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ABSTRACT

In a previous article, we studied a then-new class of standardized time series (STS) estimators for the
asymptotic variance parameter of a stationary simulation output process. Those estimators invoke the
well-known reflection principle of Brownian motion on the suitably standardized original output process
to compute several “reflected” realizations of the STS, each of which is based on a single reflection point.
We then calculated variance- and mean-squared-error-optimal linear combinations of the estimators formed
from the singly reflected realizations. The current paper repeats the exercise except that we now examine
the efficacy of employing multiple reflection points on each reflected realization of the STS. This scheme
provides additional flexibility that can be exploited to produce estimators that are superior to their single-
reflection-point predecessors with respect to mean-squared error. We illustrate the enhanced performance
of the multiply reflected estimators via exact calculations and Monte Carlo experiments.

1 INTRODUCTION

An archetypal task in discrete-event computer simulation output analysis is that of estimating the mean µ

of a stationary stochastic process, X1,X2, . . .. The usual point estimator for µ is the sample mean based
on n consecutive observations, X̄n ≡ ∑

n
j=1 X j/n. In order to make a statement on the precision of the

sample mean, the experimenter must also provide a point estimator for Var(X̄n) or, almost equivalently,
the variance parameter, σ2 ≡ limn→∞ nVar(X̄n); such a variance estimator can then be used to construct
confidence intervals (CIs) for µ and σ2.

Over the years, a great deal of work has appeared on the topic of steady-state variance estimation for
simulation output. The benchmark in the literature is the method of non-overlapping batch means (Schmeiser
1982), which divides the time series {X1,X2, . . . ,Xn} into b adjacent batches of size m (where n = bm);
the batch sample means are then treated as approximately independent and identically distributed (i.i.d.)
normal random variables, so that we estimate σ2 by the sample variance of the batch means multiplied by
m. The method of overlapping batch means (Meketon and Schmeiser 1984) generalizes non-overlapping
batch means by using all n−m+1 overlapping size-m batches; the resulting estimator for σ2 has only 2/3
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the variance of the non-overlapping batch means estimator. The theory of standardized time series (STS)
(Schruben 1983) provides a rich class of estimators for σ2, all of which incorporate some form of batching.
Many STS estimators for σ2 can be shown to converge as the batch size m→∞ to random variables related
to the weighted area under a Brownian bridge; and some of these area estimators turn out to have low bias
and variance. One can achieve further variance reductions by reusing the underlying data in various ways
to produce multiple estimators for σ2 which are then averaged; see, for instance, Foley and Goldsman
(1999), Calvin and Nakayama (2006), Calvin (2007), Batur et al. (2009), Alexopoulos et al. (2010), and
Meterelliyoz et al. (2012), among others.

One interesting idea involving data reuse stems from what is known as the Reflection Principle of
Brownian motion (BM), which states that a reflected BM (RBM) is itself a BM (Karlin and Taylor 1975).
Figure 1 illustrates the concept with four sample paths. In that figure, the original BM,

{
W (t) : 0≤ t ≤ 1

}
,

is depicted in black. We reflect this realization at time t = 0.25 about the horizontal line y = W (0.25),
producing the blue reflected path. Then at time t = 0.50, we reflect the blue path to obtain the red path; and
at time t = 0.75, a reflection of the red path yields the green path. There are obviously infinite possibilities.
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Figure 1: Several reflected sample paths of Brownian motion.

Meterelliyoz et al. (2015) studied STS estimators for σ2 based on reflected realizations of Brownian
motion, each of which used a single reflection at a different point t. The authors then proposed linear
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combinations of the singly reflected estimators having minimum variance and mean squared error (MSE).
In the current paper, we propose and evaluate a natural generalization of the singly reflected estimators
from Meterelliyoz et al. (2015). This generalization is motivated by a return to Figure 1, where we see
that the blue path is the result of one reflection, the red path of two reflections, and the green path of three
reflections. Indeed, our goal herein is to take advantage of estimators resulting from multiple reflections
— not just one as before; and so the current paper repeats the exercise from Meterelliyoz et al. (2015)
except that we now examine the efficacy of employing multiple reflection points on any realization of the
STS. This scheme provides additional flexibility that can be exploited to produce variance estimators with
smaller MSE than their single-reflection-point predecessors.

