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ABSTRACT

We propose an algorithm for simulating bipartite or directed graphs with given degree sequences, motivated
by the study of financial networks with partial information. Our algorithm sequentially computes certain
“maximum entropy” matrices, and uses the entries of these matrices to assign probabilities to edges between
nodes. We prove the correctness of the algorithm, showing that it always returns a valid graph and that
it generates all valid graphs with positive probability. We illustrate the algorithm in an example of an
inter-bank network.

1 INTRODUCTION

We consider the problem of simulating bipartite or directed graphs with given degree sequences. Our
investigation is motivated by the analysis of network models of interconnectedness in the financial system.
Following the global financial crisis of 2007-2009, network models have received growing attention as a
framework for the study of contagion. We are particularly interested in two types of networks:

Asset-Firm networks: These are bipartite graphs in which one set of nodes corresponds to investment
firms and the other nodes represent financial assets. An edge between two nodes means that the indicated
firm owns the indicated asset. A drop in value for one asset may force a firm that holds that asset to sell
other assets, driving down their prices, in turn creating losses for other firms holding those assets. In this
setting, shocks spread through the financial system by moving back and forth between assets and the firms
that own them. This type of model is studied in, for example, Chen et al. (2014), Caccioli et al. (2014),
Squartini et al. (2017) and Section 11 of Glasserman and Young (2016).

Inter-bank networks: These are directed graphs in which each node represents a bank. A directed edge
from one node to another indicates a payment obligation from one bank to another. If a bank defaults,
it fails to meet its payment obligations to other banks, potentially causing those banks to fail, creating a
cascade of failures. The framework of Eisenberg and Noe (2001) has spawned a large literature on these
types of models, as surveyed in Glasserman and Young (2016).

In studying these types of networks, we have at best partial information. For example, we may know
the total amount a bank has borrowed from and lent to other banks, without knowing the amount it has
borrowed from or lent to any individual bank. Moreover, in studying the financial stability implications of
features of a network, we are interested in exploring all networks consistent with those observable features,
and not just one particular configuration.

Simulation is a natural tool to address both issues. The goal is to simulate random instances of networks
that are consistent with the available information. Here we focus on the case in which we know the degrees
of all nodes but not which nodes are connected by edges. In an asset-firm network, this corresponds to
knowing how many assets are held by each firm and how many firms hold each asset, without knowing
which assets are held by which firms. In an inter-bank network, the assumption is that we know the number
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of banks against which each bank has payment obligations or claims, without knowing which pairs of
banks have transacted with each other. Given a set of features (node degrees) we would like to sample
uniformly from the set of graphs that have those features. Given such an algorithm, one can then estimate
a measure of performance or risk, conditional on the features, by averaging results over multiple random
instances.

The problem of incomplete information in inter-bank networks has commonly been addressed by filling
in the missing information with a configuration that is, in some sense, the most likely one, given the
available information. See Section 12.2 of Glasserman and Young (2016) for a discussion of these methods
and Anand et al. (2018) for an empirical comparison. Simulation methods have received less attention
but include the detailed network construction method of Hałaj and Kok (2013) and the Bayesian method
of Gandy and Veraart (2017). Rather than simulate uniformly, Gandy and Veraart (2017) assume prior
information is available on the probabilities of individual edges, and they draw samples consistent with
this information using a Markov Chain Monte Carlo (MCMC) approach.

Outside the setting of financial networks, the problem of generating random graphs with given degree
sequences has been studied in various other settings. A first natural approach for this problem is the pairing
model (also known as the configuration model). Fix n vertices and degree sequences d1,d2, . . . ,dn (with
∑

n
i di even). The pairing model creates di copies of each vertex and then selects pairs at random, until all of

the vertices have been “matched”. The result is a graph (that may contain loops and multiple edges) with
the desired degree sequence. Wormald (1999) describes in detail the properties of this method. Because
of the possibility of loops and multiple edges, this method is not guaranteed to produce valid samples in
the sense we verify for our method.

