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ABSTRACT 

Dynamic Data Driven Applications Systems (DDDAS) is a systems design framework that focuses on 
integrating high-dimensional physical model simulations, run-time measurements, statistical methods, 
and computation architectures. One of the foremost DDDAS successes was scientific theory assessment 
of natural disasters such as wild fire monitoring and volcanic plume detection. Monitoring the atmosphere 

with DDDAS principles has evolved into domain methods for space awareness, unmanned aerial vehicle 
(UAV) design, and biomedical applications. Recent efforts reflect the digital age of information 
management architecture design such as multimedia analysis, power grid control, and biohealth concerns. 
Underlying a majority of DDDAS developments are advances in sensor design, information filtering, and 
computational systems. The paper provides a motivation, explanation, and literature review of DDDAS. 

1 INTRODUCTION 

The paper captures the historical essence of the DDDAS literature. Invariably, the DDDAS paradigm was 
articulated by Dr. Darema who pioneered the concept (Darema 2005a; Aved et al. 2014): “… 
instrumentation data and executing application models of these systems become a dynamic feedback 
control loop, whereby measurement data are dynamically incorporated into an executing model of the 
system in order to improve the accuracy of the model (or simulation), or to speed-up the simulation, and 
in reverse the executing application model controls the instrumentation process to guide the measurement 

process.” 
 The DDDAS paradigm, and opportunities and challenges in exploiting the DDDAS methods, have 
been discussed in a series of workshops, starting in 2000 from the National Science Foundation (NSF). 
The reports from these workshops identified new science and technology capabilities, inspired by and 
enabled through the DDDAS paradigm. New capabilities include modeling approaches, algorithm 
developments, systems software, and instrumentation methods, as well as the need for synergistic 

multidisciplinary research among these areas (Darema 2005b). DDDAS brings together practitioners of 
application domains, researchers in mathematics, statistics, engineering, and computer sciences, as well as 
well as designers involved in the development of instrumentation systems and methods. Through a series 
of  workshops, research efforts commenced to address the challenges and create new frontiers. As shown 
through the increasing body of work, DDDAS is applicable to many areas: such as (1) engineering: 
aerospace, biomedical, civil, electrical and mechanical engineering, (2) systems: manufacturing, 

transportation, and energy design, (3) science: environmental, weather, and climate science, as well as (4) 
decision support: medical diagnosis and treatment, multimedia analysis, and cyber security evaluation. 
This paper presents a summary of the DDDAS literature to motivate future developers interested in the 
DDDAS paradigm. 
 The rest of the paper describes the DDDAS paradigm. Section 2 discusses DDDAS control loops. 
Section 3 defines the DDDAS foundation in estimation and assimilation. Section 4 overviews DDDAS 

methods. Section 5 provides DDDAS historical literature review and  Section 6 concludes the paper. 
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2 DYNAMIC DATA DRIVEN APPICATIONS SYSTEMS (DDDAS) CONTROL LOOPS 

Consider an approaching hurricane. A meteorological model of the storm can be constructed, but this has 
limited predictive value without knowledge of initial conditions, boundary conditions, inputs, parameters, 
and states (such as velocities and accelerations). In order to make predictions, data is needed to estimate 
unknown quantities. Although the storm can be imaged at low resolution by satellite, measurements by 
aircraft with high resolution are expensive and limited in range, and therefore the size of the storm makes 

it impossible to obtain detailed measurements over a large area. 
 In such an approaching storm scenario, it may be possible to use the model to guide and reconfigure 
the sensors so that the information content of the data is enhanced for the ultimate objective of predicting 
the path and intensity of the hurricane. At the same time, the data collected by the sensors enhances the 
accuracy of the model by providing estimates of initial conditions, boundary conditions, inputs, 
parameters, and states. The integration of on-line data with the off-line model creates a positive feedback 

loop, where the model judiciously guides the sensor selection and data collection, from which the sensor 
data improves the accuracy of the model. 
 The hurricane example illustrates the essence of Dynamic Data-Driven Application Systems 
(DDDAS). DDDAS is a conceptual framework that synergistically combines models and data in order to 
facilitate the analysis and prediction of physical phenomena. In a broader context, DDDAS is a variation 
of adaptive state estimation that uses a sensor reconfiguration loop as shown in Figure 1 (Bernstein et al. 