The current paper is organized as follows. In §2, we provide background material on STS and previous
work on reflected variance estimators. §3 introduces the new multiply-reflected estimators. §4 gives
analytical results on the expected values and variances of the estimators, along with a short Monte Carlo
study demonstrating their performance. §5 wraps up the paper with conclusions and suggestions for future
work in the area.

2 BACKGROUND

This section comprises background material that is intended to keep the paper self-contained. We begin in
§2.1 with a primer on classic STS basics, and then §2.2 reviews the analogous results from Meterelliyoz
et al. (2015) for reflected STS estimators.

2.1 Basics for STS Area Estimators

This subsection gives assumptions, definitions, and results for the baseline standardized time series and the
resulting area estimator for σ2.

Assumptions A:

1. {X j} is stationary with mean µ and covariance function R j ≡ Cov(X1,X1+ j), j = 0,±1,±2, . . .,
with |R j|= O(δ j), for some δ ∈ (0,1).

2. Let Si ≡ ∑
i
j=1 X j, i = 1,2, . . . ,n. For σ2 > 0, n = 1,2, . . ., and t ∈ [0,1], define

Yn(t) ≡
bntc(X̄bntc−µ)

σ
√

n
=

Sbntc−bntcµ
σ
√

n
, (1)

where b·c is the floor function. We assume Yn(·)
D−→

n→∞
W (·), where D−→

n→∞
denotes weak convergence

(as n→ ∞) (Billingsley 1968).
3. The function f (t) is twice differentiable and bounded on [0,1] with Var

[∫ 1
0 f (t)B(t)dt

]
= 1, where

B(t)≡W (t)− tW (1) is a standard Brownian bridge process on [0,1] that is independent of W (1).
Let F(t)≡

∫ t
0 f (s)ds, F̄(t)≡

∫ t
0 F(s)ds, F ≡ F(1), and F̄ ≡ F̄(1).

Under Assumption A.1, Aktaran-Kalaycı et al. (2007) show that

∞

∑
i=m

i`|Ri| = O(m`
δ

m) and
m

∑
i=1

i`Ri =
γ`

2
+O(m`

δ
m) for `= 0,1,2, . . .,

where γ` ≡ 2∑
∞
i=1 i`Ri, `= 0,1,2, . . .. Moreover, Assumption A.2 can be used to show that the standardized

time series, Tn(t), of the sample X1, . . . ,Xn converges weakly to B(t), i.e.,

Tn(t) ≡
bntc(X̄bntc− X̄n)

σ
√

n
D−→

n→∞
B(t), t ∈ [0,1]
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(Glynn and Iglehart 1990, Schruben 1983). Under Assumption A.3, the weighted area estimator for σ2,
A ( f ;n), and its limiting functional, A ( f ), are

A ( f ;n) ≡
[

1
n

n

∑
j=1

f
( j

n

)
σTn

( j
n

)]2
D−→

n→∞
A ( f ) ≡

[∫ 1

0
f (t)σB(t)dt

]2

∼ σ
2
χ

2
1 ,

where χ2
ν denotes a chi-squared random variable with ν degrees of freedom. Further,

E[A ( f ;n)] = σ
2− [(F− F̄)2 + F̄2]γ1

2n
+O(1/n2);

and if {A 2( f ;n) : n = 1,2, . . .} is uniformly integrable (Billingsley 1968), then limn→∞ Var[A ( f ;n)] =
Var[A ( f )] = 2σ4 (Goldsman et al. 1990).