A second method uses an MCMC algorithm. It starts with a graph with the desired degree sequence.
At each iteration, it selects two edges, say {a,b}, {c,d}, with a,b,c,d all different. It then replaces these
edges with either {a,c}, {b,d} or {a,d}, {b,c}. The resulting graph maintains the correct degree sequence.
This method is called the switching method in Wormald (1999) and local rewiring algorithm (LRA) in
Squartini and Garlaschelli (2011). See also Blitzstein and Diaconis (2010). Some drawbacks of this method
are that the samples produced are not independent and that it can can be computationally expensive since
the chain must be “run” until stationarity is reached.

Blitzstein and Diaconis (2010) propose another algorithm for this problem using a graphicality condition.
As opposed to the two previous methods, their algorithm does not sample graphs uniformly at random. They
use importance sampling weights to fix this issue. However, for the numerical example they provide, the
weights seem to be skewed to the right, compromising the quality of the importance sampling estimation.

Our approach builds on work of Barvinok (2010) on random 0–1 matrices with given row and column
sums; these matrices can be interpreted as the adjacency matrices of bipartite or directed graphs with given
degree sequences. Barvinok (2010) proved that there is a connection between the uniform distribution over
these matrices and a certain “maximum entropy” matrix. The same type of matrix is used by Squartini and
Garlaschelli (2011) in a numerical approximation without simulation. Since our objective is to simulate
graphs uniformly, it is natural to exploit this connection. We use a sequence of such matrices to define
probabilities for individual edges.

We prove the correctness of our method, by which we mean that it always returns a valid graph and
it reaches every feasible graph with positive probability. The method does not sample feasible graphs
uniformly, but we show that expectations with respect to uniform sampling can be estimated by weighting
samples appropriately. The weights are produced as a simple byproduct of the sampling algorithm. We expect
our use of the maximum entropy matrix to produce well-behaved weights, meaning that their distribution
is not highly skewed; we illustrate their performance through an example. Computing maximum entropy
matrices is the main computational demand of our algorithm. We briefly discuss potential speed-ups, which
are the subject of ongoing work.
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2 RANDOM GRAPHS AND RANDOM ADJACENCY MATRICES

We represent bipartite or directed graphs using 0–1 matrices. These matrices can be interpreted as the
adjacency matrices of the underlying graph. Following the notation of Barvinok (2010), let R=(r1,r2, . . . ,rm)
and C = (c1,c2, . . . ,cn) be the sum of the rows and columns of the matrix respectively. For bipartite graphs,
R and C represent the degree sequences of the first and second disjoint sets of vertices. On the other hand,
for directed graphs, R and C represent the out-degrees and in-degrees of the vertices. Since every edge of
the graph contributes one unit to both R and C, it is necessary to have ∑

m
i=1 ri = ∑

n
j=1 c j. Furthermore, we

clearly must have 0 < ri ≤ n and 0 < c j ≤ m. For the case of directed graphs, we must impose m = n.
Suppose also that we wish to force the exclusion of some edges of the graph. For this purpose,

let W = (wi j) with wi j ∈ {0,1} be a pattern matrix. If a particular edge is to be excluded, we set the
corresponding wi j to 0 and, otherwise, to 1. Observe that in the directed graph case, the elements of the
diagonal correspond to loops. If we wish to exclude graphs that contain loops, we can do so by making
the diagonal elements wii = 0.

Given the degree sequences R and C, and the pattern matrix W , we now define the set of 0–1 matrices
with such degrees and assigned zeros.
Definition 1 Σ(R,C;W ) is the set of all m× n matrices M = (mi j) such that ∑

n
j=1 mi j = ri for all i,

∑
m
i=1 mi j = c j for all j, mi j ∈ {0,1}, and mi j = 0 if wi j = 0. If wi j = 1 for all i and j we denote it Σ(R,C).

We also need to relax the integrality constraint of Σ(R,C;W ) and work with the following polytope.
Definition 2 P(R,C;W ) is the set of all m×n matrices X = (xi j) such that ∑

n
j=1 xi j = ri for all i, ∑

m
i=1 xi j = c j

for all j, xi j ∈ [0,1], and xi j = 0 if wi j = 0. If wi j = 1 for all i and j we denote it P(R,C).
We interpret the xi j as the probability that the edge (i, j) is present in the graph. The row and column

sum constraints on X imply that a graph sampled with these probabilities has the correct expected degree
sequences. We need to ensure that the correct degree sequence holds with probability one.