2015). This loop seeks to reconfigure the sensors in order to enhance the information content of the 
measurements. The sensor reconfiguration is guided by the simulation of the physical process. 
Consequently, the sensor reconfiguration is dynamic, and the overall process is data driven. 
 

 

Figure 1:Dynamic Data-Driven Application Systems (DDDAS) feedback loop. 

 The core of DDDAS is the data assimilation loop, which uses sensor data error to drive the physical 

system simulation so that the trajectory of the simulation more closely follows the trajectory of the 
physical system. The data assimilation loop uses input data if input sensors are available. The innovative 
feature of DDDAS is the additional sensor reconfiguration loop, which guides the physical sensors in 
order to enhance the information content of the collected data. The data assimilation and sensor 
reconfiguration feedback loops are computational rather than physical feedback loops. The simulation 
guides the sensor reconfiguration and the collected data, and in turn, improves the accuracy of the 

physical system simulation. The “model-based simulated data” positive feedback loop is the essence of 
DDDAS. Key aspects of DDDAS include the algorithmic and statistical methods that incorporate the 
measurement data with that of the high-dimensional modeling and simulation. 
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3 STATE ESTIMATION AND DATA ASSIMILATION 

The goal of state estimation is to combine models with data in order to estimate model states that are not 
directly measured. State estimation is a foundational area of research in systems and control. Relevant 
techniques date from the 1960’s in the form of the Kalman filter and the Luenberger observer. An 
observer is a model that emulates the dynamics of a physical system and is driven by sensor data in order 
to approximate unmeasured states. The Kalman filter is a stochastically optimal observer that estimates 

unmeasured states. In large-scale physics applications, such as applications involving structures or fluids, 
state estimation is called data assimilation. 
 The Kalman filter (KF) was developed for linear systems. However, most real applications involve 
nonlinear dynamics, and the development of observers and filters for nonlinear systems is a challenging 
problem. Numerous techniques, which can be described as suboptimal, ad hoc, application-based, or 
approximate, have been developed, and many of these methods are widely used such as the extended 

Kalman filter (EKF), ensemble KF (EnKF), ensemble adjustment KF (EnAKF), unscented KF (UKF), 
stochastic integration filter (SIF), and particle filter (PF) (Yang et al. 2005;Dunik et al. 2015). 

3.1 DDDAS and Adaptive State Estimation 

State estimation algorithms are based on prior information about the physical system for data fusion 
(Blasch et al. 2012a). The information typically includes a physical system model as well as knowledge of 
the initial state, inputs (such as disturbances), and sensor noise. Likewise, a stochastic representation uses 

a statistical description of the disturbances and sensor noise. An adaptive state estimation algorithm may 
attempt to learn and update the information, states, and parameters online. 
 DDDAS uses adaptation in a different sense. In particular, DDDAS seeks to reconfigure the sensors 
during operation. Sensor reconfiguration, driven by the model, enhances the information content of the 
measurements. The sensor reconfiguration loop is shown in Figure 1. Together, the integration of the data 
assimilation loop and the sensor reconfiguration loop are central to methods using DDDAS. 

3.2 Does DDDAS Use Feedback Control? 

DDDAS uses computational feedback, but not physical feedback. As Figure 1 shows, state estimation is a 
feedback process, where the sensor error corrects the simulation of the physical system. The data 
assimilation feedback loop is implemented in computation, and thus has no effect on the physical system. 
 DDDAS employs an additional feedback loop by reconfiguring the sensors based on the sensor error 
data. The sensor reconfiguration feedback loop is also computational, and thus does not affect the 

response of the physical system. In contrast, feedback control uses physical inputs (such as forces and 
moments) in order to affect the behavior of a physical system, such as an aircraft autopilot that drives the 
control surfaces and modifies the aircraft trajectory. Consequently, DDDAS employs two computational 
feedback loops, but does not only use physical feedback control. The power of DDDAS is to use 
simulated data from a high-dimensional model to augment measurement systems for systems design to 
leverage statistical methods, simulation, and computation architectures. 

