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ABSTRACT

It has become increasingly important to assimilate “online data” that arrive sequentially in time for real-time
decision. Input uncertainty quantification in stochastic simulation has been developed extensively for batch
data that are available all at once, but little has been studied for online data. In this paper, we propose a
computationally efficient method to incorporate online data in real time for input uncertainty quantification
of parametric models. We show finite-sample bounds and asymptotic convergence for the proposed method,
and demonstrate its performance on a simple numerical example.

1 INTRODUCTION

Stochastic simulation is driven by the input model, which is a collection of distributions that model the
randomness in the system. The input model is often estimated from data, and therefore the estimation error
in the input model introduces the so-called input model uncertainty (or simply as input uncertainty) to the
simulation output. It is important to quantify the impact of input uncertainty on the simulation output,
since it tells the simulation user how to interpret the output by separating the input model uncertainty from
the intrinsic uncertainty of the system itself. To quantify input uncertainty, one needs to start with the
input data. Regarding the arriving pattern of input data, there are often two types: 1) “batch data” that
are available all at once; 2) “online data” that arrive sequentially in time. Online data occur frequently in
many applications, such as customer arrivals in time observed in a service system, and customer demands
as the selling season progresses. Business applications nowadays often require to incorporate online data
in real time for fast and up-to-date business decisions.

An extensive array of methods have been developed for input uncertainty quantification based on batch
data. The methods developed so far in the literature can be roughly grouped into three major categories.
First is the frequentist methods that allow nonparametric input distributions and use direct or bootstrap
resampling techniques to assess input uncertainty (e.g., Barton and Schruben 1993; Barton and Schruben
2001; Cheng and Holloand 1997). Second is the Bayesian methods (e.g., Chick 2001; Zouaoui and Wilson
2003; Zouaoui and Wilson 2004; Xie et al. 2014) that assume a parametric model and use the posterior
distribution of unknown parameters as the sampling distribution during simulation process. Third is the
delta method: Cheng and Holloand (1997) uses the delta method to decompose the variance of simulation
output into two parts respectively corresponding to stochastic uncertainty and input uncertainty; a robust
sensitivity analysis approach developed by Lam (2016) can be viewed as the delta method with respect to
a distributional perturbation. Recent advances in stochastic kriging (Ankenman et al. 2010) also give rise
to the application of meta-model assisted methods to quantify input uncertainty (e.g., Barton et al. 2013;
Xie et al. 2014). Other related work includes Song and Nelson (2015) that proposes a method for quickly
assessing the relative contribution of each input distribution to the overall effect of input uncertainty These
aforementioned methods take input data in a batch. Although they can be extended to work with online
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data by naively repeating the method each time when a new data point comes in, it is obviously not an
efficient way because it requires to run new simulation experiments every time when the method is used
and these simulations experiments are often computationally expensive. It still remains an open challenge
to efficiently work with online data in the domain of input uncertainty quantification.

In this paper we propose a computationally efficient method to assimilate online data for input uncertainty
quantification in real time. We assume that the input model takes a parametric form, and take a Bayesian
approach to estimate the unknown input parameters from data. When a new data point arrives in the current
time stage, the Bayesian posterior distribution on the input parameter is updated. Our main idea is to
use importance sampling to transform a set of samples under the previous posterior distribution to a new
set of samples under the current posterior, such that the simulation output estimates from previous time
stage can be reused and thus new simulation experiments can be avoided. The challenge here is the long
time horizon, which can cause sample degeneracy (i.e., most samples have trivial weights close to zero,
and only very few samples are non-trivially weighted) if we keep doing importance sampling to track the
sequence of posterior distributions over the time. To alleviate sample degeneracy, following the importance
sampling step we resample with replacement to generate a new set of samples with equal weights. To
avoid the estimation error accumulating over time when using a fixed sample size, we further introduce
a restarting mechanism to enhance the performance of the method. Our theoretical and empirical results
both show that our proposed method can asymptotically track the true posterior distribution on the output
performance measure over long time horizon.

Our proposed method is closely related to particle filtering, also known as sequential Monte Carlo
methods (Doucet et al. 2000). Different from the goal of particle filtering to track the unobserved state
and/or unknown parameters in a state-space model, our main objective here is to reuse simulation output
estimates from previous time stages while estimating the unknown input parameters at the same time. This
limits us to the same sample values and consequently causes the estimation error to accumulate over time
as shown by our error-bound analysis, which in turn motivates us to introduce a restarting mechanism when
necessary. Our method is also related to “green simulation” proposed by Feng and Staum (2015) and Feng
and Staum (2017) in the sense of reusing simulation outputs from previous experiments, but they do not
consider the accumulated error in the long time horizon, which is our focus. Similar to Xie et al. (2014),
we also take a Bayesian perspective to quantify input uncertainty, but our estimation method is different,
and more importantly, tailors to the online setting.

