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ABSTRACT

We study sample average approximations under adaptive importance sampling in which the sample densities
may depend on previous random samples. Based on a generic uniform law of large numbers, we establish
uniform convergence of the sample average approximation to the function being approximated. In the
optimization context, we obtain convergence of the optimal value and optimal solutions of the sample
average approximation.

1 INTRODUCTION

We are interested in approximating or optimizing a function g : 2~ — R given by

80 = [F(x.E)h(x.8)dE. M)

where F (x,-) is measurable for all x, and A(x, -) is a probability density function that might depend on x. We
assume that 2" is a compact subset of R”. The integral g(x) can be interpreted as an expectation E,[F (x, & )]
taken under the assumption that & is a random vector with density A(x, -). Defining G(x,&) = F (x,&)h(x, &),
we can rewrite (1) compactly as

80 = [ 6lx&)de. ®)

For fixed x, if the integral (1) cannot be computed explicitly, simple Monte Carlo method can be applied
to estimate g(x) by the sample average g¥C(x) = 1/NYN | F(x,&;), where the random samples &j, ..., Ey
are drawn from A(x, ). In the optimization context where one wants to minimize g(x), sample average
approximation (SAA) provides a way to obtain an approximation of the minimizer of g(x). In the simplest
setting, when the probability distribution does not depend on x, i.e., h(x, &) = h(£), SAA minimizes gyC (x)
instead. In this case, the set of minimizers of g¥C converges to the set of minimizers of g(x) as N — oo, if
g%c converges uniformly to g (Shapiro et al. 2009). In statistics, the function class for which the sample
average converges uniformly is called Glivenko-Cantelli (Van der Vaart 2000).

Other Monte Carlo methods, such as importance sampling (Rubinstein and Kroese 2017), are applicable
in this setting. Let ¢ be a sampling distribution on E so that ¢(£) > 0 for any & such that there exists
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an x € 2" with h(x,§) # 0. Then, when & is sampled from ¢, for all x € 2, the importance sampling
estimator G(x,&)/¢ (&) has expectation g(x). Written in the notation of (1), this estimator has the form

avx) = F XN F(x,&) hqg)(‘f’)) The sampling density ¢ may be different from the target density 4. Usually,
¢ is chosen to reduce the variance of estimating the expectation of F.
One main contribution of this paper is to provide convergence results without assuming that the samples

&; are independent and identically distributed. Instead, we study the convergence of the SAA given by

N &
gn(x) = %Z (;f(;)) 3)

i=1

where, for eachi=1,...,N, & is sampled from a different density ¢;. A sampling density ¢; might depend
on the previous samples &;,...,& 1 and is therefore by itself a random variable. This setting is similar to
that of adaptive multiple importance sampling (Cornuet et al. 2012; Marin et al. 2014); see Section 1.1
for elaborated discussions.

The pointwise convergence of gy(x) to g(x) for a single fixed x as the sample size N goes to infinity
is by itself of interest and, depending on the choice ¢;, might be relatively elementary (see Section 4 for
two examples). In Section 2, we give conditions under which pointwise convergence leads to uniform
convergence of the functions gy to g, i.e., convergence in the L., sense. This in turn allows us to establish
the convergence of the optimal solutions of the SAA problem

in g 4
min gy (x) @

to the optimal solutions of the original optimization problem

min g(x). 5)

In Section 3 we extend this to the case when gy depends on additional random nuisance parameters

zy that converge to a random limit point z*. Section 5 gives simplified conditions for uniform convergence

for the case that all probability distributions are normal. Finally, in Section 6 we apply our results to prove

convergence of the parameters in a quadratic regression model that approximates a stochastic function in
the context of a randomized optimization algorithm.

