, which, for continuous loss distributions, is the expected loss
given that it exceeds ξ .

This paper focuses on another risk measure, economic capital (EC), defined as the difference between
a quantile and the mean loss; see p. 5 of Klaassen and van Eeghen (2009), Section 2.4 of Lütkebohmert
(2009), and the Moody’s Analytics white paper by Levy et al. (2013). (The EC is alternatively called
the relative or mean-adjusted VaR; see p. 108 of Jorion 2007; and p. 300 of McNeil et al. 2015.) For
example, Deutsche Bank (2017) appears to use EC to help determine capital levels: p. 60 states, “In line
with our economic capital framework, economic capital for credit risk is set at a level to absorb with a
probability of 99.9% very severe aggregate unexpected losses within one year. Our economic capital for
credit risk is derived from the loss distribution of a portfolio via Monte Carlo Simulation of correlated
rating migrations.”

Because of the rarity of extreme losses, Monte Carlo simulation with simple random sampling (SRS)
can produce noisy estimates of the EC. This motivates the use of variance-reduction techniques (VRTs),
such as importance sampling (IS); e.g., see Chapters V and VI of Asmussen and Glynn (2007) and
Chapter 4 of Glasserman (2004) for overviews of these methods. Glasserman and Li (2005) devise IS
schemes for estimating tail probabilities of multi-factor credit-risk models with a Gaussian copula to capture
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dependencies of default events across obligors (e.g., corporations to which a bank has extended credit).
Bassamboo et al. (2008) design IS methods to handle non-Gaussian forms of dependencies.

While IS can be effective in reducing the variance of estimators of tail probabilities and extreme
quantiles of losses, the same approach may be detrimental when further used to estimate the mean loss in
the EC. An IS scheme that works well in estimating an extreme quantile will typically sample more from
the corresponding tail of the distribution and less around the mean, degrading the mean’s estimator. This
suggests employing different simulation techniques to separately estimate the two measures comprising
the EC. Specifically, we utilize IS to estimate the quantile and independently apply SRS to estimate the
mean. Goyal et al. (1987) call this approach measure-specific importance sampling (MSIS), which they
adopt to separately estimate the numerator and denominator in a ratio formula, where only the denominator
corresponds to a rare event. Through a simple example, we demonstrate numerically the benefits when p≈ 1
of applying MSIS to estimate the EC rather than estimating both the quantile and mean simultaneously.
For the models in Glasserman and Li (2005) and Bassamboo et al. (2008), computing the mean loss may
not require simulation because of their models’ tractability. But more complicated stochastic models may
preclude analytically solving for the mean loss, thereby motivating the use of Monte Carlo to estimate it.

The rest of our paper proceeds as follows. Section 2 describes the mathematical framework that we
adopt. Section 3 develops the SRS estimator of the EC, proves a Bahadur-type asymptotic representation
(Bahadur 1966) for the estimator, and also establishes a central limit theorem (CLT). To account for the
sampling error in our EC estimator, we also provide two asymptotically valid methods for constructing
confidence intervals (CIs) for the EC: one based on batching and the other on sectioning. Section 4 employs
IS to estimate the EC, and proves that the resulting estimator satisfies a Bahadur-type representation and
a CLT. Section 5 gives the details for using MSIS to estimate the EC. We also develop an asymptotically
valid CI for η when applying MSIS and sectioning. Section 6 presents numerical results for a simple
model. Section 7 has some concluding remarks. Our paper contains several theorems, none of which
have appeared previously in the literature to the best of our knowledge, but space limitations necessitate
deferring their formal proofs to a forthcoming follow-up paper.

2 MATHEMATICAL FRAMEWORK

Let Y be a random variable denoting the loss of a credit-portfolio model over a given time horizon, and let
F be the cumulative distribution function (CDF) of Y . We assume that F is unknown or intractable, but
we have a simulation model that generates observations of Y ∼ F . Let µ = E[Y ] be the mean of Y ∼ F .
For a CDF H and constant 0 < q < 1, we define the q-quantile of H as H−1(q) = inf{y : H(y)≥ q}; e.g.,
the median is the 0.5-quantile, also known as the 50th percentile. Then we define the economic capital as

η = ξ −µ, (1)

where ξ = F−1(p) for a given 0 < p < 1, e.g., p = 0.999. (As ξ and η depend on p, we should instead write
them as ξp and ηp, but we often omit the subscript p to simplify notation.) The goal is to use simulation
to estimate η and provide an asymptotically valid confidence interval for η to measure the sampling error.