We now introduce a maximum entropy problem which will be of great relevance for the algorithm.

2.1 Maximum Entropy Problem and its Dual

For x ∈ [0,1] we define the entropy function as

h(x) = x log
(

1
x

)
+(1− x) log

(
1

1− x

)
.

It is a strictly concave function with h(0) = h(1) = 0. The derivative is h′(x) = log(1− x)− log(x) and
therefore h′(0+) = ∞ and h′(1−) =−∞. For X in P(R,C) we define the entropy function as

H(X) = ∑
i j

h(xi j).

Since H is a strictly concave function it attains a unique maximum at some Z = Z(R,C;W ). That is,
the maximum entropy matrix Z is the solution to

maximize
X

H(X)

subject to X ∈P(R,C;W ).
(1)

Observe that the number of variables of the problem is m×n, which may be large for certain applications.
Therefore, in practice, it is more convenient to work with the dual problem which is

minimize
x,y

F(x,y) =

(
m

∏
i=1

x−ri
i

)(
n

∏
j=1

y−c j
j

)(
∏
i j
(1+wi jxiy j)

)
subject to x > 0, y > 0.

(2)
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As in Barvinok (2010), to solve the problem in Equation 2 we change the variables to si = log(xi) and
t j = log(y j) and solve instead the unconstrained convex problem

minimize
s,t

G(s, t) =−
m

∑
i=1

risi−
n

∑
j=1

c jt j +∑
i j

log
(
1+wi jesi+t j

)
. (3)

This problem has only m+n variables. We then recover Z by setting

zi j =
esi+t j

1+ esi+t j
,

whenever wi j = 1 and zi j = 0 otherwise.

3 SIMULATION ALGORITHM FOR BIPARTITE OR DIRECTED GRAPHS

Given degree sequences R and C, the objective is to generate a random matrix M ∈ Σ(R,C), assuming that
this set is non-empty. Our algorithm is described in Algorithm 1.

Algorithm 1 Graph simulation using maximum entropy probabilities.
1: input: R and C
2: verify Σ(R,C) non-empty
3: initialize M← 0, W ←W0, and pM ← 1
4: set R̂← R and Ĉ←C
5: compute Z

(
R̂,Ĉ;W

)
6: for all (i, j) do
7: set mi j← 1 with probability zi j

8: if mi j = 1 then
9: set pM ← pM ∗ zi j

10: set r̂i← r̂i−1
11: set ĉ j← ĉ j−1
12: else
13: set pM ← pM ∗ (1− zi j)
14: end if
15: set wi j← 0
16: compute Z

(
R̂,Ĉ;W

)
17: end for
18: return M and pM

Observe that in line 2, the algorithm verifies that Σ(R,C) has at least one element. This can be done
quickly using the criterion given by the Gale-Ryser theorem (see, for instance, Gale (1957)). It suffices to
check that ∑

m
i=1 ri = ∑

n
j=1 c j and that ∑

k
j=1 c j ≤ ∑

m
i=1 min(ri,k), for all k = 1,2, . . . ,n.

The algorithm starts with an empty graph M = 0 and an initial pattern W =W0. In the case of bipartite
graphs and directed graphs when loops are permitted, W0 = (w0

i j) has all entries equal to 1. If we exclude
loops, then we set diagonal w0

ii = 0. The algorithm then sequentially adds edges at random using the
maximum entropy matrix Z. At each step, if edge (i, j) is added to M, we reduce the corresponding ri
and c j by one. If the edge is not added, we leave the degree sequences intact. In either case, we update
the pattern by setting wi j = 0. This will reduce the polytope of feasible matrices to a subset where the
presence of edge (i, j) is never allowed. Finally, we update Z with the new degree sequences and pattern.
At the end, we return the matrix M. In the next section, we show that this matrix is always in Σ(R,C). The
algorithm also computes the probability pM of generating this particular matrix M. Observe from lines 9
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and 13 that

pM = ∏
i j
(mi jzi j +(1−mi j)(1− zi j)) .

