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ABSTRACT

In this paper, European option prices are computed analytically, as well as simulated, for underlying asset
price models with stochastic volatility and jump discontinuities. The analytical price is derived using the Fast
Fourier Transform method developed in previous literature, which enables prices to be computed quickly.
This model is compared with the Black-Scholes model, and the results suggest that this model addresses
a known issue with the Black-Scholes model, the under and over valuations of short maturity options.
The analytical solution is also used to investigate effective control variates in Monte Carlo simulations.
Simulation experiments indicate that the random motion of the asset price serves as an effective control
variate.

1 INTRODUCTION

According to the Option Clearing Corporation, over 329 million equity options contracts were traded in
August 2017. In such a large market, these contracts can benefit from well-developed option pricing
models. Furthermore, well-developed option pricing models can be used to determine the volatility of the
underlying assets, providing insight about the risk of certain assets.

Option contracts provide the contract holder the right to buy or sell an underlying asset at a predetermined
price and date. For example, if a European call option has a strike price of $110 and a maturity of half
a year, then in half a year the contract holder would have the right to buy the underlying asset at $110.
European means that this right can only be exercised at exactly the maturity date and not before. A call
option gives the contract holder the right to buy the asset, whereas a put option gives the right to sell at a
certain price. Most importantly, though, the contract holder is not forced to buy it at the strike price. If the
asset is worth less than $110 at the maturity date, then there is no requirement to buy it at $110; however,
if the asset is worth more, then the contract holder can buy it at the strike price of $110. The payoff of
this call option can be described mathematically as (ST −K)+ where x+ = max(x,0), K is the strike price
and ST is the asset price at the maturity date. This is because asset bought at the strike price can be sold
immediately back at market price, yielding a profit of the difference or not exercised at all, yielding no
profit or loss.

In the real world, these contracts are sold for a premium, raising an important question: How much
are these options contracts worth? The fair price would be the expected payoff of the contract discounted
for time. In Black and Scholes (1973), Fischer Black and Myron Scholes derived a mathematical formula
for the price of these contracts based on certain assumptions. The effects were immediate. According to
Bernstein (2012), the number of call options traded at the Chicago Board Options Exchange on opening
day in 1973 was 911 and grew to more than 20,000 by mid-1974 and to 100,000 in 1977. Bernstein also
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comments that every trader in the Chicago Board Options Exchange was using the Black-Scholes model.
However, today there are known flaws with their model and assumptions.

The Black-Scholes model has a few key assumptions. The first is that the underlying asset follows
Geometric Brownian Motion (GBM), which takes the form dSt = µStdt +σStdWt , where dWt is a Wiener
Process. This leads to one of the major issues with the Black-Scholes framework. In GBM, the random
motion is normally distributed, and thus extreme changes in prices are rare, resulting in severe undervaluations
of short maturity options that are deep out-of-the-money. “Deep” refers to a large difference between the
strike price and current asset price. For example, if the current asset price is $50 and the strike price is $100
on a call option, the option would be called deep out-of-the-money. An example of a deep in-the-money call
option would be one where the asset price is $100 and the strike price is $50. In the Black-Scholes model,
the lack of extreme changes in asset price makes it almost impossible for these deep out-of-the-money
options to get in the money in that short period of time. Thus, the Black-Scholes model prices them far
cheaper than they are sold for in the real market. For the same reasons the Black-Scholes model has been
known to overvalue deep in-the-money options. One common solution is to add jump discontinuities in the
asset price. These jumps can represent earnings reports or unexpected real-world events that cause shocks
in the market. These jump discontinuities allow the asset to make large movements over short periods of
time, allowing the results to more closely match the empirical data.

The second issue comes from the assumption that the volatility of underlying asset remains constant
from the beginning of the contract until the end. There is empirical evidence that contradicts this assumption,
which is reflected in the volatility smile illustrated in Figure 1. If the underlying asset is assumed to have

Figure 1: Example graph of the implied volatility for a single stock option across different strike prices,
showing the well-known volatility smile.

constant volatility, then across all strike prices the implied volatility should be the same. Note, implied
volatility is the calculated volatility of the asset that would yield the observed option price in the Black-
Scholes model. However, the curve in Figure 1 has been observed in real data, suggesting that the volatility
is not constant. As a result, stochastic volatility has been added to many recent models, where volatility
is also a stochastic process.