We will sometimes (but not always) assume that the loss Y has the form

Y = c(X) (2)

for a given function c : ℜd → ℜ with d ≥ 1, and random vector X = (X1,X2, . . . ,Xd) having a specified
joint CDF G, where G can allow the components X1,X2, . . . ,Xd of X to be dependent and non-identically
distributed. Let G j be the marginal CDF of X j. If we further assume that

G(x) =
d

∏
j=1

G j(x j) for all x = (x1,x2, . . . ,xd) ∈ℜ
d , (3)
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then X1,X2, . . . ,Xd are independent. In the case that X j is a continuous (resp., discrete) random variable,
then let g j be the density (resp., probability mass function) of G j. We can think of the function c in (2) as
a computer code, which can be quite involved, that transforms an input X∼ G into a loss Y ∼ F .

For example, as in Glasserman and Li (2005), Bassamboo et al. (2008), and Lütkebohmert (2009),
we may consider a multi-factor credit-risk model for which the loss Y has the form in (2), with mutually
independent components in X. Specifically, suppose there are m≥ 1 obligors, and we induce dependence
among the default events across obligors as follows. Let X1, . . . ,Xr be independent and identically distributed
(i.i.d.) N(0,1) random variables representing the systematic risk factors, which model global, country, and
sector factors that impact all obligors, where N(q,s2) represents a normal random variable with mean q and
variance s2. For each k = 1,2, . . . ,m, let Xr+k be another independent N(0,1) random variable denoting the
idiosyncratic risk associated with obligor k. Define constants ak, j, k= 1,2, . . . ,m, j = 1,2, . . . ,r, as the loading
factors, satisfying ∑

r
j=1 a2

k, j ≤ 1 for each obligor k. Let bk = [1−∑
r
j=1 a2

k, j]
1/2, so (∑r

j=1 ak, jX j)+bkXr+k

is N(0,1) for each obligor k. Let Xr+m+1 be a positive random variable representing a common shock
affecting all obligors. For each obligor k = 1,2, . . . ,m, let tk be a given constant, and we assume that obligor
k defaults if and only if

(∑r
j=1 ak, jX j)+bkXr+k

Xr+m+1
> tk.

Glasserman and Li (2005) and Bassamboo et al. (2008) assume for simplicity that when obligor k defaults,
the loss resulting from that default is a constant ck, but they note that their results can also permit the
loss to be stochastic (under appropriate conditions). For obligor k, let Xr+m+1+k be another random
variable, and define the loss from obligor k defaulting as vk(X1, . . . ,Xr+m+1,Xr+m+1+k) for a given function
vk : ℜr+m+2→ℜ+. Thus, the loss can depend on the systematic and idiosyncratic risk factors and common
shock, as in Farinelli and Shkolnikov (2012). Finally, the function c in (2) for the total portfolio loss is

c(X) =
m

∑
k=1

vk(X1, . . . ,Xr+m+1,Xr+m+1+k) I
(
(∑r

j=1 ak, jX j)+bkXr+k

Xr+m+1
> tk

)
,

where I(·) denotes the indicator function, which equals 1 (resp., 0) if its argument is true (resp., false).
Thus, the vector X in (2) has dimension d = r+2m+1 in this example.

3 SIMPLE RANDOM SAMPLING

We start by applying SRS to estimate η , and the results throughout this section do not require that the loss
Y ∼ F has the form in (2). Let Y1,Y2, . . . ,Yn be a random sample of size n from F ; i.e., Y1,Y2, . . . ,Yn are
i.i.d. random variables, each with CDF F . In the special case when Y has the form in (2), we generate
X1,X2, . . . ,Xn as i.i.d. copies of X∼ G, and let Yi = c(Xi) for each i = 1,2, . . . ,n. In general, define

µ̂n =
1
n

n

∑
i=1

Yi (4)

as the sample mean. Let F̂n be the empirical CDF, i.e.,

F̂n(y) =
1
n

n

∑
i=1

I(Yi ≤ y). (5)

Let ξ̂n = F̂−1
n (p) be an SRS p-quantile estimator. The SRS estimator of the EC η = ξ −µ is then

η̂n = ξ̂n− µ̂n. (6)

We can equivalently compute ξ̂n through order statistics: let Y(1) ≤Y(2) ≤ ·· · ≤Y(n) be the sorted values
of Y1,Y2, . . . ,Yn, and ξ̂n =Y(dnpe), where d·e denotes the ceiling (i.e., round-up) function. For simplicity, we
do not consider other quantile estimators (Hyndman and Fan 1996), e.g., based on kernel methods or by
using an interpolated version of F̂n.
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3.1 Asymptotic Properties of SRS EC Estimator

Although the estimator µ̂n in (4) of the mean is a sample average, the p-quantile estimator ξ̂n = F̂−1
n (p) is

not, so the EC estimator η̂n in (6) is also not simply a sample average. This complicates the analysis of η̂n.
However, Bahadur (1966) shows that when the sample size n is large, ξ̂n is well approximated by a sample
average of i.i.d. quantities, and we will do the same for η̂n. Specifically, let f be the derivative (when it
exists) of the CDF F . Also, let⇒ denote convergence in distribution (e.g., Chapter 5 of Billingsley 1995).
Then (see Section 2.5 of Serfling 1980) if f (ξ )> 0, the p-quantile estimator satisfies