In this expression, the zi j do not belong to the same maximum entropy matrix. Each one is an element of
its corresponding matrix Z computed in line 16.

3.1 Illustration of the Algorithm

To better explain our algorithm, we present a simple example. Consider the bipartite graphs with m = n = 3
and R =C = (1,1,2). It is easy to see that, in this case, there are five graphs consistent with the constraints,
so |Σ(R,C)|= 5. Figure 1 presents one realization of Algorithm 1.

(1) M =

0 0 0
0 0 0
0 0 0

 pM = 1 Z =

0.22 0.22 0.57
0.22 0.22 0.57
0.57 0.57 0.86


B1

0

B2

0

B3

0

A1

0

A2

0

A3

0

(2) M =

0 0 0
0 0 0
0 0 0

 pM = 0.78 Z =

 0 0.32 0.68
0.32 0.18 0.5
0.68 0.5 0.82


B1

0

B2

0

B3

0

A1

0

A2

0

A3

0

(3) M =

0 1 0
0 0 0
0 0 0

 pM = 0.25 Z =

0 0 0
0 0 1
1 0 1


B1

0

B2

1

B3

0

A1

1

A2

0

A3

0

(4) M =

0 1 0
0 0 1
1 0 1

 pM = 0.25 Z =

0 0 0
0 0 0
0 0 0


B1

1

B2

1

B3

2

A1

1

A2

1

A3

2

Figure 1: Realization of Algorithm 1 with m = n = 3 and R =C = (1,1,2).

In Step 1 of Figure 1, we start with the empty graph M = 0 and a temporary graph probability of
pM = 1. We compute the maximum entropy matrix Z and focus on the first potential edge (connecting
A1 and B1). To decide if the edge will be generated, we generate a Bernoulli random variable X1 with
probability p = z11 = 0.22. In this particular realization, X1 = 0 and thus the edge is not generated.
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In Step 2, we update pM to be pM ← pM ∗ (1− z11) since the previous edge was not generated. We
compute Z and consider the next edge (connecting A1 and B2). We simulate a Bernoulli X2 with probability
p = z12 = 0.32. This time X2 = 1 and the edge is generated.

In Step 3, the graph M now contains the edge generated in the previous step and we update pM to be
pM ← pM ∗ z12, since the previous edge was generated. After computing Z, observe that all its entries are
either 0 or 1. This means that, given the previous edges that we have decided to either include or not, there
is only one possible graph left that satisfies the degree sequences. The edges that need to be added to M
are the ones where zi j = 1.

Step 4 presents the output graph M and its corresponding probability of being generated by Algorithm
1. Notice that pM = 0.25 6= 0.2 = 1/|Σ(R,C)|. We conclude that, in general, the algorithm does not sample
uniformly from Σ(R,C). However, if uniform samples are required, it is possible to use importance sampling
weights as discussed in Section 4.3.

Observe that in Step 1, instead of using only z11, we could have used the entire Z to generate all of the
edges at the same time. This alternative method would produce a random graph with the correct expected
degree sequences. However, and contrasting with Algorithm 1, it is not true that this graph will satisfy the
degree constraints with probability 1.

4 PROPERTIES OF THE ALGORITHM

We prove that Algorithm 1 is correct and that it reaches every feasible graph with positive probability.

4.1 Termination and Correctness

We first show that Algorithm 1 always terminates, that is, it never gets stuck in line 16, and that it is
correct, meaning that the output M has the desired degree sequences. For this, we first show that the 0–1
matrices with prescribed degree sequences form the vertices of the relaxed polytope P(R,C;W ).
Lemma 1 Suppose P(R,C;W ) is non-empty. Then Σ(R,C;W ) is the set of vertices of P(R,C;W ).

The proof may be found in Appendix A. An immediate corollary to the previous lemma is that every
matrix in P(R,C;W ) can be represented as a convex combination of matrices in Σ(R,C;W ).
Corollary 1 If X ∈P(R,C;W ) then there exist q > 0 integer, λ1,λ2, . . . ,λq with λk > 0 for all k and
∑

q
k=1 λk = 1 and there exist M1,M2, . . . ,Mq in Σ(R,C;W ) such that X = ∑

q
k=1 λkMk.