The convergence of the SAA under non-iid sampling, i.e., when &;,...,Ey are not independent and
identically distributed, has been addressed by, for example, Dai et al. (2000). They proved results
about convergence of solutions to SAA problems when &,...,Ey are neither identically distributed nor

independent, but did not discuss uniform convergence of gy to g. Dupaovd and Wets (1988) proved
epi-convergence of gy to g, from which convergence of solutions to SAA problems follows. Their analysis
assumes that {¢;}* | converges in distribution. A similar result was obtained by Korf and Wets (2001).
One of their assumptions is that {§;}?*, forms an ergodic process, which may not be easy to verify in
many applications. Homem-de-Mello (2008) established results on uniform convergence of gy to g, and
of solutions to SAA problems, under non-iid sampling. His results were generalized by Xu (2010). While
these papers consider non-iid sampling, our results are more general since they permit distributions that
are adaptively chosen based on the previous samples.

1.1 Importance Sampling and the Likelihood Ratio Method

Estimating g(x) by sampling from a density other than 4 or h(x,-) is called “importance sampling” (IS) or
the “likelihood ratio” (LR) method. IS and the LR method are distinguished by the purpose for which they
are employed, not by their mathematics. The purpose of the LR method (Rubinstein and Shapiro 1993) is to
allow samples from a density ¢ to be used to estimate the function g. The purpose of IS is to reduce variance
in estimating g(x) by choosing an appropriate sampling density ¢ or sampling densities ¢y, ..., ¢y from
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which to sample. “Multiple importance sampling” (MIS) is the specific name for using multiple sampling
densities in IS. In standard forms of MIS, the sampling densities ¢, ..., ¢y are regarded as fixed; ¢; cannot
depend on &;,...,& 1. Cornuet et al. (2012) proposed adaptive multiple importance sample (AMIS),
which allows for such dependence: &i,...,&y are sampled from different sampling densities ¢y, ..., dy,
respectively, and the sampling distribution ¢; for & can depend on &i,...,& 1. This is the setting within
which we study the convergence of the SAA gy given in (3). However, we adopt the perspective of the
LR method rather than the perspective of IS: we suppose that there is a sequence of random densities
d1,..., ¢y each depending on previous sampling, but we focus on using the sample &;,...,Ey to estimate
the function g and not on how the densities ¢y, ..., ¢y should be chosen to minimize variance. That question
is investigated in the literature on AMIS when the goal is to estimate g(x) for fixed x. In the LR method,
when the goal is to estimate the function g, the choice of a single sampling density ¢ was investigated
by Rubinstein and Shapiro (1993).

When multiple sampling densities are used, an alternative estimator to (3) using the “balance heuristic
weights” by Veach and Guibas (1995) has been employed. Regarding the sampling of &, ...,y as stratified
sampling from the mixture distribution Zly:l ¢;/N, justifies the mixture likelihood ratio (MLR) estimator

N _Gx&)
Li=1 57 4,(8)
Staum 2015; Feng and Staum 2017; Owen and Zhou 2000). The convergence of AMIS, i.e., consistency
in the statistical sense, is addressed by Marin et al. (2014), using a weak law of large numbers for
triangular arrays. AMIS procedures vary in the way that they learn from function values and reuse them.
Consistency results for some variants of AMIS are yet to be obtained (Marin et al. 2014). We are not aware
of any previous uniform convergence results for AMIS. We hope that the present work for the specific
approximation (3) will further research on strong and uniform convergence of different AMIS schemes,
such as MLR.

In stochastic optimization, IS has been used, for example, in the context of Benders decomposi-
tion (Dantzig and Glynn 1990; Glynn 2013; Infanger 1992). Royset and Polak (2004) presented a result on
uniform convergence of the SAA when &;,..., &y are independently sampled from an identical sampling
distribution. In their work, both the target and the sampling distributions are assumed to be normal.

instead of (3). In some situations, the MLR estimator performs much better than (3) (Feng and

2 UNIFORM CONVERGENCE

To recapitulate with more mathematical detail: let .2” be a compact subset of R”, Z be a subset of R and
G be a function from 2" x R¢ to R whose support is contained in 2" x E. Let (Q,%,Q) be a probability
space on which there is an infinite sequence of random vectors {&;}7 |, each &; being a ¢-measurable
function from Q to R?. Define {.%;}, as the natural filtration of this sequence, i.e., .%; contains the
information in &;,...,&;. Suppose that under Q, for every i € N, the conditional distribution of &; given
Z;_1 has a density ¢;. Let Z; represent the support of ¢;; this subset of R? can be random. Suppose that
G: Z xZ — R be a real-valued function so that, for all x € 2", (2) exists and is finite.