ξ̂n = ξ − 1
f (ξ )

[
F̂n(ξ )− p

]
+Rn, (7)

with √
nRn⇒ 0 as n→ ∞. (8)

If in addition F is twice differentiable at ξ , then for either choice of sign below,

limsup
n→∞

± n3/4Rn

(log logn)3/4 =
25/4[p(1− p)]1/4

33/4 with probability 1. (9)

Note that (9) implies (8), and we call (7) with (8) (resp., (9)) a weak (resp., strong) Bahadur representation
for ξ̂n. The key point of (7)–(9) is that they enable us to analyze the asymptotics of ξ̂n through the simpler
F̂n(ξ ), which is a sample average of i.i.d. terms by (5). The following result establishes that the SRS
estimator η̂n of the EC η has similar Bahadur-type representations.
Theorem 1 Suppose Y1,Y2, . . . are i.i.d. with CDF F , where F is differentiable at ξ with f (ξ )> 0. Then

η̂n = η− 1
n

n

∑
i=1

(
1

f (ξ )
[I(Yi ≤ ξ )− p]+ [Yi−µ]

)
+Rn (10)

with Rn from (7), so (8) holds. If in addition F is twice differentiable at ξ , then (9) further holds.
Theorem 1 provides useful insight into the asymptotic behavior of η̂n. As noted before, η̂n is not a

sample mean, complicating its analysis. But (10), which follows from (4)–(9), shows that when n is large,
η̂n can be represented as the sum of η , the sample mean of the Wi ≡ −[I(Yi ≤ ξ )− p]/ f (ξ )− [Yi− µ],
and remainder term Rn. Because Rn vanishes faster than 1/

√
n (by (8) or (9)), we can then determine the

n1/2-asymptotics (e.g., CLT) of η̂n through the sample mean of Wi, i = 1,2, . . . ,n, which are i.i.d.
Let σ2 = Var[Y ], the variance of Y . We next establish a CLT for η̂n, which follows from Theorem 1.

Theorem 2 Suppose Y1,Y2, . . . are i.i.d. with CDF F and f (ξ )> 0. If 0 < σ2 < ∞, then
√

n [η̂n−η ]⇒ N(0,ψ2) as n→ ∞,

where

ψ
2 =

p(1− p)
f 2(ξ )

+σ
2 +

2
f (ξ )

Cov[I(Y ≤ ξ ),Y ]. (11)

We next develop approaches to construct asymptotically valid confidence intervals for η based on the
CLT in Theorem 2 and the Bahadur-type representation in Theorem 1. Although it is possible to consistently
estimate the asymptotic variance ψ2 in (11), we instead consider methods that avoid this issue.

3.2 Confidence Interval Using Batching

We first consider batching (e.g., p. 202 of Glasserman 2004) to construct a CI for η . The method builds
b≥ 2 independent estimates of η , and then constructs a CI from the sample mean and sample variance of
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the b estimates of η . Numerical studies in Nakayama (2014) of batching CIs for a quantile for different b
suggest that setting b = 10 may be reasonable in practice. We next provide the details of batching for η .

Let n be the overall sample size, and let m = n/b be the batch size, which we assume is integer-valued.
We will establish the asymptotic validity of the batching CI as the overall sample size n grows large with b
fixed, which means that the batch size m grows large. For j = 1,2, . . . ,b, we take the jth batch to consist of
the outputs Yj,i ≡ Y( j−1)m+i, i = 1,2, . . . ,m. For batch j, compute the sample mean µ̂ j,m = (1/m)∑

m
i=1Yj,i,

the empirical CDF F̂j,m with F̂j,m(y) = (1/m)∑
m
i=1 I(Yj,i ≤ y), and the p-quantile estimator ξ̂ j,m = F̂−1

j,m(p).

Then, the estimator of the EC η from batch j is η̂ j,m = ξ̂ j,m− µ̂ j,m. The b estimators η̂ j,m, j = 1,2, . . . ,b,
across the batches are i.i.d., and we compute their sample mean and sample variance as

η̄b,m =
1
b

b

∑
j=1

η̂ j,m and S2
b,m =

1
b−1

b

∑
j=1

[η̂ j,m− η̄b,m]
2, (12)

respectively. For each batch j, the estimator η̂ j,m satisfies a CLT as the batch size m→∞ by Theorem 2, so
each η̂ j,m is approximately normal when the batch size m is large. Moreover, batches are independent, so
η̂ j,m, j = 1,2, . . . ,b, are independent. For large m, we have that [η̄b,m−η ]/[S2

b,m/b]1/2 has approximately a
Student t distribution with b−1 degrees of freedom. Let Hb−1 be the CDF of a Student t random variable
with b− 1 degrees of freedom, and let τb−1,q = H−1

b−1(q) be the q-quantile of Hb−1. We then define the
two-sided, β -level batching CI for η as

Ib,m = (η̄b,m± τβ Sb,m/
√

b), (13)

where τβ ≡ τb−1,1−(1−β )/2. For example, for b = 10 batches and β = 0.95, the 95% CI Ib,m uses τβ = 2.262.
The following theorem establishes the asymptotic validity of the SRS batching CI.
Theorem 3 Under the assumptions of Theorem 2, we have limm→∞ P(η ∈ Ib,m) = β for any fixed b≥ 2.