The termination and correctness of Algorithm 1 is established in the next theorem.
Theorem 1 If Σ(R,C) is non-empty then Algorithm 1 always terminates with an M in Σ(R,C).

The proof may be found in Appendix B.

4.2 Reachability

We now show that Algorithm 1 can reach any matrix M̃ in Σ(R,C). First, we show a result that illustrates
the fact that the maximum entropy matrix lies in the interior of the polytope if possible.
Lemma 2 Suppose P(R,C;W ) is non-empty. Fix (i, j) such that wi j = 1 and let δ ∈ {0,1}. Then zi j = δ

if and only if for all X in P(R,C;W ) we have xi j = δ .
The proof may be found in Appendix C. We can now show that any 0–1 matrix M with prescribed

degree sequences is reachable by the algorithm.
Theorem 2 If M̃ ∈ Σ(R,C) then the probability that M̃ is generated by Algorithm 1 is positive.

Proof. Given M̃ ∈ Σ(R,C), denote Ak as the event that the algorithm generates a matrix M that matches
M̃ on the first k edges visited, k = 0,1, . . . ,m×n. Since Am×n is the event that M = M̃, it suffices to show
that P(Am×n) > 0. We show this by induction on k. Trivially, P(A0) = 1. Suppose P(Ak−1) > 0. This
implies that there exists a realization of the algorithm in which Mil jl = M̃il jl for l = 1,2 . . . ,k−1. Suppose
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that at iteration k, edge (ik, jk) is picked. If M̃ik jk = 0, then, by Lemma 2, zik jk < 1. This implies that this
realization will have Mik jk = M̃ik jk with probability 1− zik jk > 0. If M̃ik jk = 1, then, again by Lemma 2,
zik jk > 0. This implies that this realization will have Mik jk = M̃ik jk with probability zik jk > 0. In either case,
we have found a realization of the algorithm in which Mil jl = M̃il jl for l = 1,2 . . . ,k, that is, P(Ak)> 0. By
induction, we have P(Am×n)> 0 and the result follows.

4.3 Non-Uniformity and Importance Weights

Consider the problem of sampling random graphs uniformly from Σ(R,C). In this case, Algorithm 1 cannot
be used directly since the sampling it produces is non-uniform. For example, in Section 3.1 we saw that
the graph generated had pM 6= 1/|Σ(R,C)|, which is the probability of every graph under the uniform
distribution. However, we can use importance sampling to correct the non-uniformity. The importance
weight for a given matrix M is

wM =
1

|Σ(R,C)|pM
∝

1
pM

.

Suppose that we are interested in estimating θ = E [ f (M)] , where f is a function of interest and the
expectation is with respect to the uniform distribution in Σ(R,C). We can use Algorithm 1 to simulate
a random sample of graphs M1,M2, . . . ,Mq. Using the importance weights, we obtain the estimator
θ̂ = q−1

∑
q
i=1 wMi f (Mi). However, the weight wM depends on the quantity |Σ(R,C)|, which in general is

unknown, so the estimator θ̂ cannot be computed. Blitzstein and Diaconis (2010) address this problem by
using instead the estimator

θ̃ =
∑

q
i=1 wMi f (Mi)

∑
q
j=1 wM j

. (4)

This estimator can be computed explicitly because the constant factor 1/|Σ(R,C)| cancels. As a ratio
estimator, θ̃ is biased, but it converges with probability 1 to θ as the number of samples q grows.

5 EXAMPLE OF AN INTER-BANK NETWORK

To test Algorithm 1, we borrow an example from Table 2 of Gandy and Veraart (2017), drawn from results
of the European Banking Authority’s stress test. In this table, they present a network of 11 German banks
and their mean out-degrees under two Erdős-Rényi models. To construct the degree sequences, we round
the mean out-degrees to the nearest integer. The results, denoted R0.5 and R0.9, for each of the two models
can be seen in Table 1. Finally, we assume that the mean in-degrees are the same as the mean out-degrees
and we set C0.5 = R0.5 and C0.9 = R0.9.

Table 1: Rounded mean out-degrees for two Erdős-Rényi models.

