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ABSTRACT

A commonly used approach to analyzing stochastic differential equations (SDEs) relies on performing
Monte Carlo simulation with a discrete-time counterpart. In this paper we study the impact of such a
time-discretization when assessing the stationary tail distribution. For a family of semi-implicit Euler
discretization schemes with time-step h > 0, we quantify the relative error due to the discretization, as a
function of h and the exceedance level x. By studying the existence of certain (polynomial and exponential)
moments, using a sequence of prototypical examples, we demonstrate that this error may tend to 0 or ∞.
The results show that the original shape of the tail can be heavily affected by the discretization. The cases
studied indicate that one has to be very careful when estimating the stationary tail distribution using Euler
discretization schemes.

1 INTRODUCTION

Let (Xt)t≥0 solve the stochastic differential equation (SDE)

dXt = f (Xt)dt +g(Xt)dWt , (1)

with an initial condition X0 ∼ ξ . The functions f : R→ R and g : R→ R are called drift and volatility
respectively, while ξ follows an arbitrary, tight (possibly degenerate) probability law concentrated on R.
SDEs are used in a variety of application areas, e.g. chemistry (Yang et al. 2006) and climate science (Majda
et al. 2009). Under some conditions on f and g, Xt converges to a stationary distribution as t → ∞. Let
µ0 be the corresponding stationary (or invariant, ergodic) measure, that is, the unique probability measure
such that X0 ∼ µ0 implies Xt ∼ µ0 for all t > 0. In the following, we abbreviate µ̄0(x) := µ0((x,∞)).

We are interested in determining the shape of the tail of µ0, i.e., the way µ̄0(x) decays to 0 as x→ ∞.
Besides the one-dimensional case, no explicit expressions for µ̄0(x) are available, thus motivating the use
of simulation-based methods. Ideally, one would sample a path of (Xt)t≥0 (in continuous time, that is),
and estimate µ̄0(x) by the fraction of time it spends above level x in a time interval [0,T ] (which, by the
ergodic theorem, converges to µ̄0(x) as T → ∞). It is evidently impossible to sample a continuous and
infinitely long path of a process (Xt)t≥0 on a computer, explaining the need for time-discretization and
truncation. Discretization schemes are not exact and may intrinsically change the dynamics of the original
continuous-time process defined through (1). As a consequence, the stationary measure pertaining to the
discretized process will generally differ from µ0 (or might not even exist!) A few relevant references on
this topic are Roberts and Tweedie (1996), Stramer and Tweedie (1999), and Mattingly et al. (2002).

In this paper we study the effect of discretization on the shape of the tail of the stationary distribution.
In order to illustrate the problem that might occur, we use the Ornstein-Uhlenbeck (OU) process as an
example. Let (Xt)t≥0 solve dXt =−Xt dt +

√
2dWt ; it can be shown that µ0 ∼ N(0,1). The forward Euler
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discretization scheme with time-step h < 2 can be shown to have invariant measure µh ∼N(0,(1−h/2)−1).
Both distributions may look similar, but for any fixed h the ratio µ̄h(x)/µ̄0(x) explodes as x→∞, entailing
that in this example the forward Euler scheme creates a stationary distribution with tails heavier than those
of the original continuous-time process. Whereas in the OU case µh and µ0 belong to the same class of
distributions (i.e., Gaussian), we will identify other examples in which they belong to different classes of
distributions; we even find an instance in which µ̄0(x) has essentially the shape exp(−x2), whereas µ̄h(x)
has power-law decay; see Section 4.4. Thus, an important message from our work is that one should be
extremely careful when estimating the stationary tail distribution using time-discretization based simulation.

In earlier studies, it has been observed that the discretization influences the stationary distribution. Talay
(1990) showed that under regularity conditions, for a Milstein scheme with time-step h > 0, (i) there exists
a stationary distribution µh and (ii) for a class of functions r : R→ R, |

∫
r(x)µh(dx)−

∫
r(x)µ(dx)| → 0,

as h ↓ 0. Recently Abdulle et al. (2014) extended this result to higher order schemes. These results are
reassuring, as they show that at least in some sense µh is close to µ0, but unfortunately they do not provide
any insight into the level of resemblance between the respective tails.

Schurz (1999) proposes a family of θ -implicit Euler schemes to discretize a system of linear SDEs.
The author proves that in case of additive noise, the trapezoidal rule (i.e., the semi-implicit scheme with
implicitness parameter θ equal to 1

2 ) gives the same stationary distribution as the original system, independent
of the choice of h. This observation has motivated us to also consider a family of semi-implicit Euler
schemes in this paper. Mattingly et al. (2002) provide general conditions under which the ergodicity
properties of the original continuous-time process carry over to various discretization schemes. In this
paper we discuss one of those, viz. an implicit split-step Euler scheme.