3.3 Confidence Interval Using Sectioning

Although Theorem 3 establishes that the batching CI Ib,m in (13) is asymptotically valid as the batch size
m→ ∞ for a fixed number b≥ 2 of batches, the CI may have poor coverage when the overall sample size
n = bm is not very large. To understand why, we examine the bias of the batching point estimator η̄b,m
from (12). Note that

Bias[η̄b,m] = E[η̄b,m]−η =
1
b

b

∑
j=1

E[η̂ j,m]−η = E[η̂ j,m]−η

= E[ξ̂ j,m]−E[µ̂ j,m]− (ξ −µ) = E[ξ̂ j,m]−ξ

because µ̂ j,m is unbiased. While the bias of ξ̂ j,m converges to 0 as m→ ∞, the bias is nonzero in general
for fixed m. The bias of the batching point estimator η̄b,m is determined by the bias of ξ̂ j,m, which depends
on the batch size m = n/b. But because m < n, the bias of η̄b,m can be significant when the overall sample
size n is not very large. Thus, the batching CI Ib,m may be poorly centered on average, so the coverage
can suffer for small n; i.e., P(η ∈ Ib,m) may differ significantly from β for small n.

To address this issue, we may instead apply sectioning, which was originally proposed in Section III.5a
of Asmussen and Glynn (2007). The basic idea is to modify the batching CI Ib,m by replacing the batching
point estimator η̄b,m throughout with the overall estimator η̂n from (6) based on the total sample size n.
Because the bias of the overall point estimator η̂n is based on overall sample size n rather than the batch
size m = n/b, the bias of η̂n can be smaller than that of η̄b,m, and this modification can lead to a CI with
improved coverage when n is small since the CI may now be better centered on average. Specifically, let

S′2b,m =
1

b−1

b

∑
j=1

[η̂ j,m− η̂n]
2, (14)
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which is similar to S2
b,m in (12) but where we replace the batching point estimator η̄b,m with the overall

point estimator η̂n. Then we define the two-sided, β -level sectioning CI for η as

I′b,m = (η̂n± τβ S′b,m/
√

b), (15)

which is centered at the overall point estimator with sample size n = bm. The following result establishes
the asymptotic validity of the SRS sectioning CI I′b,m.

Theorem 4 Under the assumptions of Theorem 2, we have limm→∞ P(η ∈ I′b,m) = β for any fixed b≥ 2.

4 IMPORTANCE SAMPLING

SRS may produce an estimator of the EC η = ξ −µ with large variance when p≈ 1 because ξ is then an
extreme quantile, so now we consider applying variance reduction. We focus on importance sampling, but
other VRTs can also be employed. To use IS, we assume throughout this section that Y has the form in (2).

In the setting of (2), we write the mean µ in (1) as µ = EG[c(X)], where EG denotes the expectation
operator when the ℜd-valued random vector X∼G. Let G̃ be another joint distribution on ℜd such that the
measure mG corresponding to G is absolutely continuous (p. 422 of Billingsley 1995) with respect to the
measure mG̃ corresponding to G̃; i.e., mG(A) = 0 for every measurable set A⊆ℜd for which mG̃(A) = 0.
Then we can express the mean µ as

µ = EG[c(X)] =
∫

ℜd
c(x)dG(x) =

∫
ℜd

c(x)
dG(x)
dG̃(x)

dG̃(x) = EG̃[c(X)L(X)], (16)

where EG̃ denotes expectation when X∼ G̃, and

L(x) =
dG(x)
dG̃(x)

(17)

is the likelihood ratio. By (16), we can obtain an unbiased estimator of µ by generating i.i.d. Xi ∼ G̃,
i = 1,2, . . . ,n, and then forming the IS estimator of µ as

µ̃n =
1
n

n

∑
i=1

c(Xi)L(Xi). (18)

Suppose that the original joint CDF G satisfies (3), so a random vector with CDF G has independent
components. Let G̃ j be the marginal CDF of X j when X = (X1,X2, . . . ,Xd)∼ G̃. Also, suppose that