2 ONLINE QUANTIFICATION FOR PARAMETRIC INPUT MODELS

Assume the input distribution takes a parametric form F(·;θ), θ ∈Θ⊆Rn. The true value of the parameter
is denoted by θ c, but it is unknown to us. The system performance is measured by H = E[h(ξθ c)], where
ξθ c is a random variable that represents the stochastic uncertainty in the system and follows the distribution
F(·;θ c), and the expectation is taken with respect to F(·;θ c). For complex systems we usually do not have
the analytical form of h, so we estimate the performance measure H by simulation outputs h(ξ i

θ̂
)’s, where

θ̂ is the parameter of the input model that drives the simulation.
The input parameter needs to be estimated from input data. Here we consider the online scenario where

the input data arrives one at a time, i.e., at time stage t we observe one data point ξt , t = 1,2, . . ., where
{ξt , t = 1,2, . . .} are independent and identically distributed (i.i.d.) from F(·;θ c). We take a Bayesian
approach to incorporate data sequentially in time. Specifically, we treat the unknown parameters as a
random vector (r.v.) θ and assume a prior distribution π0. The prior distribution π0 can be constructed
from historical data that were collected prior to time 0. At time stage t, the posterior distribution on θ is
πt , p(θ |ξ1, . . . ,ξt). Then at the next time stage t +1, a new data point ξt+1 comes in, and the posterior
distribution is updated according to

πt+1(θ), p(θ |ξ1, . . . ,ξt+1) =
πt(θ)p(ξt+1|θ)∫
πt(θ)p(ξt+1|θ)dθ

.
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where p(ξt+1|θ) is the probability density function (p.d.f.) of F(·;θ) evaluated at ξt+1. We also introduce
the notation H(θ), E[h(ξθ )], which is a random variable induced by the r.v. θ . The cumulative distribution
function (c.d.f.) of the induced posterior distribution on H(θ) at time t is then defined as

Gt(y), Pr(H(θ)≤ y|ξ1, . . . ,ξt).

Let’s first fix the time t. The posterior distribution Gt represents our knowledge about the performance
measure based on all the input data up to time t, and hence Gt provides an uncertainty quantification solely
due to the input data without any additional error. The input uncertainty can be quantified by the credible
interval (sometimes also called the Bayesian confidence interval) of Gt . Specifically, the (1−α)100%
credible interval

CrI = [qt,α/2,qt,1−α/2]

is defined such that Gt(qt,1−α/2)−Gt(qt,α/2) = 1−α , which contains (1−α) probability mass of Gt .
To avoid technicalities, we assume qt,α/2 and qt,1−α/2 are respectively the α/2 and 1−α/2 quantiles of
Gt . However, Gt is not directly computable due to the complex input-to-output mapping and needs to be
estimated by simulation. A direct method is to generate M i.i.d. samples {θ 1

t , . . . ,θ
M
t } from πt , and run

simulations to obtain the corresponding performance estimates {Ĥ1
t , . . . , Ĥ

M
t }, which forms an empirical

distribution for Gt . From this empirical distribution, the (1−α)100% credible interval CrI defined above can
be estimated by [Ĥ(dM α

2 e)
t , Ĥ(dM(1− α

2 )e)
t ], where Ĥ(1)

t ≤ . . .≤ Ĥ(M)
t are the ordered values of {Ĥ1

t , . . . , Ĥ
M
t }.

Before proposing our method, we first discuss a naive extension of the above direct Bayesian method
to online quantification: we take in the new input data to update the posterior distribution on the input
parameter, and then run simulation experiments under sampled input parameters drawn from the updated
posterior. This naive approach is computationally inefficient, since it requires running new (expensive)
simulation experiments whenever a new data point is assimilated. Moreover, a sufficiently large number
of simulation replications are needed for a reasonably accurate estimation. Therefore, as easy as the naive
online approach sounds, it is not applicable in practical problems. Our proposed method below will work
around the issue of the naive extension by reusing simulation outputs from previous time stages.