To study µ̄h(x) under various discretization schemes, we use tools from the theory of random iterated
functions, and results on the existence of moments of stationary distributions of Markov chains.

The manuscript is organized as follows. In Section 2 we introduce the discretization schemes that are
used throughout the paper, We briefly discuss the existence and uniqueness of the stationary distribution
of the continuous-time system (1) and its discretized version, and we specify the term ‘shape of the tail’.
In Section 3 we introduce our key tools; most notably, we recall a theorem by Goldie (1991) on random
iterated functions, which we use to describe the behavior of the tail of a stationary distribution for linear
systems of SDEs under the discretization, and a theorem based on Tweedie (1983), which gives conditions
for existence and nonexistence of moments. In Section 4 we assess (analytically and numerically) the ratio
γh(x) := µ̄h(x)/µ̄0(x), using four illustrative examples and various discretization schemes.

2 PRELIMINARIES

In this section we first introduce discretization schemes. Then we present results from the literature on
the existence and uniqueness of the invariant measure for SDEs and corresponding discretized versions.
Finally, we introduce the notion of the ‘shape of the tail’.

2.1 Discretization Schemes for SDEs

Let (Xt)t≥0 be driven by (1). In order to simulate Xt on a computer we use discretization schemes; for
a survey on discretization methods for SDEs we refer to Kloeden and Platen (1992). Let (Wt)t≥0 be a
standard Wiener process and ∆Wn :=Wn+1−Wn. As motivated in the introduction, we focus on semi-implicit
discretization schemes (parametrized by θ ∈ [0,1]) and split-step schemes. We distinguish two schemes:

◦ The (standard) θ -implicit Euler-Maruyama scheme

Xn+1 := Xn +
(
θ f (Xn+1)+(1−θ) f (Xn)

)
h+g(Xn)

√
h∆Wn. (2)
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◦ The split-step θ -implicit Euler-Maruyama scheme{
X?

n+1 := Xn +
(
θ f (X?

n+1)+(1−θ) f (Xn)
)
h,

Xn+1 := X?
n+1 +g(Xn)

√
h∆Wn.

(3)

We denote by µh the stationary measure of the discretization scheme considered. When θ = 0 and θ = 1
we recover the fully explicit and fully implicit Euler schemes, respectively. It is assumed that the schemes
are well-defined, in that there exists a unique solution Xn+1 to the implicit equations (2)-(3). Later in
the paper on one occasion we also study a Milstein scheme, but we do not introduce it here, to keep the
presentation as clear as possible.

The main difference between a standard scheme (2) and a split-step scheme (3) is the moment the
‘noise part’ is added: in the former case one first adds the noise and then solves the implicit equation for
Xn+1, while in the latter case this order is reversed. The main advantage of using the split-step scheme is
the simplicity, in the sense that it can be rewritten as, for functions a : R→ R and b : R→ R,

Xn+1 = a(Xn)+b(Xn)∆Wn. (4)

Later in the paper we will observe that the scheme (4) is simpler to study than its standard counterpart
(2). In particular, for split-step schemes it is easier to assess the existence of the stationary measure; see
e.g. Section 3 of Hansen (2003) for ergodicity conditions of Markov chains with a Gaussian transition
kernel. Our examples in Section 4 will reveal that (2) and (3) may lead to entirely different stationary tail
distributions, which may also be very different from the tail behavior corresponding to µ0.

2.2 Existence and Uniqueness of Stationary Distributions

In continuous time when the invariant measure µ0 exists and has a density π0, it is given by

π0(x) ∝
1

g2(x)
exp
{

2
∫ x f (y)

g2(y)
dy
}

; (5)

see e.g. Durrett (1996), p. 210. Hence it is straightforward to derive the asymptotic behavior of µ̄0(x). All
SDEs considered in this paper have a stationary density proportional to the right-hand side of (5).

We now move to discrete time. We say that the Markov chain (Xn)n∈N has a stationary distribution with
law µ iff X0 ∼ µ implies X1 ∼ µ (which implies Xn ∼ µ for all n ∈ N). Contrary to the continuous-time
case, there are no general formulas available for such distribution µ . In this paper, we assess the ergodicity
of discrete-time Markov chains using Theorem 2 (introduced later, in Section 3), which is based on results
from Tweedie (1983) and Meyn and Tweedie (2012).