We are concerned with uniform convergence as N — o of the SAA gy defined by (3) to the function
g defined by (2). The following assumption ensures that the ratios in (3) are finite.

—
&

Assumption 1 With probability one, for every i € N, & C &;.

Our strategy is to assume that a pointwise strong law of large numbers applies (Assumption 2), and
then to specify a Lipschitz-type condition (Assumption 3) that guarantees that the convergence is uniform.

Assumption 2 For all x € 27, w.p. 1, limy_. |gn(x) — g(x)| =0.

In Section 4 we discuss two pointwise laws of large numbers, including one in which {&;}*, is neither
independently nor identically distributed. The following Lipschitz assumption corresponds to Assumption
S-LIP in Andrews (1992).
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Assumption 3 There exists a function y: Ry — R such that limg_,o¥(6) = 0 and, for every i € N, there
exists a (random) measurable function ¥; : &; — R, such that

su E[3:(&)] < o, ©
NEII:IN Z (5]
and, with probability one,
R .
,\I,EI}ON;(%@)—E[%(@]) =0, o

and, for all x,x' € 2" and i € N, with probability one,

G(X, él) G(xlvéi) < /
¢1(€1) (Pl(gl) — %(51)}’(”36 X H2) (8)
Lipschitz-type conditions similar to (8) are common in uniform convergence results (see, for exam-
ple, Duffie and Singleton (1993), Jenish and Prucha (2009), Shapiro and Xu (2007)). Together with the
compactness of the parameters, it allows for the extension of pointwise results to uniform ones. The Lip-
schitz constants are allowed to vary from sample to sample to accommodate a greater variety of sampling
distributions, so long as they satisfy the regularity conditions given by (6) and (7). For the case of normal
distributions, Section 5 presents conditions that are easier to verify than those above.
The next theorem follows from Theorem 3(b) in Andrews (1992). It establishes uniform convergence
of the estimator gy to g.

Theorem 1 If Assumptions 1, 2, and 3 hold, then, with probability one, limy_,e ||gy — g|lc = O.
Next we consider the convergence of the optimal solutions of the SAA (4) to the optimal solution of
the original problem (5). Let ¥y and ¥, denote the optimal objective values of (4) and (5), respectively.

Similarly, let Sy and S, denote the set of optimal solutions of (4) and (5), respectively. Finally, we define
the distance of a point x € 2" to a set BC 2~ as dist(x,B) = infycp||x — x'||2 and the deviation of a set
A C 2 from the set B as D(A, B) = sup, 4 dist(x,B).

Theorem 2 Suppose that Assumptions 1, 2, and 3 hold, that (i) G(-,&) is lower semi-continuous for all
& € R?, and (ii) that there exists an integrable function Z(&) such that G(x,&) > Z(&) for all x € 2" and
almost all & € E. Further assume that there exists a compact set C C 2 such that S, is non-empty and
contained in C, and with probablhty one, for N large enough SN is non-empty and contained in C. Then,
with probability one, limy_,. Oy = ¥, and llmN_mID)(SN,S )=0.

The proof of this theorem follows very closely the proof of Theorem 5.3 in Shapiro et al. (2009), but
we include it here for completeness because the conditions are slightly different. We establish the result
in two lemmas.

Lemma 1 Suppose Assumptions 1, 2, and 3 hold. Further assume that S, is not empty and that, with
probability one, §N is non-empty for all N sufficiently large. Then limy_,e 1;1\/ = ¥, with probability one.