G̃(x) =
d

∏
j=1

G̃ j(x j) for all x = (x1,x2, . . . ,xd) ∈ℜ
d , (19)

so X∼ G̃ has independent components. Further suppose that each G j (resp., G̃ j) has density or probability
mass function g j (resp., g̃ j). Then the likelihood ratio in (17) becomes

L(x) =
d

∏
j=1

g j(x j)

g̃ j(x j)
. (20)

To estimate the p-quantile ξ using IS, we will follow an approach developed by Glynn (1996): first
apply IS to estimate the CDF F , and then invert the estimated CDF to obtain the IS quantile estimator.
Specifically, let PG denote the probability measure when X∼ G, and write

F(y) = 1−P(Y > y) = 1−PG(c(X)> y) = 1−EG[I(c(X)> y)] = 1−
∫

ℜd
I(c(x)> y)dG(x)

= 1−
∫

ℜd
I(c(x)> y)

dG(x)
dG̃(x)

dG̃(x) = 1−EG̃[I(c(X)> y)L(X)]. (21)
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Thus, by (21), we can obtain an unbiased estimator of F(y) for each y as

F̃n(y) = 1− 1
n

n

∑
i=1

I(c(Xi)> y)L(Xi), (22)

where Xi ∼ G̃, i = 1,2, . . . ,n, are the same as in (18). We call F̃n(y) the IS estimator of F(y).
The corresponding IS estimator ξ̃n of the p-quantile F−1(p) inverts (22), i.e.,

ξ̃n = F̃−1
n (p), (23)

which can be computed as follows. Let Yi = c(Xi), and let Y1:n ≤ Y2:n ≤ ·· · ≤ Yn:n be the sorted values of
Y1,Y2, . . . ,Yn. Also, let Xi::n be the X j corresponding to Yi:n. Then we have that ξ̃n = Yip:n, where ip is the
greatest integer for which ∑

n
`=ip

L(X`::n)≥ n(1− p). Chu and Nakayama (2012) establish a weak Bahadur
representation for the quantile estimator obtained through a combination of IS and stratified sampling, and
ξ̃n in (23) is a special case of IS only; i.e., their Theorem 4.2 shows that if

there exist constants ε > 0 and λ > 0 such that EG̃[I(c(X)> ξ −λ )L2+ε(X)]< ∞, (24)

then
ξ̃n = ξ − 1

f (ξ )
[F̃n(ξ )− p]+ R̃n

with R̃n satisfying √
nR̃n⇒ 0 as n→ ∞.

We can obtain an alternative quantile estimator by first writing F(y) = EG[I(c(X)≤ y)] = EG̃[I(c(X)≤
y)L(X)] and using i.i.d. Xi ∼ G̃, i = 1,2, . . . ,n, to form an unbiased estimator of F(y) as

F̃ ′n(y) =
1
n

n

∑
i=1

I(c(Xi)≤ y)L(Xi). (25)

This leads to another p-quantile estimator ξ̃ ′n = F̃ ′−1
n (p). Theorem 4.1 of Chu and Nakayama (2012) (resp.,

Sun and Hong 2010) establishes a weak (resp., strong) Bahadur representation for ξ̃ ′n. But it turns out
that when trying to estimate the p-quantile for p≈ 1 using IS, Glynn (1996) shows for a simple example
that the p-quantile estimator ξ̃n in (23) based on (22) has smaller asymptotic variance in its CLT than the
estimator ξ̃ ′n obtained by inverting (25). (In contrast, when p ≈ 0, the p-quantile estimator ξ̃ ′n can have
smaller asymptotic variance than ξ̃n.)

We define the IS estimator of the EC as

η̃n = ξ̃n− µ̃n, (26)

where both ξ̃n and µ̃n are constructed using the same sample X1,X2, . . . ,Xn, with each Xi ∼ G̃. The
following results show that η̃n has a Bahadur-type representation and obeys a CLT.
Theorem 5 Suppose that Y ∼ F has the form in (2), and assume that f (ξ )> 0. Suppose that X1,X2, . . . ,Xn
are i.i.d. with CDF G̃, where the measure mG corresponding to G is absolutely continuous with respect to
the measure mG̃ corresponding to G̃. Also suppose that (24) holds for L(x) in (17). Then

η̃n = η− 1
n

n

∑
i=1

(
1

f (ξ )
[(1− I(c(Xi)> ξ )L(Xi))− p]+ [c(Xi)L(Xi)−µ]

)
+ R̃n

with √
nR̃n⇒ 0 as n→ ∞.

1760



Kaplan, Li, and Nakayama

Theorem 6 In addition to the assumptions of Theorem 5, also assume ζ 2 ≡ VarG̃[c(X)L(X)]< ∞. Then√
n [η̃n−η ]⇒ N(0,κ2) as n→ ∞, where

κ
2 =

υ2

f 2(ξ )
+ζ

2 +
2γ

f (ξ )
, (27)

with

υ
2 = EG̃[I(c(X)> ξ )L2(X)]− (1− p)2, (28)

γ =−CovG̃[I(c(X)> ξ )L(X),c(X)L(X)].