2.3 Shape of the Tail

In this paper by the ‘shape of the tail’ of a random variable X we mean the rate of convergence of
the complementary cumulative distribution function P(X > x) in x as x→ ∞. For example we might
have polynomial decay (i.e., P(X > x) ∼ Cx−α for some constants C,α > 0), or Weibullian decay (i.e.,
P(X > x)∼C exp(−sxp) for some C,s, p > 0).

The tails of two random variables can be compared through their moments, as follows. Let X ,Y be random
variables and r : R→ R+ such that r(x) = 0 for x < 0. If

∫
r(x)P(X ∈ dx)< ∞ and

∫
r(y)P(Y ∈ dy) = ∞,

then typically P(X > x)/P(Y > x)→ 0 as x→ ∞; we say that X has a lighter tail than Y .
If P(X > x) ∼ Cx−α , then α can be identified from the fractional moments E(Xα ;X > 0). More

specifically,

α = sup
{

β > 0 :
∫

∞

0
xβ P(X ∈ dx)< ∞

}
. (6)
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Conversely, if α in (6) is finite, then P(X > x)∼ L(x)x−α for some ‘sub-polynomial’ function L(·).
If the random variable X admits all moments, so that α = ∞ in (6), then P(X > x) decays to 0 faster than

x−β for any β > 0. In this case, the tail can be described more precisely, via the existence of exponential
moments such as E

(
exp(sX p);X > 0

)
. In particular, if P(X > x)∼C exp(−sxp), then p and s obey

p := sup
{

q > 0 : ∃ t > 0 :
∫

∞

0
et xq

P(X ∈ dx)< ∞

}
, s := sup

{
t > 0 :

∫
∞

0
et xp

P(X ∈ dx)< ∞

}
. (7)

Conversely, if the p, s in (7) are finite, then P(X > x)∼ L(x)e−sxp
for a ‘sub-Weibullian’ function L(·).

For example, an exponentially distributed random variable with mean λ−1 has (p,s) = (1,λ ), and a
normally distributed random variable with variance σ2 has (p,s) = (2,(2σ2)−1). Both distributions are
light-tailed, but the Gaussian is clearly much lighter, as it corresponds to a higher p. One could say that
distributions with the same p but different s belong to the same class (but the one with the higher s is
lighter).

3 TOOLS FOR THE STUDY OF THE TAILS

The behavior of µ̄0(x) (for x large) follows from the density (5). Finding the tail behavior of µh is less
straightforward. In this section we present two tools.

3.1 Random Iterated Functions

The following result (Goldie 1991, Theorem 4.1) describes the stationary tail distribution µ̄ corresponding
to the stochastic recursion Xn+1 = MnXn +Qn, where (Q1,M1),(Q2,M2), . . . are i.i.d. It will be useful for
analysing the stationary laws corresponding to discretizations of linear SDEs; see Section 4.2.
Theorem 1 Let κ be such that E|M1|κ = 1, E|M1|κ log+ |M1|< ∞ and E|Q1|κ < ∞. Assume that the law
of log |M1| given M1 6= 0 is non-arithmetic. Then the stochastic recursion Xn+1 = MnXn +Qn has a unique
invariant measure µ satisfying µ̄(x)∼Cx−κ , for some C > 0, as x→ ∞.

3.2 Existence and Non-Existence of Moments

In Section 2.3 we discussed the connection between existence and nonexistence of moments and the behavior
of the tail. Theorem 2 presents sufficient conditions for existence (and nonexistence) of moments of the
stationary measure of a Markov chain. Let P(x,dy) be a transition kernel of a Markov chain and r : R→R
be such that r ≥ 1 and

∫
r(y)P(x,dy)< ∞. Define the following parameters associated with the function r:

L(r) = limsup
|x|→∞

∫
r(y)P(x,dy)

r(x)
and L+(r) := lim

x→∞

∫
∞

0 r(y)P(x,dy)
r(x)

. (8)

Note that while L is well defined, L+(r) does not necessarily exist. Below, we use the concepts of
aperiodicity, irreducibility and small sets as introduced in Meyn and Tweedie (2012).
Theorem 2 Suppose that (Xn)n∈N is an aperiodic, µLeb-irreducible Markov chain with a transition kernel
P(x,dy). Suppose that all intervals [−M,M] for M > 0 are small. Let r : R→ R be such that r ≥ 1,∫

r(y)P(x,dy)< ∞ and L(r),L+(r) are defined in (8). Then

(i) If L(r)< 1 and supx∈[−M,M]

∫
r(y)P(x,dy)< ∞ for all M > 0 then there exists a unique stationary

probability measure µ with
∫

r(x)µ(dx)< ∞.
(ii) If there exists a unique stationary probability measure µ , and r is non-decreasing for x ∈ (0,∞)

then L+(r)> 2 implies
∫

∞

0 r(x)µ(dx) = ∞.