Adding jumps and stochastic volatility to the original Black-Scholes model, however, creates challenges
with tractability. Since Monte Carlo simulations are computationally expensive, analytical solutions are
usually desirable. In addition, there has been literature suggesting the use of Fast Fourier Transform (FFT)
to increase computational speeds even further. The idea of using FFT was proposed in Carr and Madan
(1999). They used FFT to invert a characteristic function and recover a probability density function, which
was then used to price the option by calculating the expected payoff using the recovered probability density
function.

We propose using the FFT to invert the characteristic function of the Heston (1993) model of stochastic
volatility and combining it with a separate jump distribution, leading to a model that contains jumps and
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stochastic volatility while remaining computationally inexpensive. The Heston model was chosen because
it has a known characteristic function for the log asset price. Furthermore, it has been widely studied and
applied to real data (Crisóstomo 2015). A similar model and method was proposed in Yan and Hanson
(2006), but our approach is able to accommodate general jump distributions rather than being limited to
log-uniform jump distributions.

When the characteristic function is not known, Monte Carlo techniques are often used, and variance
reduction techniques such as control variates are important for computational efficiency. Effective control
variates allow fewer replications while maintaining the same level of precision. Using the model developed
in this paper as a benchmark, we investigate several candidate control variates and evaluate them on
numerical examples.

In summary, our contribution is both a new analytical model that accounts for stochastic volatility and
jumps and also an investigation of control variates for Monte Carlo simulation. The rest of the paper is
organized as follows. Section 2 will provide the overview of the the model, discussing the characteristic
function inversion and final jump height distribution construction. Section 3 contains the Monte Carlo
simulation framework and information on the control variates used. The numerical results from the model
and Monte Carlo simulation experiment are in Section 4, and Section 5 contains the conclusions and
potential future research directions.

2 ANALYTICAL APPROACH

2.1 Stochastic Volatility Model

Stochastic volatility diffusion processes have been well studied. One of the most famous stochastic volatility
models is the following proposed in Heston (1993):

dSt = µStdt +
√

VtStdW1,t (1)

dVt = κ(θ −Vt)dt + ε
√

VtdW2,t

dW1,tW2,t = ρdt.

where St and µ are the asset price at time t and risk-free return rate, respectively, k, ε and θ are the mean
reversion speed, volatility of volatility, and mean volatility, respectively, and the two Wiener processes,
W1,t and W2,t , have correlation ρ . Volatility in this model is a mean-reverting stochastic process; as Vt
deviates from θ , the drift moves the process back towards θ . The speed at which the process reverts can
be controlled using κ , while ε controls volatility of the volatility process.

2.2 Characteristic Function Inversion

Heston (1993) derived the characteristic function for ln(ST ), the log asset price at the maturity date. The
characteristic function can be used to recover a probability density function (PDF), because the characteristic
function is essentially the Fourier transform of the PDF,

fX(x) =
1
π

∫
∞

0
e−itx

φX(t)dt, (2)

where fX(x) is the probability density function of the random variable X and φX(t) is the characteristic
function of the random variable X . Using the Fast Fourier Transform (FFT), it is possible to efficiently
invert the characteristic function and recover a PDF. FFT is an algorithm that quickly computes the Discrete
Fourier Transform (DFT) of a given sequence {am} given by
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Ak =
N−1

∑
m=0

ame−2πi mk
N . (3)

The FFT algorithm is useful because it reduces the number of computations from O(N2) to O(N logN),
where N is a power of 2 and the number of elements in the series. The DFT maps the sequence {am} to a
new sequence {Ak}. In this case, {Ak} will represent the PDF values. To approximate (2), the trapezoidal
rule is used to write a series approximation:

1
π

∫
∞

0
e−itx

φX(t)dt ≈ 1
π

N−1

∑
m=0

δme−itmx
φX(tm)∆t (4)

tm = m∆t.