2.1 Main Idea and Algorithm

The general idea of our method consists of a sequence of three steps whenever a new data point is assimilated.
These three steps include importance sampling, resampling, and restarting when some criterion is satisfied.
The purpose of importance sampling step is to reuse performance outputs generated by previous simulation
experiments. The importance sampling step transforms the set of i.i.d. samples following the previous
posterior distribution to a new weighted set of samples following the current updated posterior distribution,
and hence the performance estimates of the previous sample set will be inherited by the new weighted sample
set. Following this importance sampling step, a resampling step is taken to sample (with replacements)
from the weighted set of samples to generate a new set of i.i.d. samples. The purpose of the resampling
step is to help preventing the issue of sample degeneracy: without resampling, after a few iterations only
very few samples will have significant weights while the majority of samples all have very small weights
close to zero. Even with resampling, as shown by our error-bound analysis later, the estimation error will
accumulate over time when using a constant number of samples per time stage, so we further introduce a
restarting step to prevent the accumulated error from blowing up. When the accumulated error becomes
too large, the restarting step discards previous samples, and generates a new set of i.i.d. samples from the
current posterior distribution and carries out simulation experiments to estimate the performance measure
at these new samples. Following the idea outlined above, below we describe our algorithm in details.

Online Quantification of Input Uncertainty: Importance Sampling Resampling with Restarting (ISRR)
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• At time stage t = 0, we start with a prior distribution π0. Draw i.i.d. samples {θ 1
0 , . . . ,θ

M
0 } from

π0. For each i = 1, . . . ,M, run N simulation experiments at θ i
0 to obtain a performance estimate

Ĥ i
0, i.e., Ĥ i

0 =
1
N ∑

N
j=1 h(ξ i, j) with ξ i, j iid∼ F(·;θ i

0), j = 1, . . . ,N.
• At time stage t +1(t ≥ 0), a new data point ξt+1 arrives. The following steps are carried out.

1. Importance sampling: compute the importance sampling weights {w1
t , . . . ,w

M
t } according to:

wi
t =

πt+1(θ
i
t )

πt(θ
i
t )

∝ p(ξt+1|θ i
t ), i = 1, . . . ,M;

M

∑
i=1

wi
t = 1.

2. Resampling: sample (with replacements) from {θ i
t , i = 1, . . . ,M} according to the weights

{wi
t , i = 1, . . . ,M} to generate i.i.d. samples {θ 1

t+1, . . . ,θ
M
t+1}, and for each θ i

t+1 record its
corresponding sample value θ i

t+1 = θ i′
t and performance estimate Ĥ i

t+1 = Ĥ i′
t .

3. Restarting: if V̂art+1 < βVart+1, β ∈ (0,1), then discard the current samples and generate a
new set of i.i.d. samples {θ 1

t+1, . . . ,θ
M
t+1} from πt+1. For each i = 1, . . . ,M, run N simulation

experiments at θ i
t+1 to obtain performance estimate Ĥ i

t+1, i.e., Ĥ i
t+1 = 1

N ∑
N
j=1 h(ξ i, j) with

ξ i, j iid∼ F(·;θ i
t+1), j = 1, . . . ,M.

4. Quantification: sort performance estimates Ĥ(1)
t+1≤ . . .≤ Ĥ(M)

t+1 , and [Ĥ(dM α

2 e)
t+1 , Ĥ(dM(1− α

2 )e)
t+1 ] is an

approximate (1−α)100% credible interval (under the posterior Gt+1) for the true performance.

Step 1 (importance sampling) computes the weights {w1
t , . . . ,w

M
t } such that they sum up to 1, which

is often referred to as self-normalized importance sampling (Cappé et al. 2005). This gives a discrete
distribution {Prob(θ i

t ) = wi
t , i = 1, . . . ,M}; so in Step 2 (resampling) a new set of samples are generated

by drawing each θ i
t with probability wi

t . In Step 3 (restarting), the restarting criterion is set to be
V̂art+1 < βVart+1, β ∈ (0,1), where V̂art+1 denotes the sample variance of the samples {θ 1

t+1, . . . ,θ
M
t+1}

after Step 2 (resampling), and Vart+1 denotes the variance of πt+1. This is motivated by the fact that the
difference between the sample variance and true variance is an indicator of the estimation error. Intuitively,
the estimation error increases if we use the same set of sample values (even with different sets of weights),
because the posterior distribution πt becomes more and more different from the prior distribution π0 as time
progresses, and the samples drawn initially from π0 may become a poor representation of πt (for example,
most of the initial samples lie in the tails of πt). Note here the constant β is often chosen to be close to 1.
A larger β leads to more frequent restarts, and consequently smaller estimation error over time for a fixed
sample size M. On the other hand, for a fixed β , a larger sample size M leads to less frequent restarts. We
also note that there might be other better restarting criteria, which we leave to our future work.