2.2 Reflected Area Estimators

For any point c ∈ [0,1], the Reflection Principle establishes that the process

Wc(t) ≡

{
W (t), if 0≤ t < c
2W (c)−W (t), if c≤ t ≤ 1

is also a BM (see Figure 1). In order to obtain reflected versions of the STS area estimator based on Wc(t),
Meterelliyoz et al. (2015) begin by defining a reflected version of the original sample path, namely,

Xc, j ≡

{
X j, if 1≤ j ≤ bncc
−X j, if bncc+1≤ j ≤ n.

Continuing the analogy, let Sc,k ≡ ∑
k
j=1 Xc, j for k = 1,2, . . . ,n, so that

Sc,bntc =

{
Sbntc, if 0≤ t < c
2Sbncc−Sbntc, if c≤ t ≤ 1.

As in Meterelliyoz et al. (2015), we temporarily assume that the mean µ = 0. Then we define Yc,n(t) ≡
Sc,bntc/(σ

√
n), and note that, by Equation (1) with µ = 0,

Yc,n(t)
D−→

n→∞
Wc(t) for 0≤ t ≤ 1.

For t ∈ [0,1], the corresponding reflected STS with reflection point c is

Tc,n(t) ≡
bntc(X̄c,bntc− X̄c,n)

σ
√

n
=

Sc,bntc− tSc,n− (bntc−nt)X̄c,n

σ
√

n
,

where X̄c,k ≡ Sc,k/k for k = 1,2, . . . ,n. It can be shown that this reflected STS converges to the corresponding
reflected Brownian bridge, Bc(t)≡Wc(t)− tWc(1),

Tc,n(t)
D−→

n→∞
Bc(t) =

{
W (t)− t[2W (c)−W (1)], if 0≤ t < c
tW (1)−W (t)+2(1− t)W (c), if c≤ t ≤ 1.
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The reflected area estimator for σ2, Ac( f ;n), and its limiting functional, Ac( f ), with weight function
f (t) satisfying Assumption A.3, are

Ac( f ;n)≡
[

1
n

n

∑
j=1

f
( j

n

)
σTc,n(

j
n)

]2
D−→

n→∞
Ac( f )≡

[∫ 1

0
f (t)σBc(t)dt

]2

∼ σ
2
χ

2
1 . (2)

Further, if we define

hi( f ) ≡
n

∑
`=1

`
n f ( `n)−

n

∑
`=i

f ( `n), for i = 1,2, . . . ,n,

then

E[Ac( f ;n)] = E[A ( f ;n)]− 4
n3

nc

∑
i=1

n

∑
j=nc+1

hi( f )h j( f )R j−i.

Remark 1 For processes with µ 6= 0, Meterelliyoz et al. (2015) propose a corrected estimator for σ2 in
their online appendix. Alternatively, we can use the difference of two independent realizations to estimate
σ2 (at double the sampling cost), in which case the mean and the variance of the sample mean of the
difference are 0 and about 2σ2/n, respectively. Another approach is to subtract the grand sample mean
from the Xi’s to obtain a new process with mean 0 and variance parameter ≈ σ2. /

Example 1 Aktaran-Kalaycı et al. (2007) and Meterelliyoz et al. (2015) compare the expected values of
various vanilla and reflected area estimators, e.g., those having the constant and quadratic weight functions
f0(t) ≡

√
12 and f2(t) ≡

√
840(3t2− 3t + 1/2), t ∈ [0,1], both of which satisfy Assumption A.3. After

applying a little algebraic elbow grease, we have

E[A ( f0;n)] = σ
2− 3γ1

n
+O(n−2);

E[Ac( f0;n)] = σ
2−3(8c2−8c+3)

γ1

n
+O(n−2);

E[A ( f2;n)] = σ
2 +

7(σ2−6γ2)

2n2 +O(n−3); and

E[Ac( f2;n)] = σ
2−420[c(c−1)(2c−1)]2

γ1

n
+

7(σ2−6γ2)

2n2 +O(n−3).