Proof. Notice that L(r)< 1 implies there exists δ ,b > 0 such that for all x ∈ R ,∫
r(y)P(x,dy)< (1−δ )r(x)+b1{x ∈ [−M,M]} .
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Thus, part (i) follows from Thm. 14.0.1 of Meyn and Tweedie (2012). Part (ii) can be proven as follows.
L+(r)> 2 implies there exists δ ,x0 > 0 such that

∫
∞

0 r(y)P(x,dy)> (2+δ )r(x) for all x≥ x0. Thus,

r(x)+
∫

∞

x
r(y)P(x,dy)≥

∫ x

0
r(y)P(x,dy)+

∫
∞

x
r(y)P(x,dy) =

∫
∞

0
r(y)P(x,dy), (9)

for all x≥ x0, since r is non-decreasing on (0,∞) and
∫

P(x,dy) = 1. Combining these elements we find∫
∞

x0

r(y)P(x,dy)≥
∫

∞

x
r(y)P(x,dy)> (1+δ )r(x),

for all x≥ x0. Then, with the second equality due to ‘Fubini’,∫
∞

x0

r(x)µ(dx) =
∫

∞

x0

r(x)
(∫

µ(dy)P(y,dx)
)
=
∫ (∫

∞

x0

r(x)P(y,dx)
)

µ(dy)

≥
∫

∞

x0

(∫
∞

x0

r(x)P(y,dx)
)

µ(dy)> (1+δ )
∫

∞

x0

r(y)µ(dy).

This entails
∫

∞

0 r(x)µ(dx) = ∞.

Remark 1 Additionally, there is a very simple condition which implies nonexistence of a moment. If there
exists a set A such that µ(A)> 0 and

∫
r(x)P(x,dy) = ∞ for all x ∈ A then necessarily

∫
r(x)µ(dx) = ∞.

In view of the considerations in Section 2.3, it is particularly convenient to work with Thm. 2 for
classes of functions such as rα(x) = 1+ |x|α and rp,s(x) = exp(s|x|p). Note however, that there is a ‘moment
gap’, that is when L(r) > 1 and L+(r) < 2, it cannot be inferred from Theorem 2 whether the moment∫

∞

0 r(x)µ(dx) exists or not. The gap could be decreased by considering bounds tighter than (9) based on
the transition kernel.

4 ASSESSMENT OF THE TAIL IN BENCHMARK MODELS

In this section we study four prototypical SDEs, comparing the tails of the continuous-time processes with
the tails of their discrete-time counterparts. Thus, we compare the tails µ̄0(x) and µ̄h(x) for large x. We
do so by studying the ratio

γh(x) := µ̄h(x)/µ̄0(x) ,

for large x, both analytically (using the tools presented in Section 3) and numerically. In particular, if
γh(x)→ 0, or γh(x)→ ∞, as x→ ∞ then µh has a tail lighter, or heavier than µ0 respectively.

The main message from this section is that γh(x) can differ substantially from 1. In addition, the µ̄h(x)
resulting from different discretization schemes can also be orders of magnitude different. This leads to the
general conclusion that, when aiming at estimating the SDE’s tail distribution, one has to be very careful
with using discretization schemes. We focus in this section on one-dimensional SDEs, as for these µ0 is
available in closed-form, but obviously the above warning carries over to multi-dimensional SDEs.

The numerical results in Sections 4.2-4.4 concern the estimation of µ̄h(x) for various values of x and
h. In all sections, the estimates were determined by a crude Monte Carlo method. The Markov chain has
been divided in blocks of 104 time steps (of size h) separated by periods of 104 time steps. These blocks
of 104 time steps are assumed to be independent, and based on that assumption we derive the sample error.
The estimation procedure is stopped when the sample relative error falls below 5%.

4.1 Ornstein-Uhlenbeck Process

It was already observed in e.g. Talay (1990) that the stationary distribution of an OU process is affected
by discretization (motivating the use of a second-order scheme that has a stationary distribution closer to
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Figure 1: Ornstein-Uhlenbeck process with ϑ = 3,σ = 1. Plot of γh(x) against µ̄0(x) for h = 0.1 (left) and
h = 0.01 (right) for the two extreme values of the ‘implicitness parameter’ θ .

the continuous-time one). Schurz (1999) proposes discretizing multidimensional linear SDEs (covering the
OU case) using the implicit Euler methods; he shows that the trapezoidal rule (semi-implicit scheme with
θ = 1

2 ) is the only discretization scheme in that family that preserves the correct stationary distribution.
The OU process is defined by the following SDE: for ϑ ,σ > 0,

dXt =−ϑXt dt +σ dWt . (10)