where δm is equal to 1
2 for m = 0 and equal to 1 for all other values of m. The sum in (4) is very similar to

(3), and with a few modifications, it becomes the same form. First, by setting the product ∆x∆t equal to
2π/N, e−imk2π/N is equivalent to e−itmxk , where tm is the sequence of t values for which the characteristic
function was calculated, and xk is the sequence of x values for which the PDF values are approximated.
Furthermore, there needs to be a shift factor eibtm , which will allow the PDF to be calculated for a chosen
initial x value, so that xk ranges from −b to −b+(N− 1)∆x. Using all this, the final series am can be
written in the following way:

am =
1
π

δmeibtmφX(tm)∆t

∆x∆t =
2π

N

fX(−b+ k∆x) =
N−1

∑
m=0

ame−2πi mk
N .

This series will yield approximate PDF values for all x values of −b+ k∆x where k = 0,1,2 . . . ,N−1.

2.3 Adding Jumps

To factor in jumps, a Compound Poisson jump process is introduced, meaning that the jumps occur according
to a Poisson process with the height of the jump being a random value from a specified single jump height
probability distribution. The goal in this section is to derive a jump height probability distribution that
takes into account all possible numbers of jumps that could occur over the lifetime of the option. To
find this probability distribution, first note that given n jumps, the jump height probability distribution is
an n-fold convolution of the single jump height probability distribution. Then, to derive the final total
probability distribution, sum each of the distributions for a specific number of jumps after scaling them by
the probability of that many jumps occurring, i.e.,

F =
∞

∑
n=0

λ ne−λ

n!
Fn. (5)

where F is the probability distribution of total jump heights, n is the number of jumps, Fn is the probability
distribution of jump heights from n jumps, and λ is the Poisson arrival rate of jumps.
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2.4 Implementing Jumps

Practical implementation of the jump process requires truncation of the number of possible jumps, so a
maximum number of jumps I0 is chosen such that the tail probability after I0 in the Poisson distribution is
less than some threshold:

I0 = min
j

[
∞

∑
i= j+1

λ ie−λ

i!
< ε

]
. (6)

The tail probability was then added back to the probability of I0 jumps occurring.
If the single jump height probability distribution is continuous, then it must be discretized so it can be

convolved with the probability distribution of ln(ST ). The discretization process is given by

P(J = j) =C
(

j+
∆x
2

)
−C

(
j− ∆x

2

)
, (7)

which is the probability that the jump height J is equal to j. C(x) is the cumulative distribution function
of the distribution being discretized and ∆x is the spacing of the discretization. Note that the ∆x here must
equal the ∆x in the characteristic function inversion.

If the distribution is infinite, then the tail probabilities are truncated and then added to the ends of the
discretized distribution. Overall, this discretization method is very similar to (Fu et al. 2016). The only
difference between these two schemes is the handling of the tail probabilities.

2.5 Putting It Together

We want our final model to account for stochastic volatility and jumps.

dSt = µStdt +
√

VtStdW1,t + JStdNt

dVt = κ(θ −Vt)dt + ε
√

VtdW2,t

dW1,tW2,t = ρdt

In addition to the Heston model terms defined in Section 2.1 there are now jump process terms in our
model. J is the random jump height and Nt is the Poisson jump counting process. It is clear from the
dynamics that the model incorporates both stochastic volatility and jumps, specifically the Heston model
plus a compound Poisson process. To find the analytical solution to this model we use the two probability
distributions derived earlier: the total jump height probability distribution from Sections 2.3 and 2.4 and
the recovered distribution for ln(ST ) from Sections 2.1 and 2.2. The final price probability distribution
can now be derived by simply convolving the two distributions, yielding a price distribution that accounts
for both stochastic volatility and jumps. The price of European options can then be priced using this final
distribution through a simple sum. For a European call option the price is the discounted expectation of
the payoff of the option:

Price = e−rT
∑
s∈S

P(ln(ST ) = s)(es−K)+, (8)

where K is the strike price, T is the time to maturity, r is the risk-free interest rate. (es−K)+ represents
the payoff of the option if the final log asset price is s, and P(ln(ST ) = s) is the probability of the log asset
price being s, which is taken from the final price probability distribution. The option price is then the sum
in (8) calculated for all s in the set of possible log stock prices in the final price probability distribution, S.
For the remaining part of this paper, this model will be referred to as the stochastic volatility with jumps
(SV-J) model.
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3 MONTE CARLO SIMULATION