Thus, as estimators of σ2, A ( f0;n) and Ac( f0;n) are always first-order biased, that is, the bias is of order
O(1/n). Fortuitously, A ( f2;n) is first-order unbiased (FOU); and Ac( f2;n) is FOU for c = 0, 1/2, and 1.
/

3 MULTIPLY REFLECTED AREA ESTIMATORS

The goal of this section is to introduce our new multiply reflected area variance estimators. We start in
§3.1 by noting that the weighted areas under the Brownian bridges arising from RBMs can be written as
Itô integrals. §3.2 uses the Itô representation to show that these functionals are uncorrelated for certain
selections of reflection points. In §3.3, we provide examples of reflection points that assure uncorrelated
areas for different weight functions. In fact, since these uncorrelated area functionals are jointly normal,
they also have the bonus of being independent. These area functionals can be squared in the manner of
Ac( f ) from Equation (2), leading to independent χ2

1 random variables, which can then in turn be summed
to obtain a χ2 random variable with enhanced degrees of freedom. It is the task of §3.4 to describe how to
set up standardized time series estimators for σ2 so that they converge to these scaled χ2 random variables
as the sample size n→ ∞.
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3.1 Itô Integral Representation of Area Functionals

The BM can be written as an Itô integral, W (t) =
∫ t

0 dW (s). The Brownian bridge is therefore equal
to B(t) = tW (1)−W (t) = t

∫ 1
0 dW (s)−

∫ t
0 dW (s). It is also possible write the area functional as an Itô

integral; in fact, after invoking integration by parts for Itô processes (see, e.g., Mikosch 1998, Equation
(2.35)), it can be shown that

N( f ) =
∫ 1

0
f (t)B(t)dt =

∫ 1

0
H(s)dW (s),

where H(·) is the deterministic function

H(s) ≡
∫ 1

0
t f (t)dt−

∫ 1

s
f (t)dt,

and
∫ 1

0 H(s)ds = 0. Moreover, the derivative of H(·) is equal to the weight function, i.e., H ′(s) = f (s).
The starting and ending values are

H(0) =
∫ 1

0
(t−1) f (t)dt and H(1) =

∫ 1

0
t f (t)dt.

From Assumption A.3, we have that f (t) is twice differentiable and bounded on [0,1]; and this implies
that

∫ 1
0 H2(s)ds < ∞. This latter fact allows us to use the Itô isometry to obtain the variance of the area

functional (Mikosch 1998, p. 108),

Var [N( f )] = Var
[∫ 1

0
H(s)dW (s)

]
=
∫ 1

0
H2(s)ds.

Therefore, in light of Assumption A.3’s variance standardization, the function H(·) satisfies
∫ 1

0 H2(s)ds = 1.
For example, for constant weight function f0(t) =

√
12, we have H(s) =

√
3(2s− 1); and hence∫ 1

0 H(s)ds = 0 and
∫ 1

0 H2(s)ds = 1.
The function H(·) can be seen as the weight function of observations Xi, whereas f (·) is the weight

function of the standardized time series Tn(·). Foley and Goldsman (1999) showed that

N( f ;n) =
1
n

n

∑
j=1

f
( j

n

)
σTn

( j
n

)
=

n

∑
i=1

[
hi( f )
n3/2

]
Xi. (3)

For instance, for the constant weight f0, we have hi( f )=
√

3(2i−n−1) and the weighted sum of observations
with weights H((i−0.5)/n)/

√
n is equal to the expression that we get from Foley and Goldsman (1999)

with that choice of hi( f ),

N( f0;n) =
n

∑
i=1

[
H((i−0.5)/n)√

n

]
Xi =

n

∑
i=1

[√
3(2i−n−1)

n3/2

]
Xi.

3.2 Covariance of Reflected Area Functionals

For a single reflection at c ∈ [0,1], the RBM is given by Wc(t) =
∫ t

0 δc(s)dW (s), where

δc(s) =

{
1, if 0≤ s < c
−1, if c≤ s≤ 1.

(4)
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The reflected functional is

Nc( f ) =
∫ 1

0
f (t)Bc(t)dt =

∫ 1

0
H(t)dWc(t) =

∫ 1

0
δc(t)H(t)dW (t). (5)

By the Itô isometry, the covariance (and so the correlation due to the unit variances) between the original
and the reflected functionals is

Cov[N( f ),Nc( f )] =
∫ 1

0
δc(t)H2(t)dt =

∫ c

0
H2(t)dt−

∫ 1

c
H2(t)dt.