Bank R0.5 R0.9 Bank R0.5 R0.9

DE020 6 9 DE028 5 8
DE019 6 9 DE027 4 8
DE021 6 9 DE024 4 8
DE022 5 9 DE023 3 7
DE018 5 9 DE025 2 6
DE017 5 9

Given these degree sequences, we used Algorithm 1 (with no loops allowed) to generate 5,000 random
graphs for each model. On average, it took approximately 1.02 and 1.34 seconds to draw one random
graph from models R0.5 and R0.9 respectively. The implementation was written in Python and ran on a 2.9
GHz MacBook Pro. One of these graphs corresponding to the model R0.5 may be seen in Figure 2.
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DE020

DE019

DE021

DE022

DE017

DE024

DE023

DE018

DE028

DE027

DE025

Figure 2: Random graph in Σ(R0.5,C0.5) .

We also computed the importance weights (up to a multiplicative constant) for these random samples.
Figure 3 presents a histogram for the weights of model R0.5 and model R0.9. In both cases, the distribution
does not seem to be extremely skewed, meaning that there are no graphs with large weights that would
dominate in importance sampling. This observation can be confirmed numerically by using the diagnostic
proposed in Chatterjee and Diaconis (2018). We define κq = maxi=1,2,...,q wMi/∑

q
i=1 wMi . The importance

weights are considered to be well behaved if κq is smaller than a certain threshold, for instance 0.01. That
is indeed the case in our example where κq = 0.00081 for model R0.5 and κq = 0.00075 for model R0.9.
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Figure 3: Histograms of weights for model R0.5 (left) and model R0.9 (right).

As discussed in Glasserman and Young (2016), given a random instance of an inter-bank network, one
can evaluate various measures of systemic risk and then average over multiple draws. Taking a weighted
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average with the importance sampling weights wM approximates expectations over a uniform distribution
of inter-bank networks that are compatible with the observed degrees.

For example, for bank i = 1,2, . . . ,n consider the clustering measure fi defined as

fi =
n

∑
j=1

n

∑
k> j

(
m jimki

n

∑
l 6=i

m jlmkl

)
.

Recall that mi j = 1 if bank i has a financial obligation with bank j and mi j = 0 otherwise. Then fi counts,
for each pair of banks that owe money to bank i, how many other banks they both owe money to. Intuitively,
a high value of fi would indicate that the joint failure of banks owing money to bank i would have a
worse impact on the entire inter-bank network. We estimated fi using the importance sampling estimator
in Equation 4. The results in Table 2 provide measures of the centrality of the banks estimated from their
in-degrees.

Table 2: Estimation of fi using importance sampling.

Bank R0.5 R0.9 Bank R0.5 R0.9

DE020 20.67 186.44 DE028 15.48 153.01
DE019 20.75 186.46 DE027 15.41 152.91
DE021 20.76 186.39 DE024 9.85 153.17
DE022 15.48 186.14 DE023 4.99 118.52
DE018 15.45 186.39 DE025 1.61 85.45
DE017 15.36 186.45

6 ONGOING WORK

In current work, we are investigating enhancements to Algorithm 1, including the following:

1. Quick update of the maximum entropy matrix Z. The computation of line 16 is the most compu-
tationally expensive operation of the algorithm, since it involves solving the convex optimization
problem of Equation 3. Therefore, finding a way to quickly update Z (even approximately) using
its value in the previous iteration could potentially lead to a considerable speed-up in runtime.

2. Order in which the edges are visited. Our current implementation of Algorithm 1 visits the edges in a
deterministic order. However, it is possible to consider adapted random orders, probably depending
on the current value of Z. The order could affect the distribution of the importance weights. It
could also lead to a speed-up in runtime if it reaches a Z with 0–1 entries in an earlier stage of the
algorithm, such as we saw in Section 3.1.