2.2 Error Bounds and Asymptotic Convergence

First, we introduce some notations. Let’s denote the Dirac delta function by δ (·). The empirical distributions
at the beginning of the time t + 1, after Step 1 (importance sampling) at time t + 1, and after Step 2
(resampling) at time t+1 are respectively denoted as: π̂t(θ), 1

M ∑
M
i=1 δ (θ = θ i

t ), π̂t+1|t(θ), ∑
M
i=1 wi

tδ (θ =

θ i
t ), π̂t+1(θ) , 1

M ∑
M
i=1 δ (θ = θ i

t+1). Recall that Gt(y) , Pr(H(θ) ≤ y|ξ1, . . . ,ξt). Let gt be the p.d.f. of
Gt . The empirical posterior distributions on the performance measure at the beginning of time t +1, after
Step 1 (importance sampling) at time t + 1, and after Step 2 (resampling) at time t + 1 are respectively
denoted as: g̃t(y) , 1

M ∑
M
i=1 δ (y = Ĥ i

t ), g̃t+1|t(y) , ∑
M
i=1 wi

tδ (y = Ĥ i
t ), g̃t+1 , 1

M ∑
M
i=1 δ (y = Ĥ i

t+1), where

Ĥ i
t =

1
N ∑

N
j=1 h(ξ i, j) with ξ i, j iid∼ F(·;θ i

t ), j = 1, . . . ,M. The likelihood function at time t +1 is denoted as
lt , p(ξt+1|θ).

Let Cb(Rn) be the set of all bounded and continuous functions φ :Rn→R. Let ‖·‖ denote the supremum
norm on Cb(Rn), i.e., ‖φ‖, supx∈Rn |φ(x)|, φ ∈Cb(Rn). Given that π(x) is a p.d.f. and φ : Rn→ R is an
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integrable function with respect to π , we define

〈π,φ〉,
∫

φ(x)π(x)dx,

and we use the shorthand notation 〈π−π ′,φ〉 , 〈π,φ〉− 〈π ′,φ〉. Hence, the posterior updating can be
written as

πt+1 =
πt lt
〈πt , lt〉

.

The empirical posterior updating can be written as

π̂t+1|t(θ) =
∑

M
i=1 δ (θ i

t = θ)p(ξt+1|θ)
∑

M
i=1 p(ξt+1|θ i

t )
=

π̂t lt
〈π̂t , lt〉

.

We need the following mild assumptions to ensure posterior distributions are well defined and some
quantities of simulation outputs are well regularized.
Assumption 1
(i) The likelihood function lt is continuous, bounded, and strictly positive.
(ii) The expectation E[h(ξθ )] (taken with respect to ξθ ∼ F(·;θ)) is continuous and bounded on Θ, and
the standard deviation std(h(ξθ )) (taken with respect to ξθ ∼ F(·;θ)) is bounded on Θ.

The following lemma bounds the error between the true posterior distribution and the empirical
distribution after the importance sampling step at time t + 1. Its proof technique is similar to that for
Lemma 4 in Crisan and Doucet (2002).
Lemma 1 Suppose Assumption 1(i) holds. For any φ ∈Cb(Rn), if E[| 〈π̂t −πt ,φ〉 |]≤ et‖φ‖, then

E
[∣∣〈π̂t+1|t ,φ

〉
−〈πt+1,φ〉

∣∣]≤ γtet‖φ‖,

where γt ,
2‖lt‖
〈πt ,lt〉 .

Proof. From Assumption 1(i), ltφ ∈Cb(Rn), 〈πt , lt〉> 0, and 〈π̂t , lt〉> 0.∣∣〈π̂t+1|t ,φ
〉
−〈πt+1,φ〉

∣∣
=

∣∣∣∣〈π̂t , ltφ〉
〈π̂t , lt〉

− 〈πt , ltφ〉
〈πt , lt〉

∣∣∣∣
≤

∣∣∣∣〈π̂t , ltφ〉
〈π̂t , lt〉

− 〈π̂t , ltφ〉
〈πt , lt〉

∣∣∣∣+ ∣∣∣∣〈π̂t , ltφ〉
〈πt , lt〉

− 〈πt , ltφ〉
〈πt , lt〉

∣∣∣∣ .
The first term above can be bounded as∣∣∣∣〈π̂t , ltφ〉

〈π̂t , lt〉
− 〈π̂t , ltφ〉
〈πt , lt〉

∣∣∣∣= |〈π̂t , ltφ〉(〈πt , lt〉−〈π̂t , lt〉)|
〈π̂t , lt〉〈πt , lt〉

≤ ‖φ‖
〈πt , lt〉

|〈πt , lt〉−〈π̂t , lt〉| .