Proof.  We prove limy_,e Oy = B, in the event that Sy is non-empty for all N sufficiently large and that
limy e ||gv — g|l = 0. This event has probability one by assumption and by Theorem 1.
Let x, be an optimal solution of (5). Because limy—.. [[gy — 8[|« = 0, limy—e0 gy (x:) = g(x) = V.
Since 19N is the optimal value of (4), 19N < gn(x,) for all N. As a consequence, limsupy_,., 19N < ..
Define 19'mf = liminfy_e 19N There exist a subsequence {N;} i1 of the natural numbers and a sequence

{xn}%_, of points in 2" such that for every i =1,...,00, xy, € SN, and lim;_. gy, (xn;) = 19‘mf Because
limy_se0 [|gn — |l = 0, we also have lim;_,e g(xn;) = Vins. Since I, is the optimal value of (5), ¥ < g(xy.)
for all N;. Therefore ¥, < ¥yr. Overall, we have obtained limsupy_,,, Oy < ¥, < liminfy_,., Uy. O
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Lemma 2 Suppose the assumptions of Theorem 2 hold. Then, with probability one, limy_sc ]D)(§N, S.)=0.

Proof.  We prove limNﬁmD(S“\N,S*) =0 in the event that limy_||gy — gl = 0, limy_e0 @N =1, and
S) v 1s non-empty and contained in C for all N sufficiently large. This event has probability one by Theorem 1,
by Lemma 1, and by assumption.

Consider any subsequence {N;}*, of the natural numbers and sequence {xy}y_, of points in 2~
such that for every i =1,...,00, xy, € §N,~- Because C is compact, the sequence {xy,};, has a limit point.
Consider any such limit point, and denote it as x*. Consider any subsequence {N;}?* , of {N;}3*, such

that lim; . xpy = x*. For any i, Oy — g(x") = g (xnr) — g(x*) = (§ng (xnr) — g(xNi/)) + (g(xNi/) - g(x*))
It follows from assumptions (i) and (ii) in Theorem 2 and Theorem 7.47 in Shapiro et al. (2009) that
g is lower semi-continuous, which in turn implies that liminf;.(g(xy) —g(x*)) > 0. We also have

limy oo (v (xn7) — g(xn7)) = O since limy—e [|gn — gl = 0. Therefore lim; 3,\,; > g(x*). We also have

limy_seo Oy = O,. Thus, g(x*) < O,, which implies x* € S,. Overall, we show that if x* is a limit point
of a sequence {xy,};~, of points that are optimal solutions of a sequence of SAA problems given by (4).

Therefore x* is in S, so limsupy_,..D(Sy,S,) = limsupy_,..sup__¢ dist(x,S,) = 0. O

xES

3 RESULTS WHEN SOME PARAMETERS CONVERGE

In this section we consider the situation in which the vector x in the parametric integral (2) may include some
parameters that are of primary interest and other parameters that are of auxiliary interest or are mere nuisance
parameters. We write x = (y,z) where y is of primary interest and z is not. We provide results relevant
to SAA and optimization over y alone, where the SAAs are constructed using a convergent sequence of
random values of the z parameters. For example, these values of the z parameters may represent estimators
of statistical parameters, stochastic processes that converge to a limiting random variable, decisions that
are updated and converge over time, etc. Section 6 describes an example in which z corresponds to the
iterates of a randomized optimization algorithm.

To be mathematically precise, let us assume that in the framework established in Section 2, 2" =% x %,
where %" C R™ and 2 C R™ for some n, and n, that sum to n. Further suppose there is a sequence of
random vectors {Zy}y_,, each Zy being a ¢-measurable function from  to R™. This sequence need not
be adapted to the filtration {.%;}7 ,. We analyze problems in which this sequence converges to a limiting
random variable Z,.

Assumption 4 There exists a random variable Z, such that limy_,e || Zy — Z||» = 0 with probability one.

We study the convergence of SAAs g% : Q — L..(%) given by g5 (y) = £ X, M to the function

¢ Qs L(#) given by £2(5) — (5.2.)
The following result is a generalization of Theorem 1 in this context. Here, Assumptions 1, 2, and 3
referto G: 2 xE >R with 2 =% x % and x= (y,2) € ¥ x Z.