7 CONCLUSION

We have presented an algorithm to generate random bipartite or directed graphs with a determined degree
sequence. The algorithm relies mainly on the sequential computation of the maximum entropy matrix. The
entries of this matrix determine the individual edge probabilities that the algorithm uses. We proved that
the algorithm always finishes and that the output is indeed a graph with the desired degree sequences. We
also proved that, given a degree sequence, every graph that satisfies is generated by our algorithm with
positive probability. Although our procedure does not simulate graphs uniformly, we can use importance
sampling weights to compute expectations under the uniform distribution. The application to an inter-bank
network produced weights with a reasonable distribution, that is, not extremely skewed. Developing an
update rule for the maximum entropy matrix and exploring adaptive orders in which the algorithm visits
the edges could lead to potential speed-ups.

1666



Glasserman and Lelo de Larrea

A PROOF OF LEMMA 1

Before proving this lemma, we recall the concept of total unimodularity.
Definition 3 An integer matrix A is said to be totally unimodular (TUM) if every square submatrix of A
has determinant equal to 0, 1 or −1.

We also recall the definition of the well-known transportation polytope, which we denote T (R,C).
Definition 4 T (R,C) is the set of all m×n matrices X = (xi j) such that ∑

n
j=1 xi j = ri for all i, ∑

m
i=1 xi j = c j

for all j, and xi j ≥ 0 for all i and j.
With these definitions in hand, we proceed to prove the lemma.

Proof. Suppose that X is not a vertex of P(R,C;W ). Then, it can be written as a convex combination
of two different elements of P(R,C;W ). This implies that there is an xi j ∈ (0,1), which means that X
cannot be in Σ(R,C;W ). This proves that Σ(R,C;W ) is a subset of the vertices of P(R,C;W ). To establish
the other inclusion, observe that the polytope P(R,C;W ) is simply the transportation polytope T (R,C)
with the additional constraints xi j ≤ 1 for all i and j, and xi j = 0 whenever wi j = 0. Let A be the constraint
matrix associated with T (R,C). By adding a slack variable yi j for each (i, j) where wi j = 1 we can rewrite
P(R,C;W ) as the set of vectors z such that z≥ 0 and Bz = d, where

B =

(
Ã 0
I I

)
, z =

(
x
y

)
, d =

(
d̃
1

)
, d̃ =

(
R>

C>

)
,

and Ã consists of the columns of A corresponding to the (i, j) such that wi j = 1. It follows from Theorem
13.3 of Papadimitriou and Steiglitz (1998) that Ã is TUM and therefore, it is not hard to see (for instance
by induction) that B is also TUM. Finally, by Theorem 13.1 of Papadimitriou and Steiglitz (1998) we
conclude that P(R,C;W ) has integral vertices. In other words, the vertices of P(R,C;W ) are a subset of
Σ(R,C;W ).

B PROOF OF THEOREM 1

Before proving the theorem, we introduce some helpful notation. For an integer vector x we define x−i as

x−i
k =

{
xk, k 6= i
xi−1, k = i,

and similarly for an integer matrix A = (ai j) we define A−i j = (a−i j
kl ) as

a−i j
kl =

{
akl, (k, l) 6= (i, j)
ai j−1, (k, l) = (i, j).

The next lemma establishes a relationship between the maximum entropy matrix and the existence of 0–1
matrices in a reduced polytope.
Lemma 3 Suppose Σ(R,C;W ) is non-empty. Fix (i, j) such that wi j = 1. Then

(a) If zi j < 1 then Σ(R,C;W−i j) is non-empty.
(b) If zi j > 0 then Σ(R−i,C− j;W−i j) is non-empty.

Proof. Consider (i, j) such that wi j = 1. Since Z ∈P(R,C;W ), by Corollary 1 we can write Z =

∑
p
k=1 λkMk, with Mk ∈ Σ(R,C;W ). In particular zi j = ∑

p
k=1 λkmk

i j. If zi j < 1 then there exists k such that
mk

i j = 0. That is, Mk ∈ Σ(R,C;W−i j). This proves (a). Similarly if zi j > 0 then there exists k such that
mk

i j = 1. That is, (Mk)−i j ∈ Σ(R−i,C− j;W−i j). This proves (b).
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The previous lemma is key to guarantee that line 16 of Algorithm 1 is always feasible. It tells us that
if the maximum entropy probability zi j > 0 then, the algorithm can generate the corresponding edge with
positive probability and the polytope with the reduced degree sequences will be feasible for the next step.
The logic for when zi j < 1 is analogous.