Hence, we get

E
[∣∣〈π̂t+1|t ,φ

〉
−〈πt+1,φ〉

∣∣]
≤ ‖φ‖
〈πt , lt〉

E [|〈πt , lt〉−〈π̂t , lt〉|]+
E[|〈π̂t , ltφ〉−〈πt , ltφ〉 |]

〈πt , lt〉

≤ 2et‖lt‖
〈πt , lt〉

‖φ‖= γtet‖φ‖.
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The following lemma bounds the sampling error due to the resampling step at time t + 1. Its proof
technique is similar to that for Lemma 5 in Crisan and Doucet (2002).
Lemma 2 For any φ ∈Cb(Rn),

E
[∣∣〈π̂t+1,φ〉−

〈
π̂t+1|t ,φ

〉∣∣]≤ ‖φ‖√
M
.

Proof. Let Ft be the σ -field generated by {θ i
t , i = 1, . . . ,M}. Due to i.i.d. sampling we have unbiased

estimates, i.e., E[φ(θ i
t+1)|Ft ] =

〈
π̂t+1|t ,φ

〉
, i = 1, . . . ,M, where the expectation is taken with respect to the

randomness in sampling. Hence,

E
[∣∣〈π̂t+1− π̂t+1|t ,φ

〉∣∣]2
≤ E

[∣∣〈π̂t+1− π̂t+1|t ,φ
〉∣∣2]

=
1

M2 E

[
E

[
M

∑
i=1

(
φ(θ i

t+1)−
〈
π̂t+1|t ,φ

〉)2
∣∣∣∣Ft

]]

=
1
M

E
[〈

π̂t+1|t ,φ
2〉−〈π̂t+1|t ,φ

〉2
] 1

M
‖φ‖2.

By taking square root on both sides of the inequality above, we prove the lemma.

Based on the lemmas above, we prove the following theorem, which bounds the accumulated error
between the true posterior distribution and the empirical distribution at time t +1.
Theorem 1 Suppose Assumption 1(i) holds. For any φ ∈Cb(Rn),

E
[∣∣〈π̂t+1|t −πt+1,φ

〉∣∣] ≤ ct+1|t
‖φ‖√

M

E [|〈π̂t+1−πt+1,φ〉|] ≤ ct+1
‖φ‖√

M
,

where the constants ct+1|t and ct+1 are respectively

ct+1|t =
t

∑
j=0

(
t

∏
i= j

γi

)
, ct+1 =

t

∑
j=0

(
t

∏
i= j

γi

)
+1.

Proof.

E [|〈π̂t+1−πt+1,φ〉|]
≤ E

[∣∣〈π̂t+1− π̂t+1|t ,φ
〉∣∣]+E

[∣∣〈π̂t+1|t −πt+1,φ
〉∣∣]

≤ 1√
M
‖φ‖+ γtet‖φ‖= et+1‖φ‖,

where et+1 = γtet +
1√
M

. Note that E[| 〈π̂0−π0,φ〉 |]≤ ‖φ‖√M
, so e0 =

1√
M

. By induction, we get

et+1 =

{
t

∑
j=0

(
t

∏
i= j

γi

)
+1

}
1√
M

= ct+1
1√
M
.

Similarly, we get

E
[∣∣〈π̂t+1|t −πt+1,φ

〉∣∣]≤ γtet‖φ‖=

{
t

∑
j=0

(
t

∏
i= j

γi

)}
‖φ‖√

M
= ct+1|t

1√
M
.
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The following corollary shows the weak convergence of empirical posterior distributions to the true
posterior distributions as the sample number M goes to infinity.
Corollary 2 Suppose Assumption 1(i) holds. For any fixed time t, π̂t+1|t and π̂t+1 converge weakly to
πt+1 in mean as M→ ∞.

Proof. By Portmanteau theorem, the corollary statement is equivalent to showing limM→∞

〈
π̂t+1|t ,φ

〉
=

〈πt+1,φ〉 (limM→∞ 〈π̂t+1,φ〉 = 〈πt+1,φ〉) in mean for any φ ∈ Cb(Rn). Hence, it follows directly from
Theorem 1.

The following theorem shows that the induced empirical distribution converges weakly to the true
posterior distribution on the performance measure as the sample number M and number of simulation
replications N go to infinity.
Theorem 3 Suppose Assumption 1 holds. For any fixed time t, g̃t converges weakly to gt in mean as
M,N→ ∞.