Theorem 3 If Assumptions 1, 2, 3, and 4 hold, then with probability one, limy_;. ||g% — g%/« = 0.
Proof.  We have

1 Al Gy7ZN7§.)
15—l =sup |53 CEBS) g2

$i(&)

ye¥
al y7ZN7§l _G<y7 *7&) 1 al G(y7z*7§)
Sjélfg ; l t) ¢l(§l> +}Sg£ N; ¢t(él) g(y,Z*)

®)

<sup — Z% (&)v(1Zy — Zi]|2) + sup
)6,/ yEX

1 ¥ Gy, z,,&
NZM—g@,Z*) - ©)

i=1 ¢t(§l)
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By Theorem 1, the second term converges to zero. For the first term, we see that

N

(0(&) ~ ELA(E) + Y- EIH(E)

1 i=1

(éz) =

uMz
Mz

N

l

where, by Assumption 3, the first term converges to zero and the second term is bounded. Since Zy
converges to Z,, we have from the continuity of y at 0 that y(||Zy —Z.||2) — 0. Hence, also the first term
in (9) converges to zero. ]

Finally, in analogy to (5) and (4), we consider the optimization problem 7 := minyegy g%(y) and its
sample average approximation 9% := minycq 2%(y). Let % and §sz denote the set of optimal minimizers
of gZ and g%, respectively. Theorem 4 follows from Theorem 3 in the same way that Theorem 2 follows
from Theorem 1.

Theorem 4 Suppose that Assumptions 1, 2, 3, and 4 hold, that (i) G(+,&) is lower semi-continuous for all
& € RY, and (ii) that there exists an integrable function Z(& ) such that G(y,z,&) > Z(&) forall (y,z) € # x &
and almost all £ € E. Further assume that there exists a compact set C C % such that, with probability

one, SZ is non-empty and contained in C and for N large enough, §IZ\, is non-empty and contained in C.
Then, with probability one, limy . 3% = 97 and limy_,.. D(5%,5%) = 0.

4 POINTWISE STRONG LAWS OF LARGE NUMBERS

In this section, we give two examples of theorems that imply the pointwise convergence required in
Assumption 2. The first is the well-known strong law of large numbers for independent and identically
distributed random variables. It follows, for example, from Theorem 6.1 in Billingsley (1995), using the

fact that ¢; is the density for &;, and therefore E [ ¢( i ;3)} = g(x). We however need the following assumption
on the measurability of G(x,-).
Assumption 5 For all x € 27, G(x,-) is a measurable function on R¢ and g(x) < .
Theorem 5 Suppose Assumption 1 and 5 hold. If {&;}*, are independent and identically distributed (i.e.,
¢; = ¢; for all i), then for all x € 2", with probability one, limy_,.. |gn(x) — g(x)| = 0.

Next we establish a pointwise strong law of large numbers for the case in which {&;}*, are neither
independently nor identically distributed.

Assumption 6 There exist non-negative constants k and b such that, with probability one, for all i € N,

xe 2, and & € 5, SEE < kexp(b]€]o)-

Assumptions on the unconditional moment generating function of F(x,&) in (1), for each x € 2, are
common in this type of analysis (Dai et al. 2000; Homem-de-Mello 2008; Xu 2010). In Assumption 7, we
focus instead on the moment generating function M; of the conditional distribution of ||&;||, given .%;_,
defined as M;(s) = Elexp(s||&il2)|-Fi-1] = [z, exp(s]|€]]2)¢i(§) dE. Note that M; is a random function.

Assumption 7 There exists & > 1 such that Y'7° | i 2*E[M;(2ah)] < oo, where b is as in Assumption 6.

In Section 5 we show that Assumption 7 is satisfied when the densities ¢; are normal distributions with
bounded means.

Theorem 6 Suppose Assumption 1, 5, 6, and 7 hold. Then for all x € 2", with probability one,
limy . [gw (x) — g(x)| = 0.

For the proof of Theorem 6 we require the following relationship.
Lemma 3 Given a,c € R and r > 1, the following inequality holds: |a+c|" < (1+|c|)" (1 +]al").