5 MEASURE-SPECIFIC IMPORTANCE SAMPLING

If we estimate both ξ and µ using the same IS distribution G̃ to sample X, as in Section 4, the resulting
estimator of η = ξ −µ may have large variance. Many VRTs are designed to handle ξ or µ individually
but not both simultaneously. The problem is that ξ is a property of the tail of F , whereas µ typically
measures its central tendency. A VRT that is constructed to efficiently analyze the tail of F may not work
well to estimate its mean, and vice versa. It may be difficult to design a single VRT that does well to
simultaneously estimate ξ and µ .

Thus, we instead use IS to estimate ξ only and independently estimate µ via SRS. This approach is
known as measure-specific importance sampling, which Goyal et al. (1992) apply to estimate a ratio of
means by estimating one (rare-event) mean using IS and independently estimating the other (non-rare)
mean without IS. More generally, we could also apply one VRT to estimate ξ and another VRT to estimate
µ , where each VRT may be something other than IS, but we do not pursue that here.

We now provide the details of MSIS. Fixing an overall sample size n, we allocate a fraction 0 < δ < 1
of the sample size to estimate ξ via IS, and we use the rest of the sample size to estimate µ using SRS. Let
n1 = δn be the sample size for estimating ξ with IS, and n2 = (1−δ )n be the SRS sample size to estimate
µ . Here, we are assuming that both n1 and n2 are integer-valued; if not, let n1 = bδnc and n2 = n−n1,
where b·c denotes the floor function. Let F̃n,δ (y) = F̃n1(y), for F̃n1(y) in (22) with n1 replacing n, be the IS
CDF estimator based on a sample size n1, and let ξ̃n,δ = F̃−1

n,δ (p) be the corresponding p-quantile estimator.
Let µ̂n,δ = µ̂n2 , for µ̂n2 in (4) with n2 replacing n, be the SRS estimator of µ based on the sample size n2.
The MSIS estimator of η is then

η̃n,δ = ξ̃n,δ − µ̂n,δ . (29)

The following result establishes a weak Bahadur-type representation for the MSIS estimator η̃n,δ of η .
Theorem 7 Suppose that Y ∼ F has the form in (2), that f (ξ )> 0, and that (24) holds. Then for any fixed
0 < δ < 1, the MSIS estimator of η satisfies

η̃n,δ = η− 1
f (ξ )

[F̃n,δ (ξ )− p]− (µ̂n,δ −µ)+ R̃n,δ

with √
nR̃n,δ ⇒ 0 as n→ ∞.

A consequence of the Bahadur-type representation for η̃n,δ in Theorem 7 is that the MSIS estimator
of η also satisfies a CLT.
Theorem 8 In addition to the assumptions of Theorem 7, further suppose that σ2 < ∞. Then for any
0 < δ < 1, the MSIS estimator of η satisfies

√
n
[
η̃n,δ −η

]
⇒ N(0,κ2

δ
) as n→ ∞,

where, for υ2 from (28),

κ
2
δ
=

υ2

δ f 2(ξ )
+

σ2

1−δ
. (30)
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Note that (30) does not contain a covariance term because MSIS independently estimates ξ and µ . In
contrast, (11) and (27) include a covariance term because ξ and µ are estimated from the same sample.

5.1 Optimal Sampling Allocation

The asymptotic variance κ2
δ

in (30) depends on the sampling-allocation parameter δ specified by the user.
The optimal choice of δ to minimize κ2

δ
can be easily found by setting the derivative of κ2

δ
with respect

to δ to 0, and solving. This leads to the optimal δ as δ ∗ = [υ/ f (ξ )]/[σ +(υ/ f (ξ ))] to minimize the
asymptotic variance.

In practice, the value of the optimal δ ∗ is unknown because σ2, υ2 and f (ξ ) are all unknown. But
one could apply a two-stage procedure. In the first stage, fix a sampling allocation δ0, e.g., δ0 = 1/2, and
use a small sample size n′ to estimate σ2, υ2 and f (ξ ), where f (ξ ) could be estimated, e.g., via a finite
difference (Chu and Nakayama 2012). Then employ these estimates to approximate the optimal sampling
allocation δ ∗, which is then used in the second stage with some overall sample size n′′� n′.