Proof. For simplicity, we define Ĥ(θ) , 1
N ∑

N
j=1 h(ξ j

θ
), where ξ

j
θ

iid∼ F(·;θ). Assume ϕ : R→ R is
bounded and Lipschitz continuous with a Lipschitz constant Lϕ . We use ϕ ◦H to denote the composition
of ϕ and H, i.e., ϕ ◦H = ϕ(H(·)). Recall that g̃t(y) = 1

M ∑
M
i=1 δ (y = Ĥ i

t ).

| 〈gt ,ϕ〉−〈g̃t ,ϕ〉 |= | 〈πt ,ϕ ◦H〉−
〈
π̂t ,ϕ ◦ Ĥ

〉
| ≤ |〈πt ,ϕ ◦H〉−〈π̂t ,ϕ ◦H〉|+

∣∣〈π̂t ,ϕ ◦H〉−
〈
π̂t ,ϕ ◦ Ĥ

〉∣∣
From Assumption 1(ii), H(θ) ∈Cb(Rn). Hence, ϕ ◦H ∈Cb(Rn), and it then follows from Theorem 1 that
the first term above is bounded by ct

‖ϕ◦H‖√
M

. The expectation of the second term above can be written as

E
[〈

π̂t ,
∣∣ϕ ◦H−ϕ ◦ Ĥ

∣∣〉]= 〈π̂t ,E
[∣∣ϕ ◦H−ϕ ◦ Ĥ

∣∣]〉 ,
where the interchange of expectation and integration follows from the bounded convergence theorem. Since
ϕ is Lipschitz continuous, we have

E
[∣∣ϕ ◦H−ϕ ◦ Ĥ

∣∣]
≤ LϕE

[∣∣∣∣∣E[h(ξθ )]−
1
N

N

∑
j=1

h(ξ j
θ
)

∣∣∣∣∣
]

≤ LϕE

(E[h(ξθ )]−
1
N

N

∑
j=1

h(ξ j
θ
)

)2
1/2

≤ Lϕ

std(h(ξθ ))√
N

,

where std(h(ξθ )) is bounded on Θ by Assumption 1(ii). Therefore,

E [| 〈gt ,ϕ〉−〈g̃t ,ϕ〉 |]≤
ct‖ϕ ◦H‖√

M
+

Lϕ‖std(h(ξ )‖√
N

,

where ‖std(h(ξ )‖ = supθ∈Θ std(h(ξθ ). Hence, as M,N → ∞, 〈g̃t ,φ〉 → 〈gt ,φ〉 in mean. Since it holds
for any ϕ that is bounded Lipschitz, by Portmanteau theorem g̃t converges weakly to gt+1 in mean as
M,N→ ∞.

Denote the true (1−α) credible interval (under gt) as [qt,α/2,qt,1−α/2], where qt,α/2 and qt,1−α/2 are
respectively the 100(α/2)% and 100(1−α/2)% quantiles of gt . In other words, this credible interval
covers (1−α) probability mass of the distribution gt , which represents our belief about the true performance
measure at time t. From Theorem 3, it is straightforward to see the following corollary.
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Corollary 4 Suppose Assumption 1 holds. For any fixed time t, [Ĥ(dM α

2 e)
t , Ĥ(dM(1− α

2 )e)
t ] converges to the

true (1−α) credible interval [qt,α/2,qt,1−α/2] in mean as M,N→ ∞.
Remark 1: Our analysis above treats Algorithm ISRR without the restarting step. It is straightforward

to extend the error-bound results to Algorithm ISRR (including the restarting step) simply by resetting each
restarting time to time zero in these results. The asymptotic convergence results also hold for Algorithm ISRR
(including the restarting step) since they are proved for each fixed time t.

Remark 2: The error-bound results not only serve as a bridge to prove the asymptotic convergence,
but also provide important insights into the algorithm finite-sample performance. As Theorem 1 indicates,
the estimation error between empirical posterior distributions and the true posterior distributions increases
over time if we use a constant sample number M. The error can be kept constant if we increase the
sample number at an appropriate rate as time progresses. However, not only the exact increasing rate of
the sample number is difficult to identify, increasing the sample number also means more computation for
new simulation experiments at every time stage. This in turn has motivated us to introduce the restarting
mechanism into the algorithm, so that the error can be reset to the initial value when the accumulated
error after a certain time period becomes too large. We also note that uniform-in-time error bound is not
likely (if not at all impossible) to be obtained for online parameter estimation such as our scenario here.
Uniform-in-time error bound for sequential Monte Carlo methods can be obtained if the state-space model
possesses the so-called exponential forgetting property (ref. Moral 2004, Chapter 4), which means that
the true posterior distribution forgets exponentially fast its initial condition. However, this exponentially
forgetting property obviously does not hold here when the state is a static parameter, and the most recent
advances in sequential Monte Carlo methods for parameter estimation still suffer from the increasing-in-time
error bounds (Kantas et al. 2015).