Proof.  Clearly, la+c|” < (|a]+|c|)". We now consider the two cases |a| > 1 and |a| < 1.
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If Ja] > 1, then (Jal +[el)’ =1al” (1+{4)" < lalr (14 lel)" < (1+[a]") (1+[el)".

la

If a| <1, then (|a| +[c|)" < (1+]c])" < (1+a|") (1 +]c])". H

Proof of Theorem 6.  Fora given fixedx € 2" and all i, N € N, define U; = Gl o fs) —g(x)and Vy =YY | U;

so that gy (x) — g(x) = Vw/N. The claim of the theorem follows from Chow’s strong law of large numbers
for martingales (see Chow (1967)) which that states that Vy /N — 0 with probability one.

The remainder of this proof verifies that our setting satisfies the conditions for the theorem in Chow
(1967). The conditions are that Vy be a martingale whose increments satisfy Chung’s condition (Equation
(3.2) in Chung (1951)). That is, there exists & > 1 such that Y7~ | i~ (I+o)g [|Ui|2°‘] < oo,

To see that Vi is a martingale, recall that ¢; is the densuy of &, and therefore E[U;] = 0 for all

i € N with probability one. Letting a = U; + g(x) = lG((f;” c= —g(x) and r = 2¢¢ in Lemma 3, we find:

E[|U]**] <C <1 +E [('G( 5’”) }) , where C = (1 + |g(x)|)>*. Assumption 6 then yields

9:(&i)
e[ (%)

=E [E

(5"

Since o+ 1 > 1, we have Y72 i~ (1*%) < oo, and with Assumption 7

i H—Ot [|U’2a <C<Zl (I4+o) +k2az H—a [M,-(Zab)]><
i=1

i i=1

ﬁ,’l]] <E [E [kza exp(2ab|\§i||2)]ﬂi,1]] :kzaE[Mi(20lb)].

Hence, Chung’s condition holds. O

S NORMAL DISTRIBUTIONS AND SMOOTH FUNCTIONS

Assumption 3 is stated in very general terms. Now we present specific conditions that are easier to verify.
We consider the case in which all density functions correspond to normal distributions with different means
i and variances 62, so they are of the form

_ 1 1€ — 113
‘P(%Gvé)—mexp <—2622>- (10)

Assumption 8 Let = =R?, and for all x € 2" and & € R we have h(x,&) = ¢(x,&,&) for some & > 0.
Furthermore, for all i € N, and & € RY, we have Z; = R? and ¢;(&) = ¢(u;, 67, &) for some random variables
u; € R and 0; > &. The sequence {u;} is uniformly bounded with probability one.

Under this assumption, the moment generating functions

TR
Mi(s) = [ exp(s1E12)0i(8) & = Wlw)d [ex (sngnz_ Hﬁ,w“’> 0.

are uniformly bounded for fixed s, and Assumption 7 holds (for any values of & > 1 and b > 0). Furthermore,
the following lemma establishes that the likelihood ratio has subexponential growth.

Lemma 4 Suppose Assumption 8 holds. The there exist non-negative constants kj and b, so that

< knexp(bnl|§l2) (an

forallie N, xe 2, and £ € E.

1652



Feng, Maggiar, Staum, and Wiichter

Proof. Choose any i € N, x € 27, and £ € E. Then
=805 IS — w3

262 207
2 ~2
o 2
) +—=
)+ 813

1

log <h&,§)>> ~log (9(x,5,£)) —log (¢(u;,01,&)) L2

1 2 ,, 67 2
=352 —lxll3+2¢x,&) — 1€ 12 + oTzHMHz

1
- 262

G? G2 G
(St - e+ 26— S+ [ -1 1e1R) 12

By Assumption 8, 0; > &, and the term in the square brackets is non-positive. Because 2" is compact and
U; is bounded by Assumption 8, there exist positive constants k and b, so that for all i € N, x € 27, and

ek, log <’:§_)E’§>)> <k+by|&||2. The claim of Lemma 4 follows with k;, = exp(k). O

We also require some differentiability properties for F.

Assumption 9 Suppose, that F in (1) is continuously differentiable in x for any £ € Z, and that there exist
krp,bp > 0 so that for any x € 2" and any £ € &

[F(x,&)| < krexp(brl|G]l2)  and (13a)
IViF (x,6)l2 < kr exp(br[|]]2)- (13b)

Here, V, denotes the gradient with respect to x.