5.2 Confidence Interval Using Sectioning

We now develop a CI for η when using MSIS and sectioning. First divide the overall sample size n into
sample sizes n1 = δn for estimating ξ via IS and n2 = (1−δ )n for estimating µ with SRS. Then fix b≥ 2
as the number of batches (e.g., b = 10), and let m1 = n1/b and m2 = n2/b be the batch sizes for MSIS, with
m = m1 +m2 = n/b as the overall batch size. We assume that m1 and m2 are integer valued; otherwise,
let m1 = bn1/bc and m2 = bn2/bc. For each batch j = 1,2, . . . ,b, let ξ̃ j,m,δ be the IS estimator of ξ from
batch j, and ξ̃ j,m,δ , j = 1,2, . . . ,b, are independent. Similarly, let µ̂ j,m,δ be the SRS estimator of µ from
batch j, with µ̂ j,m2,δ , j = 1,2, . . . ,b, independent. From batch j, we define the MSIS estimator of η as
η̃ j,m,δ = ξ̃ j,m,δ − µ̂ j,m,δ , and η̃ j,m,δ , j = 1,2, . . . ,b, are independent. Analogous to the SRS batching CI in
(13), the MSIS batching CI uses the sample mean and sample variance of the η̃ j,m,δ , j = 1,2, . . . ,b.

To construct the MSIS sectioning CI for η , we compute S̃′2b,m,δ = 1
b−1 ∑

b
j=1[η̃ j,m,δ − η̃n,δ ]

2, which uses
the overall MSIS estimator η̃n,δ of η from (29) with sample size n = bm. (This is analogous to (14), which
we used in the SRS sectioning CI I′b,m in (15).) We then obtain

Ĩb,m,δ =
(

η̃n,δ ± τβ S̃′b,m,δ/
√

b
)

as the two-sided β -level CI for η using MSIS with sectioning, where we note the CI is centered at the overall
MSIS estimator η̃n,δ . The following result shows that the MSIS sectioning CI Ĩb,n,δ for η is asymptotically
valid. (Nakayama 2014 proves the asymptotic validity of the IS sectioning CI for just the quantile ξ .)
Theorem 9 Under the assumptions of Theorem 8, limm→∞ P(η ∈ Ĩb,m,δ ) = β for fixed b≥ 2 and 0 < δ < 1.

As in Section 3.3, the overall MSIS estimator η̃n,δ in (29) often has lower bias than the MSIS batching
point estimator (1/b)∑

b
j=1 η̃ j,m,δ . Thus, the sectioning CI can achieve better coverage than the batching

CI when the overall sample size n is not large because the former can be better centered on average.

6 NUMERICAL EXPERIMENTS

We next provide numerical results for a simple model to demonstrate the benefits when p≈ 1 of estimating
the EC ηp ≡ ξp−µ via MSIS rather than using either SRS or IS to estimate both the p-quantile ξp and µ .
Specifically, we assume that Y has the form in (2), with X = (X1,X2, . . . ,Xd) a vector of d = 10 i.i.d. N(0,1)
random variables, where we define the function c : ℜd→ℜ in (2) as the sum c(x) = ∑

d
j=1 x j. Thus, we have

that Y ∼ N(0,d); i.e., the CDF F of Y is F(y) = Φ(y/
√

d) with density f (y) = φ(y/
√

d)/
√

d, where Φ is
the CDF of N(0,1) and φ its density. The mean of F is µ = 0, its variance is σ2 = d, and the p-quantile
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is ξp = F−1(p) = µ +σΦ−1(p) =
√

dΦ−1(p). Hence, in (16), we have that dG(x) = ∏
d
j=1 φ(x j)dx j, and

the EC is ηp = ξp−µ =
√

dΦ−1(p).
To design an importance sampler that can be effective for estimating ξp, we choose the IS distribution

for X so that the sum Y = ∑
d
j=1 X j has mean ξp. We can do this by specifying the IS joint CDF G̃ to satisfy

(19) (i.e., vector X ∼ G̃ has independent components), where each marginal G̃ j is the CDF of N(νp,1),
with νp = ξp/d. Thus, we have that G̃ j(x j) = Φ(x j−νp), which has density g̃ j(x j) = φ(x j−νp). In this
case, the likelihood ratio in (20) becomes

L(x) =
d

∏
j=1

φ(x j)

φ(x j−νp)
=

d

∏
j=1

(1/
√

2π)e−x2
j/2

(1/
√

2π)e−(x j−νp)2/2
= exp

(
d
2

ν
2
p−νp

d

∑
j=1

x j

)
. (31)

Then, we use the IS estimator of F(y) to be (22), where the likelihood ratio is (31) and each Xi ∼ G̃.
Although we designed the IS joint CDF G̃ to be appropriate for estimating the p-quantile ξp, we can

also use the same G̃ to estimate the mean µ via IS. The corresponding IS estimator of µ is given by (18),
where we use (31) for the likelihood ratio.