It is well-known that (10) admits a Gaussian stationary distribution with mean zero and variance Σ :=
σ2/(2ϑ). The θ -implicit (standard) Euler scheme (2) yields

Xn+1 = Xn (1−ϑΓh)+σΓ
√

h∆Wn ,

with Γ := (1+ϑθh)−1. This is an AR(1) process, which admits a stationary distribution iff |1−ϑΓh|< 1,
that is when h < 2/(ϑ(1−2θ)); see e.g. Van der Vaart (2010). More specifically, this stationary distribution
is Gaussian with mean zero and variance Σ(1+ϑh(θ− 1

2))
−1. This shows that by taking θ = 1

2 , the invariant
measure of the discretized chain is the same as the invariant measure of the original, continuous-time one,
cf. the findings of Schurz (1999).

We take the analysis a bit further to assess what errors one makes for the OU case with other rules
than the trapezoid rule. A first, naı̈ve, choice could be the explicit Euler scheme (θ = 0). As seen above,
µ0 ∼ N(0,Σ) and µh ∼ N(0,Σ/(1− 1

2 ϑh)). Now consider the ratio γh(x). Let Φ(·) and ϕ(·) denote a
standard normal cdf and pdf respectively. For large x, Φ(−x)∼ ϕ(x)/x, so that for large x

γh(x) =
Φ

(
− x√

Σ

√
1− 1

2 ϑh
)

Φ

(
− x√

Σ

) ∼
√

2
2−ϑh

exp
{
−x2ϑ

2σ2 (2−ϑh−2)
}
=

√
2

2−ϑh
· exp

{
ϑ 2 x2h

2σ2

}
.

This means that γh(x)→ ∞ for any given h > 0, showing that the tail of µh is heavier than the tail of µ0.
Similar calculations show that in the fully implicit case (θ = 1) the tail of µh is lighter than the one of µ0.
In general, increasing the ‘implicitness parameter’ θ makes the tail of µh lighter; cf. Figure 1.

A pragmatic rule that can be used to control γh(x) is to decrease the step h proportionally to x2. More,
concretely, let h satisfy x2h→ ε > 0, as x grows large. Then γh(x)≈ 1+ ε ϑ 2/(2σ2). So in order to keep
the ratio γh(x) smaller than some given 1+δ , one could choose h in the following way:

h = x−2 (2ϑ
−2

σ
2 log(1+δ )

)
.
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Conclusions: This example shows that, although µh still belongs to the same class of distributions as
µ0 (Weibull-tail with shape parameter 2), the ratio γh(x) can deviate substantially from 1 (in fact, γh(x) may
even go to 0 or ∞, depending on the choice of the implicitness parameter). This effect can be mitigated
by choosing the step-size h sufficiently small. The tail of µh becomes lighter when increasing θ .

4.2 Linear Drift and Linear Volatility

We now consider the process (Xt)t≥0 that solves the SDE

dXt = ϑ(m−Xt)dt +σXt dWt ,

where σ ,ϑ > 0 and m > 0 (observe that if m would have been 0, then the stationary measure µ0 is entirely
concentrated at 0). Using (5) we see that µ0 corresponds to an Inverse-Gamma distribution with density

π0(x) = β
α0(Γ(α0))

−1 x−(1+α0) e−β/x, x > 0,

with shape parameter α0 = 1+2ϑ/σ2 and rate parameter β = 2ϑm/σ2. As a consequence, for large x,
π0(x)∼ (β α0/Γ(α0))x−(1+α0) and hence µ̄0(x)∼C0x−α0 for some C0 > 0.

Now let us focus on the stationary measure µh corresponding to the semi-implicit (standard) Euler
scheme for various values of θ . The scheme (2) yields

Xn+1 =
ϑmh

1+ϑθh
+Xn

(
1− ϑh

1+ϑθh
+

σ
√

h
1+ϑθh

∆Wn

)
. (11)

Notice that this is exactly the setting of Thm. 1, so it can be applied to derive the tail behavior of µh. The
following proposition, which is an immediate consequence of Thm. 1, states that µ̄h(x) decays polynomially.
The corresponding rate αh (which differs from α0) solves

E
∣∣1− ϑh

1+ϑθh
+

σ
√

h
1+ϑθh

∆W1
∣∣αh = 1.

Proposition 1 The family of Markov Chains evolving according to (11) admits a stationary distribution
µh for all h > 0 and for each fixed h, which satisfies µ̄h(x)∼Chx−αh , as x→∞, for some constant Ch > 0.