A consequence of the final proposition is that the claims of Theorems 1, 2, 3, and 4 hold under
Assumptions 8 and 9.

Proposition 1 If Assumptions 8 and 9 hold, then Assumptions 1, 2, and 3 hold for G(x,&) = F(x,&)h(x,&).

Proof.  Suppose the assumptions of Proposition 1 hold. Assumption 8 implies Assumption 1, and
Assumption 9 implies Assumption 5. We already argued above that Assumption 7 holds because of
Assumption 8. Assumption 6 holds, since forany i€ N, x€ 2", and £ € &,

G(x, )l (0 h(x,E) (D3
ToE) [F(x,8)l e =

where we used Lemma 4. Therefore, Theorem 6 implies that Assumption 2 holds. It remains to prove that
Assumption 3 is also implied.
Note that V h(x,&) = %h(x, &)(x— &) for all x,& € RY. Using this and the mean value theorem, we
have for all i € N and x,x’ € 2 that
G(x7 él) _ G(x/’éi) _ 1
¢K§J ¢K§J &gﬂ
1

9:(&i

k exp(br (|G 12) - knexp(bal[S]]2)-

<VXG()Z,', gl) X — X/>

S )<V oF (%0, &)h(%i, &) + F (%, 8) Vi (%, &), x — )
_h(x:, &)

(&)
for some ; € {Aix+ (1 —A;)x": A; € (0,1)}. With M, = max{||x|]2 : x € Z"} < e, we find

1 /
<VXF(Xi’§i)+?F(xia€i)(xi—éi)’x_x> (14)

V. (5 ) + 2 F (5 6) (5~ &)

1
<krexp(br||&l2) + Sakr exp(br||&ill2) (M + || Eill2)
2

M,+1
2

<kr <1+ >exp<<bF+1>ué,-||z>, (1)
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where we used Assumption 9 and ||&;[|2 < exp(||&|2)-
Using similar arguments as in (12), we have with an arbitrary but fixed x € 2" and all i € N that

h(x,6)\ 1 S oy L
1°g<h(£§i)>—2c-,z(\xz|!% 12+ 205 — ,6) < 5= (2M; +2M|&il12)

so h(x;, &) <h(x,&)- exp( 32) -exp (%) . Combining this with (14) and (15) we have

h(x,&:)

_ G| e kexp(bal &) X

‘ ¢i(&)  0i(&)
with kg = kr (14 X“ )exp (%2) and bg =bp+1+ % Defining % (&) = kGeXp(b‘éJ‘(%J)‘z)h@é) , it remains
to show that (6) and (7) hold.

We are now going to apply Theorem 6 to the function Gy (x,§) = kgexp(bg||§ ||2)h(X, &) with 2, = {x}.
For this, note that g,(x) defined as

9= [G/n) 0= [ T0Doe k=~ [ n(&)0(&) o8~ Bln@)

is finite. The last equality follows because & is sampled from density ¢;. Therefore, (6) holds, and
Assumption 5 holds for G = G,. Further consider

l i GY()/C\a gz)

N,‘:1 ¢t(§l) N;

From the definition of Gy and Lemma 4, we have for any & € & that

Gy(x.8)] _ h(®,¢)
$i(&) $i(&)

Therefore, Assumption 6 holds for G = Gy, and using Theorem 6 to obtain

Mz

grn(¥) = %(Gi)

1

-kgexp(bg||&l2) < knkgexp((br+bg)|1E1)2)-

N

0= Jim (Bxv(® —8(9) = Jim 5 3 (4(6) ~E[A(E)).
which is (7). O]

6 EXAMPLE: REGRESSION MODELS FOR STEP COMPUTATION IN OPTIMIZATION

As an illustration in which the importance sampling is adaptive and nuisance parameters are present, we
consider the randomized optimization algorithm proposed by Maggiar et al. (2018) in which a local model
of the objective is constructed via a SAA regression problem in every iteration.