Because of the tractability of our simple model, we are able to derive analytical expressions for the
asymptotic variances in the CLTs of estimators of the EC ηp = ξp−µ based on various simulation methods.
Table 1 gives the exact values of the asymptotic variances, which we evaluated numerically, for different
values of p. (Deutsche Bank 2017, p. 43, appears to report the EC for p = 0.999, whereas p = 0.9998 was
used the previous year.) The second (resp., third) column of Table 1 corresponds to estimating both ξp and
µ from a single sample using SRS as in (6) (resp., using IS as in (26)), so the asymptotic variance is given
by (11) (resp., (27)). The last three columns of Table 1 estimate ξp and µ using independent samples,
with a proportion δ (resp., 1− δ ) of the overall sample size allocated to estimate ξp (resp., µ). We set
δ = 1/2 in our calculations. In the second row, the notation “m1+m2” indicates that simulation method
m1 (resp., m2) is employed to estimate ξp (resp., µ). Thus, the asymptotic variance for the column labeled
“SRS+SRS” (resp., “IS+IS”) is p(1− p)/[δ f 2(ξ )]+σ2/(1−δ ) (resp., υ2/[δ f 2(ξ )]+ ζ 2/(1−δ )). The
last column (“IS+SRS”) of Table 1 corresponds to MSIS (Section 5), and (30) gives its asymptotic variance.

Table 1: We numerically computed the asymptotic variances of estimators of the EC ηp = ξp−µ based
on various simulation methods for different p. “Single Sample” denotes estimating both ξp and µ from
the same sample, using either SRS or IS. “Measure-Specific Sampling” corresponds to estimating ξp and
µ independently, where the notation “m1+m2” in the second row denotes that method m1 (resp., m2) is
used to estimate ξp (resp., µ), so MSIS corresponds to the last column.

Single Sample Measure-Specific Sampling
p SRS IS SRS+SRS IS+IS IS+SRS

0.9 1.92e+01 1.37e+02 7.84e+01 2.84e+02 3.09e+01
0.99 1.29e+02 1.44e+04 2.99e+02 2.87e+04 2.75e+01
0.999 8.71e+02 1.48e+06 1.78e+03 2.96e+06 2.61e+01

0.9998 3.47e+03 3.75e+07 6.98e+03 7.50e+07 2.56e+01

Table 1 shows that for p = 0.9, single-sample (SS) SRS has the lowest asymptotic variance of all
the methods considered. But for more extreme p, MSIS outperforms all other methods, with a variance-
reduction factor of 3.47e+03/2.56e+01≈ 136 compared to SS SRS for p = 0.9998. Thus, to achieve about
the same width confidence interval as MSIS, SS SRS would need a sample size that is about 136-fold larger.
Also, for p = 0.9998, the asymptotic variance of SS IS is a factor of 3.75e+07/2.56e+01≈ 1.47e+06 larger
than MSIS, demonstrating the enormous benefit of MSIS by separately estimating ξp and µ .

To compare the performance of the batching and sectioning CIs when using MSIS, we ran coverage
experiments when simulating our model. Table 2 lists the estimated coverage and average half width
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(AHW) over r = 104 independent replications for various sample sizes n with b = 10 batches. The table
also gives the sample variance of the batching and sectioning (i.e., overall) point estimators of the EC.

Table 2: We ran 104 independent replications to estimate the coverage and average half width of sectioning
and batching confidence intervals with nominal confidence level β = 0.95 for the EC ηp estimated using
MSIS for different sample sizes n for p = 0.999. We also give the sample variances of the point estimators
of the EC across the 104 replications.

Batching Sectioning
n Coverage AHW Sample Variance Coverage AHW Sample Variance
40 0.9154 2.162 9.864e–01 0.9790 2.269 6.948e–01
100 0.9096 1.294 3.589e–01 0.9698 1.351 2.714e–01
400 0.9411 0.576 6.853e–02 0.9568 0.584 6.480e–02

Table 2 shows that both the sectioning and batching CIs approach the nominal coverage β = 0.95 as n
increases, which agrees with Theorem 9 for sectioning. However, at n = 100, the coverage for sectioning
appears to be closer to nominal than for batching. As explained in Sections 3.3 and 5.2, sectioning can
achieve better coverage than batching because the former centers its CI at a point estimator that often has
lower bias. It is also interesting to note that for each n, the sectioning point estimator has lower sample
variance than the batching one.

7 CONCLUDING REMARKS

The economic capital is a risk measure that can be used to help determine the amount of capital needed to
protect (with high probability) against large unexpected losses of a credit portfolio. The EC is the difference
between the p-quantile ξ and the mean µ of the loss distribution, where p is often chosen with p ≈ 1,
and estimating both ξ and µ using a single simulation can produce an EC estimator with large variance.
We examined instead using independent simulations to estimate separately the two components, where we
applied importance sampling for estimating ξ and simple random sampling for µ . Our numerical results
show that when p≈ 1, measure-specific importance sampling can greatly reduce the asymptotic variance
compared to estimating both ξ and µ with the same simulation method. We are currently investigating
applying alternative VRTs to estimate the EC, as well as experimenting with other models.
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