3.1 Framework

When the option pricing model is complex, it is difficult to compute the analytical solution. Therefore, most
researchers and practitioners turn to Monte Carlo simulation methods, due to its ease of accommodating
these complicated formulations. However, these simulations can become computationally expensive, so
it is crucial to develop methods that reduce computation time while improving precision and accuracy,
e.g., variance reduction techniques such as control variates, which we investigate in our work here. In this
paper, only the the stochastic volatility diffusion is simulated. The probabilities of the jump heights are
known, because they were derived in Sections 2.3 and 2.4, and the jumps are added analytically via the
distribution derived in Section 2. This was done because if jumps were also simulated, there would be too
many sources of variation, requiring a large number of replications to achieve precise results.

In order to simulate the Heston model, the processes St and Vt must be discretized for simulation:

St+1 = St +µSt∆t +St

√
V+

t ∆tW1,t (9)

Vt+1 =V+
t +κ(θ −V+

t )∆t + ε

√
V+

t ∆tW2,t .

Another important part of the simulation is the generation of two random variables W1,t and W2,t with ρ

correlation, which are generated via

W1,t ∼N (0,1),Z ∼N (0,1) (10)

W2,t = ρW1,t +
√

1−ρ2Z.

Once W1,t and W2,t are generated for the entire sample path, the asset price path can be generated up to the
maturity date, T . The price at the maturity date, ST , is added to the jump distribution and the expectation
is calculated.

Price = e−rTE[(ST eJ−K)+] (11)

= e−rT
∑
j∈J

P( j)(ST e j−K)+

In (11), J is the random variable representing the log jump height and j represents a possible log jump
height. T is the maturity date and K is the strike price.

3.2 Control Variates

The control variates method uses a statistic generated from the sample with known expectation to help
correct the statistic of interest; details of the method are provided in (Banks et al. 2009). In this paper,
multiple control variates were tested. Choosing control variates can be tricky, as the requirement of known
expectation is not always easy to satisfy. In this case, the average value of W1,t , W2,t , and Vt of the option
were tested as control variates. The two variables, W1,t and W2,t have a known mean of zero and thus are
suitable.

The average level of volatility was also tested, as it had a known expectation. However, it is important
to note that the expectation of 1

N ∑Vt is not simply θ , the mean volatility level; this is only true if V0 = θ .
However, it is possible to calculate the expectation using the sequence {Xi} defined as follows:

1
N
E

[
N−1

∑
i=0

Vi

]
=

1
N

N−1

∑
i=0

Xi (12)

X0 =V0

Xi+1 = Xi +κ(θ −Xi)∆t.
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The new process Xi captures the expectation of Vi, because the random motion of Vi has expectation zero,
and satisfies (12), since

1
N
E

[
N−1

∑
i=0

Vi

]
=

1
N
E[V0 +V0 +κ(θ −V0)∆t

+ ε
√

V0∆W2,1 . . .VN−2 +κ(θ −VN−1)∆t + ε
√

VN−1∆W2,N−1].

Note that ∆W2,t has expectation zero, so all terms that contain ∆W2,t can be ignored, which leaves

1
N
E[V0 +V0 +κ(θ −V0)∆t + · · ·+VN−1 +κ(θ −VN−1)∆t].

This new expression is the same as the sum of Xi, as it only contains the mean reverting portion of Vi. In
the simulation, the process Xi was generated and averaged to determine the average value of Vt . Now that
we have the expectations of the average values of W1,t , W2,t , and Vt , each will be tested as a control variate.