Let ρ(c) denote the correlation between the original and the reflected functionals, ρ(c)≡Cov[N( f ),Nc( f )].
Note that ρ ′(c) = 2H2(c)≥ 0, ρ(0) =−1, and ρ(1) = 1. Therefore, by the Intermediate Value Theorem,
for any weight function f (·), there exists a reflection point that makes the original and the reflected area
functionals uncorrelated.

Are there sets of reflection points resulting in reflected area functionals that are uncorrelated with each
other as well as with the original functional? We will answer in the affirmative. To this end, we define a
generic multiply reflected BM process by

WT (t) =
∫ t

0
δT (s)dW (s),

where

δT (s) =

{
1, if s ∈T

−1, if s ∈ [0,1]\T
and where T ⊆ [0,1] can be regarded as the domain of “+1” implied by reflection points so that [0,1]\T
is the domain of “−1”. For instance,

• for no reflection, T = [0,1];
• for one reflection at 0 < c < 1, T = [0,c), as in Equation (4);
• for two reflections at 0 < a < c < 1, T = [0,a)∪ [c,1]; and
• for three reflections at 0 < a < b < c < 1, T = [0,a)∪ [b,c).

Then, similar to (5), the multiply reflected area functional is

NT ( f ) =
∫ 1

0
δT (t)H(t)dW (t).

Now, consider the monotone increasing function Λ(t)≡
∫ t

0 H2(s)ds, 0≤ t ≤ 1, as well as the set

T̂ ≡ Λ(T ) =
{

Λ(t) | t ∈T
}
.

It can be shown that the covariance between two multiply reflected functionals with respective “+1” domains
Ti and T j is given by

Cov[NTi( f ),NT j( f )] =
∫ 1

0
δTi(t)δT j(t)H

2(t)dt =
∫ 1

0
δ

T̂i
(y)δ

T̂ j
(y)dy. (6)

By taking δ
T̂ j
(y), j = 0,1,2, . . ., to be, e.g., Walsh functions (Wang 2012), it immediately follows that the

covariance given in Equation (6) is zero. The inverse transformation of the sign switching points, which
are dyadic fractions, gives the locations of the reflection points, i.e., c = Λ−1( a

2b ) where a is a positive
integer less than 2b and b is a natural number.

To recapitulate: In the spirit of Foley and Goldsman (1999), we have used an orthonormal system of
weighting functions, H j(t) ≡ δT j(t)H(t), j = 0,1,2, . . ., to obtain a set of uncorrelated standard normal
area functionals, NT j( f ), j = 0,1,2, . . .. Since these area functionals are (jointly) normal, they are in fact
i.i.d. standard normal.

1676
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3.3 Examples

We present several examples to illustrate how one can obtain reflection points that guarantee the independence
of the four functionals NT j( f ), j = 0,1,2,3, obtained by using the first four Walsh functions.

For the constant weight function f0(t) =
√

12, we have H(s) =
√

3(2s−1) and Λ(t) =
∫ t

0 H2(s)ds =
3t−6t2 +4t3. Hence,

• for one reflection, c = Λ−1(1/2) = 1/2;
• for two reflections, c1 = Λ−1(1/4) = 0.10315 and c2 = Λ−1(3/4) = 0.89685; and
• for three reflections, c1 =Λ−1(1/4)= 0.10315, c2 =Λ−1(1/2)= 0.5, and c3 =Λ−1(3/4)= 0.89685.

For the quadratic weight function f2(t) =
√

840(3t2−3t +1/2), we have H(s) =
√

210(s−3s2 +2s3) and
Λ(t) = 70t3−315t4 +546t5−420t6 +120t7. It follows that

• for one reflection, c = Λ−1(1/2) = 1/2;
• for two reflections, c1 = Λ−1(1/4) = 0.222986 and c2 = Λ−1(3/4) = 0.777014; and
• for three reflections, c1 = Λ−1(1/4) = 0.222986, c2 = Λ−1(1/2) = 0.5, and c3 = Λ−1(3/4) =

0.777014.