We now analyze αh as h ↓ 0, again using Thm. 1. Using Taylor expansions and taking the expectation
(recalling that ∆W1 ∼ N(0,1)), we obtain

E
∣∣∣1− ϑh

1+ϑθh
+

σ
√

h
1+ϑθh

∆W1

∣∣∣α = 1+
(
−αϑ +

(
α

2

)
σ

2
)

h

+
(

αθϑ
2−3

(
α

3

)
σ

2
ϑ +3

(
α

4

)
+

(
α

2

)
(ϑ 2−2θσ

2
ϑx2)

)
h2 +o(h2),

which is to be equated to 1. Now it can be verified that αh has the following first-order Taylor expansion
around h = 0: with α0 the rate corresponding to µ̄0(x),

αh = α0 +
(
ϑ

2(1+2θ)σ−2−ϑ
)

h+o(h). (12)

Remark 2 An expansion similar to (12) can be obtained for other discretization schemes as well, for
instance for the semi-implicit Milstein scheme given by

Xn+1 = Xn +
(

θ f (Xn+1)+(1−θ) f (Xn)
)

h+g(Xn)
√

h∆Wn +
1
2

g(Xn)g′(Xn)h((∆Wn)
2−1) .
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Figure 2: Linear drift and linear volatility process with ϑ = 1, σ =
√

2, m = 1. Plot of γh(x) against µ̄0(x)
for h = 0.1 (left) and h = 0.01 (right) for θ ∈ {0, 1

2 ,1}. From (12), the tail of µh should be heavier than
the tail of µ0 if θ = 0, and lighter if θ = 1. For θ = 1

2 the tails are more similar, as αh = α0 +o(h).

This scheme takes the explicit form

Xn+1 =
ϑ µh

1+ϑθh
+Xn

(
1−

ϑ + 1
2 σ2

1+ϑθh
h+

σ

1+ϑθh

√
h∆Wn +

1
2 σ2

1+ϑθh
h(∆Wn)

2
)
.

Without presenting the computations, we claim that the Milstein-discretized stationary distribution is heavy
tailed: µ̄h(x)∼Chx−αh . The power αh has, as h ↓ 0, the first-order Taylor expansion

αh = α0 +
(
ϑ

2(2θ −3)σ−2)h+o(h) .

The reasoning is as in the proof of Prop. 1 and the computation of αh for the schemes (2)-(3). �
The expression (12) for αh for θ = 0 reveals that if ϑ/σ2 > 1 then the tail of µh is lighter than the

tail of µ0, but vice versa if ϑ/σ2 < 1 — a perhaps surprising result for an explicit Euler scheme. The
expansion of αh in (12) advocates choosing θ ∈ [0,1] such that the absolute value of (ϑ(1+2θ)/σ2−1)
is minimized. See Figure 2 for illustrations.

Conclusions: In this example, the tail of µh and µ0 are in the same class (power-law decay), and
again the ratio γh(x) can differ substantially from 1. Choosing θ = 0 now does not necessarily lead to the
situation of the tail of µh being heavier than the tail of µ0 (cf. the OU process in Section 4.1). The tail of
µh becomes lighter when increasing θ (also in the Milstein case).

4.3 Cubic Drift and Constant Volatility

We now consider a stochastic process with nonlinear drift, more specifically (Xt)t≥0 solving

dXt =−ϑX3
t dt +σ dWt , (13)

where ϑ ,σ > 0. From the formula for the density of the invariant measure (5), we see that µ0 has a centered
Generalized Normal Distribution with the density

π0(x) = β (2αΓ(1/β ))−1e−(|x|/α)β

, (14)

with scale parameter α =
(
2σ2/ϑ

)1/4 and shape parameter β = 4. It has been shown by Mattingly et al.
(2002) that the explicit Euler scheme (2) of the process driven by (13) is transient, i.e., does not converge
to a stationary distribution. Denote

a(x) := c−1 sinh
(
arcsinh

(
3cx
)
/3
)
, Fθ (x) := x−ϑ(1−θ)x3h, and c :=

√
3ϑθh/2 . (15)
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We can show that the θ -implicit standard and split-step Euler schemes (2)-(3) read, for θ ∈ (0,1],

Xn+1 = a
(
Fθ (Xn)+σ

√
h∆Wn

)
(16)

Xn+1 = a
(
Fθ (Xn)

)
+σ
√

h∆Wn (17)

respectively. To study the ergodicity of the Markov chains driven by (16) and (17), it is useful to derive
the asymptotics of a(·). The function a(·) is odd, satisfies |a(x)| ≤ x1/3(ϑθh)−1/3 for all x ∈ R, and in
addition a(x)x−1/3 = (ϑθh)−1/3 as |x| →∞. Both schemes are ergodic for θ > 1