4 SIMULATION AND ANALYTICAL RESULTS

The Monte Carlo simulations and analytical solution are presented in this section. The results are obtained
using the exact model and Monte Carlo framework detailed in the previous sections. The code was
written in Python and run on a laptop with 8GB LPDDR3 Onboard SDRAM and an Intel Core i5-7200U
2.5GHz Processor. The parameters for the simulation are S0 = 100, K = 100, T = 1, κ = 6.21, θ = 0.019,
V0 = 0.010201, ε = .61, µ = 0.0319, ρ =−.7. As for the jump distribution, J ∼ lnN (−.025, .05), λ = 5,
and the simulation used 1,000 time steps. The results from the analytical model, basic Monte Carlo
estimation and Monte Carlo estimation with W1,t as a control variate are given in Table 1.

Table 1: Comparison of Analytical Solution and Monte Carlo

Replications 95% CI % Err SE Time (Seconds)
SV-J 7.421 0 0 0.359
MC (1,000) (6.687, 7.548) 4.1 0.22 11
MC (10,000) (7.229, 7.506) 0.7 0.07 110
MC (100,000) (7.419, 7.507) 0.6 0.02 1202
CV (1,000) (6.958, 7.479) 2.7 0.13 11
CV (10,000) (7.362, 7.529) 0.3 0.04 110
CV (100,000) (7.419, 7.472) 0.3 0.01 1202

From left to right, the columns are the number of replications and type of simulation estimation, 95%
confidence interval (CI), the percent error from the SV-J value, standard error, and time required for the
calculation. The first row in Table 1 provides the analytical solution provided by the stochastic volatility
with jumps (SV-J) model discussed in Section 2. This is the price that was used to calculate percent errors
in the Monte Carlo simulation results. Rows 2 through 4 are the results of the Monte Carlo without any
control variates. As the replications increased, the standard error and the percent error decreased. However,
it is important to note the computation cost. At 100,000 replications the simulation ran for 1202 seconds.
This is a substantial computational cost that must be considered when deciding to implement the Monte
Carlo method for pricing. Additionally, while adding control variates does have some computational cost,
it is virtually negligible when compared to the computational cost of the Monte Carlo simulation itself,
resulting in the identical rounded run times in Table 1 between the naive Monte Carlo estimation and
control variate estimation.

The rows titled CV are the results from the control variate Monte Carlo. The specific control variate
used in this case was W1,t , the random motion of the price path. The control variate increased the precision
of the simulation compared to the basic the Monte Carlo, as seen by the standard errors of Table 1 and in
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Figure 2: Confidence intervals from Table 1

a graph of the confidence intervals in Figure 2. However, not all the control variates tested increased the
precision as significantly as W1,t .

Table 2 and Figure 3 presents the results of various other control variates. Each of these Monte Carlo
simulations was run with 10,000 replications. The computation times are not shown, as they are very
similar to the computation times of 10,000 replications in Table 1. In Table 2, W1,t resulted in the lowest
standard error. The other two control variates, W2,t and Vt , also reduced the standard error but not as much
as W1,t . The confidence intervals are even smaller when the maturity is shorter. Using the exact parameters

Table 2: Comparison of Various Control Variates

Control Variate 95% CI % Err SE
SV-J 7.421 0 0
MC (7.191, 7.465) 1.3 .07
W1,t (7.310, 7.476) 0.4 .04
W2,t (7.213, 7.458) 1.1 .06
Vt (7.292, 7.535) 0.1 .06

as Table 1 except a maturity of T = 0.1 years, confidence intervals were calculated for the basic Monte
Carlo estimation and using W1,t as a control variate. The results are show in Table 3.

Table 3: Simulation results for Short Maturity, T = 0.1

Replications 95% CI SE
SV-J 3.170 0
MC (1,000) (2.989, 3.186) 0.050
MC (10,000) (3.141, 3.202) 0.016
MC (100,000) (3.151, 3.170) 0.005
CV (1,000) (3.088, 3.175) 0.022
CV (10,000) (3.167, 3.194) 0.007
CV (100,000) (3.166, 3.174) 0.002

Table 3 illustrates that for shorter maturities the standard errors are much smaller because the price
underlying asset has less time to change, leading to less variance in the final price distribution. Furthermore,
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Figure 3: Confidence intervals from Table 2

the control variate W1,t continues to reduce the standard error by around 50% compared to the basic Monte
Carlo simulation.