For the cosine weight functions fcos, j(t) =
√

8π j cos(2π jt) for j = 1,2, . . ., we have H(s) =
√

2sin(2 jπs)
and Λ(t) = t− sin(4 jπt)

4 jπ . Hence, for j = 1,2, . . .,

• for one reflection, c = Λ−1(1/2) = 1/2;
• for two reflections, c1 = Λ−1(1/4) = 1/4 and c2 = Λ−1(3/4) = 3/4; and
• for three reflections, c1 = Λ−1(1/4) = 1/4, c2 = Λ−1(1/2) = 1/2, and c3 = Λ−1(3/4) = 3/4. /

3.4 The New Estimators

Here we put all of the above results and notational fog together to give the explicit form of the new multiply
reflected weighted area estimators for σ2. To begin, suppose that Ti = Λ−1(T̂i), i = 0,1,2, . . ., where T̂i
is the domain of “+1” for the ith Walsh function as described in §3.2. Further, for j = 1,2, . . . ,n, define

XTi, j ≡

{
X j, if b jnc/n ∈Ti

−X j, otherwise,
j = 1,2, . . . ,n,

and

TTi,n(t) ≡
bntc(X̄Ti,bntc− X̄Ti,n)

σ
√

n
, 0≤ t ≤ 1,

where X̄Ti,k ≡ ∑
k
j=1 XTi, j/k, for k = 1,2, . . . ,n.

Next we generalize formula (2) for multiple reflections,

NTi( f ;n) ≡ 1
n

n

∑
j=1

f
( j

n

)
σTTi,n(

j
n)

D−→
n→∞

NTi( f ) =
∫ 1

0
f (t)σBTi(t)dt = σ

∫ 1

0
δTi(t)H(t)dW (t). (7)

Thus, NTi( f ;n) is the reflected standardized time series functional corresponding to the analogous STS
functional from Equation (3). Our new overall multiply reflected area estimator ¯AR( f ;n,k) is simply the
average of the squares of the k area functionals NTi( f ;n),

¯AR( f ;n,k) ≡ 1
k

k−1

∑
i=0

ATi( f ;n) =
1
k

k−1

∑
i=0

[NTi( f ;n)]2.

We shall investigate its properties forthwith.
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4 ESTIMATOR PERFORMANCE

In this section, we start with a bit of standard theory and then undertake some Monte Carlo simulation to
evaluate the efficacy of the new estimators.

4.1 Some Easy Asymptotic Results

By the convergence result (7), the Continuous Mapping Theorem (Billingsley 1968, Corollary 1, p. 31),
and the fact that the NTi( f )’s, i = 0,1,2, . . ., are i.i.d. standard normal, we have

¯AR( f ;n,k) D−→
n→∞

1
k

k−1

∑
i=0

[NTi( f )]2 ∼
σ2χ2

k
k

.

Thus, under suitable uniform integrability assumptions, we see that as the sample size n→ ∞,

E
[ ¯AR( f ;n,k)

]
→ E

[
σ

2
χ

2
k /k
]
= σ

2

and
Var
[ ¯AR( f ;n,k)

]
→ Var

[
σ

2
χ

2
k /k
]
= 2σ

4/k.

This indicates that the new estimator is asymptotically unbiased for σ2 and that the variance decreases in
the number of Walsh functions used.