The algorithm in Maggiar et al. (2018) addresses the minimization of the function L: 2 — R given

by
- [ L&t

where 2 C R? is a compact set, E = R?, and h(y,&) = ¢(y,0,&) is the normal density with mean y and
variance 6. The integral is finite because L : RY — R is assumed to exhibit subexponential growth. In the
context of Maggiar et al. (2018), L(&) is the output of a deterministic computer simulation with input &
and the “original” objective function one would like to minimize. However, since L is subject to numerical
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noise (small deterministic jumps in function value) and therefore discontinuous, the task of minimizing L
ill-defined. To overcome this difficulty, Maggiar et al. (2018) proposes to minimize the convolution L(z)
as a smooth approximation

The derivative-free trust-region optimization algorithm proposed in Maggiar et al. (2018) utilizes an
SAA of L(z), i.e

¢(z,0,&)
;¢mc® 2

The points &; are sampled randomly according to the normal pdf ¢(z;, 0, -), where its mean 7 is either
an iterate or a trial point encountered by the algorithm up to iteration N. Note that the likelihood ratio in
the definition of L(z) has the form of that in (3) and therefore falls into our framework.

Given an iterate zy € %/, the optimization algorithm generates a trial point Zy as the minimizer of a
quadratic model within a ball around zy. The model has the form gy (&;zy) = b+ (g,€ —zn)2 + 3(€ —
v, Q(E — zv)), with coefficients b € R, g € RY. The matrix Q € R**? is symmetric, and gy (&;zy) should
approximate the simulation output L(&) for & close to zy. Convergence of the optimization algorithm would
follow if the model parameters are computed by a weighted local regression of L; that is, if y = (b,g,0)
are the minimizers of

mln/F (y,z,&)h(z,&)dE, (16)

where F(y,2,&) = (b+(g,& —2)2 + 3(E —2,0( —2))2 —L(&)). This objective function has the form
of (2). (In abuse of notation, we collect the model parameters b, g, and Q in the vector y.)

To get an approximate solution of (16), at an iterate Zy (using an upper case letter to emphasize its
stochastic nature), the optimization algorithm computes the quadratic model from the stochastic average
approximation of (16); that is

1 Y (P(ZN,G,éi) ?
min i L AAE (b4 (e -2+ 620G 200-LE) . (D

The analysis of the algorithm in Maggiar et al. (2018) requires that the model gy (&;Zy) converges to
the optimal solution of (16) at any limit point Z, of the iterates Zy. This can be proved using the results
in Section 3.

For any w € Q, let {Zy(w)}5_, be a subsequence of iterates such that {Zy(w)}y_, converges to a
limit point Z.(®). Such a subsequence exists, due to compactness of Z; thus Assumption 4 holds. Also,
because all iterates and trial points are contained in 2, the sequence {7;}, consisting of such points, is
uniformly bounded. Therefore Assumption 8 holds. Furthermore, since F(y,z,&) is a polynomial in (y,z)
and L exhibits subexponential growth, Assumption 9 holds. Finally, the algorithm in Maggiar et al. (2018)
ensures that the optimal solutions of (16) and (17) are unique and uniformly bounded, by monitoring the
condition number of matrices involved in the computation of the optimal solution of (17). In summary,
Assumptions 4, 8, and 9 hold, and Proposition 1 together with Theorem 2 yields limNHwD(SA}Z\,,Sf) =

So, the approximate model parameters in SA']ZV in iteration N converge to the optimal parameters in SZ.

7 CONCLUSION

We considered the SAA of stochastic optimization problems whose objective function is expressed as a
parametric integral. The key contribution is that we permit non-independent, non-identical, and adaptive
sampling, where the importance sampling distribution may depend on previous samples. Under the
assumption of pointwise convergence and a stochastic Lipschitz condition, we proved uniform convergence
of the sample average approximation of the parametric integral over a compact set as well as convergence of
the optimal values and optimal solution sets of the sample average approximation problems as the number
of samples goes to infinity.
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The differentiability assumption on the function F in Section 5 for the normal case is somewhat
restrictive and presented here merely as a simple example that uses the general results in this paper. We
conjecture that Assumption 9 can be relaxed considerably. In addition, in future research we plan to extend
results in Section 5 to more general class of distributions such as (natural) exponential family.
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