2 . For the split-step scheme,
ergodicity follows from (Hansen 2003) and the asymptotics of the function a(·) listed earlier. To show the
ergodicity of the standard Euler scheme one can use Thm. 2(i). We note that the chain (16) satisfies the
conditions of irreducibility, small sets and aperiodicity as stated in Theorem 2. Let rp,s(x) := exp(s|x|p)
and denote Z ∼ N(0,1). We verify the remaining assumptions of Thm. 2(i). Based on the properties of
the function a(·), it is straightforward to verify that when θ = 1,∫

rp,s(y)P(x,dy) = Eexp
(
s |a(x+σ

√
hZ)|p

)
≤ Eexp

(
s(ϑh)−p/3 ·

∣∣∣x+σ
√

hZ
∣∣∣p/3)

. (18)

Now let p = 6. When s < ϑ 2h/(2σ2), the expression on the rhs of (18) is finite and there exist constants
A,B > 0 such that it is equal to Aexp(Bx2). Thus, L(rp,s) = 0, where L is defined in (8). Lastly, as

sup
x∈[−M,M]

∫
rp,s(y)P(x,dy)≤ Aexp(BM2)< ∞,

we conclude that when θ = 1, the standard Euler scheme is ergodic with stationary measure µh and
moreover, rp,s(x)µh(dx)< ∞ for p = 6 and s < ϑ 2h/(2σ2). Proving ergodicity in case θ ∈ (1/2,1) can be
dealt with similarly using the test function r(x) = 1+ x6.

Our next objective is to compare the tails of µh and µ0 for a fully implicit scheme (θ = 1). From (14),
µ0 has Weibullian decay with (p,s) = (4,ϑ/(2σ2)). For the standard Euler scheme µh is characterized
by (p,s) = (6,ϑ 2h/(2σ2)). This follows from the fact that

∫
∞

0 r6,s(y)P(x,dy) = ∞ for s < ϑ 2h/(2σ2) (cf.
Remark 1). The latter can be established using asymptotics of the function a(·), similar to the way we
established the existence of moments. For the split-step scheme µh has parameters (p,s) = (2,1/(2σ2h)),
as can be shown in an analogous fashion.

The implication is that the standard Euler scheme gives a distribution in a lighter class than µ0. It
becomes heavier as h ↓ 0 (since s ↓ 0), but remains in the class with p = 6 (compared to p = 4 for µ0). By
contrast, the split-step scheme gives a distribution in a heavier class (viz. with p = 2), but its tail becomes
lighter as h ↓ 0. This behavior is reflected in our simulation results, see Figure 3. We observe that the ratio
γh(x) goes to 0 as x→∞ for the standard Euler scheme, whereas γh(x) explodes for the split-step scheme.

Conclusions: This example shows that µ0 can be in a different class of distributions than µh. In addition,
it strongly depends on the discretization scheme in which class µh is.

4.4 Cubic Drift and Linear Volatility

In our last example (Xt)t≥0 solves

dXt = ϑ(m−X3
t )dt +σXt dWt ,

where σ ,ϑ > 0 and m > 0. Like in the previous examples, we can find the density of µ0:

π0(x) ∝ x−2 exp
{
− ϑ

σ2

(2m
x + x2)}, x > 0 .

Let a(·) and Fθ (·) be as defined in (15). Similar to the example from the previous section, for θ ∈ (0,1]
the θ -implicit Euler scheme and the θ -implicit split-step scheme evolve according to

Xn+1 = a
(
ϑmh+Fθ (Xn)+σXn

√
h∆Wn

)
,
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Figure 3: Cubic drift and constant volatility process with ϑ = 1,σ = 1. Plot of γh(x) against µ̄0(x) for
h = 0.01 (left) and h = 0.001 (right) for fully implicit (θ = 1) standard and split-step Euler schemes.

Xn+1 = a
(
ϑmh+Fθ (Xn)

)
+σXn

√
h∆Wn ,

respectively. Both schemes are ergodic for θ > 1/2. We do not prove the regularity conditions (i.e.
irreducibility, small sets, aperiodicity) of Thm. 2 here. Furthermore we focus on the fully implicit scheme
θ = 1; the case θ ∈ (1/2,1) can be dealt with similarly.