4.2 A Small Monte Carlo Example

We take our new multiply reflected area out for a test drive on a stationary first-order autoregressive [AR(1)]
process. Let Xi = φXi−1 + εi, i = 1,2, . . ., where −1 < φ < 1, the εi’s are i.i.d. Nor(0,1−φ 2), and X0 is
initialized as a standard normal random variate independent of the subsequent εi’s. Then, as is well known,
Xi ∼ Nor(0,1) for all i, R j = Cov(Xi,Xi+ j) = φ | j| for all i, j, and σ2 = (1+φ)/(1−φ). Table 1 presents
results on the performance of ¯AR( f ;n,k) when it is applied to an AR(1) process with φ = 0.9, in which
case it turns out that σ2 = 19 and 2σ4 = 722. The k = 2 row roughly corresponds to the single-reflection
case studied in Meterelliyoz et al. (2015). In any case, for various choices of the weighting function f ,
sample size n, and number of Walsh functions k, the table gives:

• Exact bias of ¯AR( f ;n,k) as an estimator of σ2. These results are based on machinations similar
to those employed in Foley and Goldsman (1999) and Meterelliyoz et al. (2015); and

• Estimated variance (V̂ar) of ¯AR( f ;n,k) based on 100,000 Monte Carlo replications.

The obvious takeaways from Table 1 are that:

• As n becomes large, the bias of ¯AR( f ;n,k) dissipates at about the rate 1/n for all of the estimators
under study except for the case in which we use the weighting function f2 with k = 1 or 2.

• In particular, the introduction of the reflected estimators often adds bias (except for the case of f2
with one reflection).

• On the other hand, the variance of ¯AR( f ;n,k) decreases more-or-less proportionately to the number
of reflected estimators k.

These results are in line with previous research, including Meterelliyoz et al. (2015), and suggest the usual
“bias–variance tradeoff.” So even though the new reflected estimators exhibit significant bias, they can
achieve smaller variances by re-using the same data over and over again — in particular, variances that
are smaller than those obtained by the single-reflected estimators of Meterelliyoz et al. (2015).
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Table 1: Exact bias and Monte Carlo estimates of the variance of reflected estimators for an AR(1) process
with φ = 0.9 (σ2 = 19 and 2σ4 = 722). Each Monte Carlo estimate of the variance (V̂ar) is based on
10,000 replications.

n→ 512 1024 2048 4096

Estimator Bias V̂ar Bias V̂ar Bias V̂ar Bias V̂ar
A ( f0;n) −1.05 646 −0.53 667 −0.26 725 −0.13 745

¯AR( f0;n,2) −1.05 322 −0.53 333 −0.26 342 −0.13 353
¯AR( f0;n,4) −2.38 140 −1.19 158 −0.60 171 −0.30 172
¯AR( f0;n,8) −4.71 53 −2.47 71 −1.24 79 −0.62 84

¯AR( f0;n,16) −7.98 19 −4.77 28 −2.51 34 −1.26 39
A ( f2;n) −0.25 697 −0.07 704 −0.02 743 −0.004 712

¯AR( f2;n,2) −0.24 350 −0.06 356 −0.02 363 −0.004 366
¯AR( f2;n,4) −1.57 149 −0.74 173 −0.36 172 −0.17 174
¯AR( f2;n,8) −3.75 61 −1.88 73 −0.93 83 −0.46 85

¯AR( f2;n,16) −7.02 21 −3.94 29 −2.00 36 −1.00 42

5 CONCLUSIONS

This paper studied the efficacy of employing multiple reflection points on each realization of the standardized
time series, and so generalized the basic reflected estimator originally investigated by Meterelliyoz et al.
(2015). Generally speaking, our estimators have excellent variance, but some exhibit high bias that is not
ready for prime time. The good news is that this paper has provided the basic theory to allow for a rich
class of estimators that will be exploited in the future to overcome such issues.

For instance, augmentations that we did not include in the current article due to space limitations
include:

• batching to reduce estimator variance;
• jackknifing to reduce bias;
• optimal batch size calculation to minimize mean squared error;
• overlapping versions of the reflected estimators to reduce variance;
• reflection point selection to minimize bias;
• use of cosine weights à la Foley and Goldsman (1999);
• enhanced Monte Carlo evaluation of the new estimators; and
• incorporation of the new estimators into sequential procedures.
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KEMAL DİNÇER DİNGEÇ is an Assistant Professor in the Industrial Engineering Department at Altınbaş
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