We can now proceed and prove the termination and correctness of Algorithm 1.

Proof. First, we prove that the algorithm runs to completion, that is, line 16 is always feasible. Since
we assume that Σ(R,C) is non-empty, this implies that P(R,C) is non-empty and thus the problem in
Equation 1 is feasible. That is, we can initially compute Z(R,C;W ). Now, suppose that at any iteration
of the algorithm we have that P

(
R̂,Ĉ;W

)
is non-empty and that we have computed Z

(
R̂,Ĉ;W

)
. The

algorithm then picks (i, j). If zi j = 0, then we set wi j = 0. By Lemma 3, Σ
(
R̂,Ĉ,W−i j

)
is non-empty and

we can compute Z
(
R̂,Ĉ;W−i j

)
. If zi j = 1, then we set mi j = 1, wi j = 0 and reduce the degree sequences.

Again, by Lemma 3, Σ
(
R̂−i,Ĉ− j,W−i j

)
is non-empty and we can compute Z

(
R̂−i,Ĉ− j;W−i j

)
. Finally, if

0 < zi j < 1, Lemma 3 guarantees that both Σ
(
R̂−i,Ĉ− j,W−i j

)
and Σ

(
R̂,Ĉ,W−i j

)
are non-empty and we

can compute Z
(
R̂−i,Ĉ− j,W−i j

)
if mi j = 1 or Z

(
R̂,Ĉ,W−i j

)
otherwise. By induction, at the end of each

step we have that Σ
(
R̂,Ĉ;W

)
is non-empty and we can proceed to the next step. Since the number of

pairs (i, j) is finite, the algorithm terminates. Finally, we prove that the output M ∈ Σ(R,C). To see this,
observe that at each iteration of the algorithm we set wi, j = 0 and we update mi j = 1 if and only if we
reduce the degree sequences. This means that at the end of each iteration we have that if X ∈P

(
R̂,Ĉ;W

)
,

then M+X ∈P(R,C). At the end of the algorithm, we have that W = 0 and P
(
R̂,Ĉ;W

)
is non-empty.

In particular, it follows that R̂ = Ĉ = 0 and that X = 0 is the only point in P
(
R̂,Ĉ;W

)
. This implies that

M ∈P(R,C) and, since mi j ∈ {0,1}, we conclude that M ∈ Σ(R,C).

C PROOF OF LEMMA 2

Proof. The if part is trivial since Z ∈P(R,C;W ). For the only if part, suppose that zi j = δ and that
there exists X such that xi j 6= δ . Let λ ∈ (0,1) and consider Y = (1−λ )Z+λX = Z+λ (X−Z). It is clear
that Y ∈P(R,C;W ). We then have

H(Y )−H(Z) = ∑
kl
(h(ykl)−h(zkl))

= ∑
kl:zkl∈{0,1}

(h(ykl)−h(zkl))+ ∑
kl:0<zkl<1

(h(ykl)−h(zkl))

≥ h(yi j)−h(zi j)+ ∑
kl:0<zkl<1

(h(ykl)−h(zkl))

= h′(ξ λ
i j )λ (xi j−δ )+ ∑

kl:0<zkl<1
(h′(zkl)λ (xi j− zi j))+o(λ ),

where the inequality is due to the fact that h(x)≥ 0 if x ∈ [0,1] and h(x) = 0 if x ∈ {0,1}, and ξ λ
i j is a point

between zi j and yi j. Since xi j 6= zi j = δ , it follows that h′(ξ λ
i j )λ (xi j−δ )> 0 for all λ ∈ (0,1). Also, since

Y → Z as λ → 0, we have h′(ξ λ
i j )λ → 0 as λ → 0. Finally, observe that |h′(ξ λ

i j )| → ∞ as λ → 0. With
these observations, we conclude that

H(Y )−H(Z)≥ f (λ )+o( f (λ )),

with f (λ ) > 0 for all λ ∈ (0,1) and f (λ )→ 0 as λ → 0. This means that there exists λ > 0 such that
H(Y ) > H(Z) which contradicts the fact that Z is optimal for the problem in Equation 1. Therefore, we
must have xi j = δ for all X in P(R,C;W ).
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