Standard Euler case. We show, using Thm. 2(i), that the fully implicit standard Euler scheme has a
stationary measure with Weibullian decay with p ∈ [3,6]. Let rp,s(x) := exp(s|x|p). We have∫

rp,s(y)P(x,dy) = Eexp
(
s |a(ϑmh+ x+σx

√
hZ)|p

)
≤ Eexp

(
s(ϑh)−p/3 ·

∣∣∣ϑmh+ x+σx
√

hZ
∣∣∣p/3)

,

with Z ∼ N(0,1). We see that for p = 3 the expression on the rhs can be bounded by Aexp(Bx2) for some
A,B > 0. Hence L(r3,s) = 0 for all s > 0. In addition,

sup
x∈[−M,M]

∫
r3,s(y)P(x,dy)< Aexp(BM2)< ∞.

Thus, based on Thm. 2(i), we can conclude that the chain is ergodic with stationary probability measure
µh and admits exponential moments

∫
r3,s(x)µh(dx) < ∞. Furthermore, applying Remark 1 to r6,s(·), we

see that
∫

∞

0 r6,s(y)P(x,dy) = ∞ for x large enough and thus
∫

∞

0 r6,s(x)µh(dx) = ∞.
Split-step Euler case. We show that the fully implicit split-step Euler scheme has a stationary measure

with polynomial decay. Let rα(x) := 1∨|x|α and denote Z ∼ N(0,1). We have for |x|> 1:∫
rα(y)P(x,dy)

rα(x)
= E

∣∣a(ϑmh+ x)
x

+σ
√

hZ)
∣∣α |x|→∞−−−→ (σ2h)α/2 ·E|Z|α = L(rα),

by ‘dominated convergence’. Moreover, one can show that supx∈[−M,M]

∫
rα(y)P(x,dy)< ∞. Using Thm.

2(i) we conclude that the chain is ergodic with stationary probability measure µh and has polynomial
moments

∫
rα(x)µh(dx)< ∞ for α < αh, where αh solves (σ2h)αh/2 ·E|Z|αh = 1. The fractional moments

are available in closed form: E|Z|α = 2α/2Γ((α +1)/2)/
√

π (Winkelbauer 2012). Hence, αh can be found
numerically. For instance, when σ = 1 (where ϑ and m are irrelevant) α1 = 2 and α1/2 ≈ 4.75. Conversely,
as x→ ∞∫

∞

0 rα(y)P(x,dy)
rα(x)

= E
(∣∣a(ϑmh+ x)

x
+σ
√

hZ
∣∣α ;

a(ϑmh+ x)
x

+σ
√

hZ > 0
)
→ (σ2h)α/2E(Zα ;Z > 0).
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Figure 4: Cubic drift and linear volatility process with ϑ = 1,σ = 1,m = 1. Plot of γh(x) against µ̄0(x) for
h = 0.01 (left) and h = 0.001 (right) for fully implicit (θ = 1) standard and split-step Euler schemes.

So L+(rα) =
1
2(σ

2h)α/2E|Z|α , which diverges to ∞, as α → ∞. According to Thm. 2(ii), L+(rα) > 2
implies

∫
∞

0 r(x)µh(dx) = ∞. From this we conclude that the tail of µh has a power law. Notably, αh→∞ as
h ↓ 0, so the tail indeed gets lighter as h ↓ 0. Observe however that for all positive h, the invariant measure
µh has still only finitely many moments, whereas µ0 decays in a Weibullian way.

Conclusions: In this example µ0 corresponds to Weibullian decay with p= 2. The fully implicit standard
and split-step Euler schemes exhibit completely different behavior. The standard Euler scheme gives rise
to Weibullian decay with some p ∈ [3,6], and the split-step scheme (strikingly) results in power-law decay.
The tails become lighter in the split-step scheme as h ↓ 0. Experimental results are presented in Figure 4.

5 CONCLUSIONS

In this paper we have studied simulation-based techniques for estimating the stationary distribution of SDEs,
with a focus on the tail distribution. More specifically, we have considered how the estimate of the stationary
tail distribution is affected by the time-discretization scheme chosen. The main conclusion is that estimation
of the stationary tail is a highly delicate issue. Commonly accepted discretization techniques may very
well lead to highly inaccurate estimates of the stationary tail distribution of the continuous-time process.
For instance, we have identified cases in which the stationary tail of the SDE is Weibullian, while the
discretizations lead to power-law tails. In our study we have focused on discretizations of one-dimensional
SDEs, as for those the solution of the SDE is available in closed form and can be used as a benchmark;
evidently, the above warning carries over to multi-dimensional SDEs.

Given these findings, it is advisable to use different discretization schemes (e.g. θ -implicit standard
and split-step Euler with different θ and higher order schemes) for assessing tail behavior, and compare
their outcomes. Furthermore, we have shown in the first example that the error can be reduced by adapting
the stepsize h to the threshold x. For the OU case, we were able to show how to choose h to control the
error. Similar results may be possible for other cases, but require further study.
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