Next, the SV-J model is compared to the standard Black-Scholes model. To illustrate the differences
between these two models, the option prices from both models were calculated over a range of strike prices.
The prices were calculated for a short maturity option and a longer maturity option. The SV-J model should
show characteristics that the Black-Scholes fails to capture when pricing short maturity options. However,
for the longer maturity case, when the Black-Scholes model works relatively well, the proposed model
should have similar prices to the Black-Scholes model.

The parameters for the SV-J model were the same as the ones used in Table 1 with two exceptions.
Instead of a single strike price, Figure 4 calculates the call option price for a range of strike prices. Second,
the initial volatility, V0 is set to equal θ , the mean level of volatility in the Heston model. This is done
so the mean level of volatility in the path is θ . As for the Black-Scholes prices, the prices are calculated
using the well known Black-Scholes equation,

C(St ,T ) = StN(d1)− e−µ(T−t)KN(d2)

d1 =
1

σ
√

T − t

(
ln
(

St

K

)
+

(
µ +

σ2

2

)
(T − t)

)
d2 = d1−σ

√
T − t,

where C(St ,T ) is the Black-Scholes call price for an asset with current value St at the maturity date T . The
asset is assumed to follow geometric Brownian motion with parameters µ and σ , and N(x) is the standard
normal cumulative distribution function.

The parameters used in the Black-Scholes equation are shown below.

S0 = 100,K = [85,120],σ =
√

θ ,µ = 0.0319

Most parameters are the same as Table 1 as long as they are applicable to Black-Scholes. The σ was
chosen as the

√
θ because θ is the expected mean level of volatility, and the Vt process is square rooted

in the St process. These parameters are used to calculated the option prices for both a short, T = .1 year,
and long, T = 1 year, maturity option. The results are presented in Figures 4 and 5, respectively. Also
note that computation time for these curves are negligible, since they are analytical solutions and do not
require simulation.
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Figure 4: Comparison of call option price from SV-J and Black-Scholes model in short maturity cases
(T = 0.1).

Figure 4 illustrates the short maturity option prices from both models. For the low strike prices in
Figure 4 the Black-Scholes prices are significantly higher than the SV-J model. The Black-Scholes model
has been known to overvalue these types of options, especially on short maturities and, in Figure 4, the
SV-J model prices these options cheaper than the Black-Scholes. Figure 4 provides some evidence that the
SV-J model, with the right calibration of parameters and jumps, could resolve this issue. Next, we can look
at the larger strike prices, the deep out-of-the-money options, the Black-Scholes model has historically
undervalued these options. So, the SV-J model should have prices higher than the Black-Scholes model,
and this is exactly what we see in Figure 4.

For longer maturities, the Black-Scholes model performs well, so we would hope that the SV-J model
would produce similar results. Figure 5 graphs the prices from the Black-Scholes model and SV-J model
across the same range of strikes as Figure 4. From the graph, it is apparent that the two models yield very
similar results for longer maturity options. This is reassuring, and combined with the results from Figure
4, provides strong evidence that the SV-J model can solve many of the shortcomings of Black-Scholes
while still performing well for the long maturity options.

5 CONCLUSION AND FUTURE RESEARCH

In this paper, an asset price model with stochastic volatility and jump discontinuities is proposed. The
Fast Fourier transform is used to recover a probability density function from the characteristic function of
the Heston Model, which is convolved with the jump size distribution, yielding a final price distribution
from which the expected payoff of European options can be calculated. The model is shown to resolve
the issues Black-Scholes traditionally has with short maturity options. The analytical solution is then also
compared to traditional Monte Carlo simulations with control variates implemented.

Three control variates were tested in the simulation experiment, and the results suggest that W1,t , the
random motion of the stock price, is the best control variate for variance reduction. In the future, it would
be interesting to test other control variates or other variance reduction techniques. Another interesting
possible area for future research would be to use more than one control variate; identifying the most
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Figure 5: Comparison of call option price from SV-J model and Black-Scholes model in long maturity
cases (T = 1).

effective combination of control variates would be useful for applying simulations to real data. Finally,
the most natural extension of this paper would be to apply this model to real data. To do this, the model
parameters would have to be calibrated according to the data.
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