3 NUMERICAL EXAMPLES

We use a simple M/M/1 queue example to verify our theoretical results and demonstrate the performance
of our algorithm. In particular, we are interested in estimating the average queue length in the system.
The true service rate µ is known to both the judges and the experimenters. However, the true arrival rate
λ c of the customers is only known to judges but unknown to the experimenters. Here we set µ = 10 and
λ c = 5, so the true average queue length is λ c/(µ−λ c) = 1.

We take a Bayesian approach to estimate the unknown input parameter — the Poisson arrival rate λ .
We assume there is a historical observation of n = 50 data points {x1, ...,xn} that were collected before
time t = 0. Starting from time t = 1, there is one new data point ξt arriving at each time stage t. All
these data points are i.i.d. from the true input distribution, i.e., the exponential distribution with rate
parameter λ c. Assuming a non-informative prior for λ , i.e., π−1(λ ) ∝ 1/λ , the posterior distribution π0
based on historic data at time t = 0 is a Gamma distribution with shape parameter n and scale parameter
1/(∑n

i=1 xi). Similarly, at each following time t, the posterior distribution πt is a Gamma distribution with
shape parameter n+ t and scale parameter 1/(∑n

i=1 xi +∑
t
s=1 ξs).

We apply the proposed algorithm ISRR and the naive Bayesian method (mentioned right before
Section 2.1) to construct the 100(1−α)% credible interval (CrI) [q̂t,α/2, q̂t,1−α/2] of the average queue length
and compare their performance. Here, q̂t,α/2, q̂t,1−α/2 are the estimated 100(α/2)% and 100(1−α/2)%
quantiles at time t respectively. The true credible interval [qt,α/2,qt,1−α/2] obtained from the true posterior
distribution Gt serves as a benchmark in this comparison. We also use p̂t,α to denote the coverage probability
of the empirical credible interval, which is equal to the probability mass of [q̂t,α/2, q̂t,1−α/2] under Gt . In
the experiments, we set α = 0.1, i.e., our target coverage probability is 90%.

In ISRR, we set β = 0.95, i.e. ISRR restarts when V̂art+1 < 0.95Vart+1. In both ISRR and the naive
method, we first use linear interpolation (between samples) to smooth the empirical distribution of the
samples, and then use the quantiles of the smoothed empirical distribution as estimates of the true quantiles.
The linear interpolation is used to improve the accuracy of quantile estimates, especially when there is
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Figure 1: CrI quantiles estimates by ISRR when N = 100, 1000, 10000 and M = 10000.

only a small number of samples in the empirical distribution. We run both algorithms over a long time
horizon T = 1000.
Experiment 1 In this experiment, we verify our asymptotic convergence results, specifically Theorem 3
and Corollary 4. We show that ISRR’s empirical credible interval converges to the true credible interval as
M (sample number) and N (number of simulation replications) increase, and moreover, ISRR’s empirical
credible interval can track the true one well over long time horizon.

a. We first study the influence of N. We fix M = 10000 and run the algorithm with N = 100, 1000, 10000.
As expected, it can be seen in Figure 1 that when we increase N, both upper and lower quantiles
estimates become closer to the true ones. Moreover, the error does not blow up as times goes by,
and our algorithm can track the true credible interval properly.

b. We then study the influence of M. Here, M is chosen to be 100, 1000, 100000, and we evaluate
the exact performance measure {λ i

t /(µ−λ i
t )}M

i=1 instead of using simulation estimation for each
λ i

t . In other words, N here is set as infinity. In Figure 2, it is clear that when we increase M, the
empirical credible intervals become closer to the true ones for all time stages; when M = 100000, the
empirical credible intervals almost coincide with the true ones. Table 1 lists the number of restarts
and corresponding number of evaluations. As we expect, a larger M often leads to less restarts.
However, what really matters to the computational cost is the total number of evaluations (which
is equal to (number of restarts+1)×M). In this case a smaller M incurs less total evaluations.

Table 1: Experiment 1.b results (fixed N).

M # Restarts Total # Evaluations
100 93 9400
1000 48 49000

100000 3 400000

Experiment 2 At last, we compare ISRR with the naive Bayesian method. Since running simulation
replications dominates the computational time of other steps in those methods, a fair comparison is to use
the same total number of simulation replications. With a total number of evaluations of (number of restarts+
1)×M, ISRR generates M samples of θ at each restart, and the naive method generates (number of restarts+
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Figure 2: CrI quantiles estimates when M = 100, 1000, 100000 (No stochastic uncertainty, i.e. N = ∞).

1)×M/T samples in every iteration. Similar to Experiment 1, we choose N = ∞ and consider three cases
M = 100, 500, 1000. For each M, both of methods are run for 1000 independent macro-replications to see
their mean behaviors. Table 2 shows the errors of CrI quantiles estimates and coverage probabilities at time
t = 200, 600, 1000. Here, eq̂γ

= q̂γ − qγ (γ = α/2, 1−α/2), which is the error of the quantile estimate,
and e p̂α

= p̂α − (1−α), which is the difference between the empirical coverage probability and the target
coverage 1−α . We have the following observations:

(a) M = 100 (b) M = 500 (c) M = 1000

Figure 3: Coverage probabilities when M = 100, 500, 1000 and α = 0.1.

a. When M is small, both methods have “under-coverage” due to the lack of θ samples. However,
ISRR performs much better than the naive approach. Specifically, ISRR’s quantile estimates is
very close to the true ones, and its credible interval achieves nearly 90% coverage (ep̂α

≈−0.02).
However, under the same computational budget, the coverage probability of the naive approach is
around 80% (ep̂α

≈−0.1), which is much smaller than the target 90%. Thus, when the computational
budget is limited, ISRR shows its clear advantage over the naive approach.

b. When M gets bigger, the difference between two approaches decreases. This is because the naive
approach has a large enough number of evaluations to get a good estimate for this simple example.
However, when M = 1000, the naive approach remains “under-coverage” (e p̂α

≈−0.02) compared
to ISRR. Therefore, our method is still better than the naive approach.
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Table 2: Errors of CrI quantiles estimates and coverage probabilities when M = 100, 500, 1000, where
eq̂α/2 = q̂γ −qγ , γ = α/2, 1−α/2, e p̂1−α

= p̂α − (1−α), and SD represents standard deviation.

eq̂α/2 mean eq̂α/2 SD eq̂1−α/2 mean eq̂1−α/2 SD ep̂α
mean e p̂α

SD

M = 100, t = 200
ISRR –0.0192 0.0426 0.018 0.0508 –0.01507 0.0891
Naive 0.00276 0.0410 –0.0346 0.0510 –0.0918 0.106

M = 100, t = 600
ISRR –0.0128 0.0327 0.00518 0.0419 –0.0185 0.0953
Naive 0.00145 0.0323 –0.0222 0.0330 –0.0856 0.1032

M = 100, t = 1000
ISRR –0.00828 0.0305 0.00503 0.0330 –0.0240 0.0950
Naive 0.000923 0.0276 –0.0196 0.0282 –0.0911 0.1075

M = 500, t = 200
ISRR –0.0401 0.0598 0.0171 0.101 0.00332 0.0575
Naive –0.0167 0.0558 –0.0418 0.0831 –0.0381 0.0685

M = 500, t = 600
ISRR –0.0219 0.0367 0.007 0.0501 –0.00659 0.0784
Naive –0.0105 0.0317 –0.0178 0.0362 –0.0397 0.0716

M = 500, t = 1000
ISRR –0.0121 0.0287 0.00505 0.0350 –0.0129 0.0910
Naive –0.00738 0.0235 –0.0115 0.0247 –0.0366 0.0704

M = 1000, t = 200
ISRR –0.0359 0.0520 0.0266 0.0879 0.0125 0.0398
Naive –0.0118 0.0475 –0.0282 0.0758 –0.0268 0.0619

M = 1000, t = 600
ISRR –0.0177 0.0295 0.00510 0.0378 0.00449 0.0505
Naive –0.00716 0.0245 –0.0146 0.0293 –0.0252 0.0585

M = 1000, t = 1000
ISRR –0.0172 0.0274 0.00575 0.0343 −6.86×10−5 0.0726
Naive –0.00662 0.0207 –0.00955 0.0224 –0.025 0.0614

c. Similar observations can be made from Figure 3. Both methods achieve better coverage probabilities
when M is larger. Despite that ISRR’s advantage becomes less obvious as M increases, it performs
better than the naive approach in all these three scenarios.

4 CONCLUSIONS

Assuming the input model of a stochastic simulation model takes a parametric form, we propose a method
for online quantification of input uncertainty when input data arrive sequentially in time. The method has
two features. First is its computational efficiency for real-time updating: at each time stage, by utilizing
the simulation outputs from previous time stages, the method updates the quantification estimates with
very little computational cost. Second is its good performance over a long time horizon: by introducing
a resampling and restarting mechanism, the method effectively addresses the challenge of accumulated
estimation error over a long time horizon. Our theoretical analysis proves the error bound and asymptotic
convergence of the method. We compare the proposed method with a naive Bayesian method on an M/M/1
queue example, which shows the proposed method performs much better than the naive method especially
under a limited computing budget. A future direction is to extend this online method for nonparametric
input models.
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