4 DDDAS METHODS 

The DDDAS framework, as it name implies, has been applied to many applications where modeling and 
data collection are utilized in engineering and scientific analysis. Hence, four methods of DDDAS 
include: (1) instrumentation methods (Virani et al. 2015), (2) statistical algorithms (Maroulas et al. 2015), 
(3) modeling and simulation (Chaturvedi 2006), and (4) systems software(Darema 2010), as shown in 
Figure 2. For DDDAS operations, the use of the model; along with updated measurements and operating 

conditions of the available sensors, targets, and the environment (Kahler et al. 2008); support the 
simulation. The model represents the key parameters, behaviors and functions of the selected physical 
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system or abstract process. The model represents the system, while the simulation projects the system 
operation over time. 

Instrumentation methods include multidomain components in real-world situations such as space 
sensors monitoring the atmosphere; avionics sensors detecting air movements, computer vision detecting 
vehicles on a terrain road network, as well as, water properties in the ocean. Complementing the 
application is high-dimensional simulation models such as the space Global ionosphere–thermosphere 

model (GITM) model, the National Climate Atmospheric Reference (NCAR) model, ground-based 
vehicle traffic models, and oceanic radar scatter models. Together the integration of the modeling and 
data collection requires software systems to process the large data sources and model parameters. The 
coordination of high-end with real-time computing requires new hardware and software approaches in the 
fields of optimization, data flow architectures, and data science to being together modeling and 
instrumentation methods for real world applications. 

Figure 2: Dynamic Data-Driven Application Systems (DDDAS) Attributes. 

 Three examples are presented in Figure 3 which demonstrates DDDAS methods applied to enhance 
awareness. The examples are air, space, and cyber domains where instrumentation, modeling, and 
software have been designed for real platforms. On the left is weather modeling with nonlinear tracking 
methods for unmanned aerial vehicle (UAV) flight routing. The middle includes multi-domain robotics of 

space and ground vehicles with filtering methods for distributed autonomous coordinated control. Finally, 
the cyber example comes from power grids performance that integrates domains of cyber physical 
systems (CPS) with the internet of things (IoT). 
 

 
Figure 3: Dynamic Data-Driven Application Systems (DDDAS) Awareness Examples. 
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As briefly described, DDDAS is the integration of instrumentation, statistical processing and 
modeling methods (sensor reconfiguration loop); owing to the fact that not all data is observable and 
hence, there is a needed for simulation from high-dimensional models to augment systems awareness 
(data assimilation loop). The incorporation of simulated data for run-time applications requires pragmatic 
systems and software architectures. The literature review organization highlights a diverse set of 
applications inspired by the  DDDAS concept from science to engineered systems.   

5 DDDAS RESEARCH LITERATURE REVIEW 

The concepts for DDDAS have developed for almost two decades starting with an initial NSF workshop 
in 2000 that brought together researchers, engineers, scientists and developers. The initial workshop 
focused on harnessing the power of theory, modeling, sensing, and hardware advances to instantiate 
systems-level opportunities. The growing interest in DDDAS is demonstrated in the literature, as shown 
in Figure 4. The statistics from Figure 4 only capture those papers that call out DDDAS as the underlying 

paradigm; while many other papers which have briefly acknowledged DDDAS are not included in Figure 
4. There is a growing trend in approaches using DDDAS, which is established through the website. 

Over the years, many researchers have embraced the DDDAS concept with a variety of simulated 

applications as shown in Figure 5 (Darema 2011). Areas of interest shown in the illustrations include data 
assimilation, UAV swarms, decision support, simulations, and wildfire analysis; among others. The next 
section organizes many of the papers in the last 20 years into the areas of theory, methods, and design. 
 Many forums have provided opportunities for showcasing advances in DDDAS. The primary 

meetings that highlighted the advances include: (1) International Conference on Computational Science 

(ICCS); (2) IEEE Winter Simulation Conference (WSC), (3) IEEE American Controls Conference 

(ACC); and (4) International Conference on Information Fusion (Fusion).  
  

Figure 4: DDDAS papers per year. Figure 5: DDDAS results. 
 

 Along the way, there have been countless meetings and workshops such as the Dynamic Data-driven 

Environmental Systems Science Conference (DyDESS) (Ravela et al. 2014). DyDESS focused on 

scientific methods such as (1) Perspectives from Ocean State Estimation, (b) Imaging Earth's interior with 

active and passive source seismic data, (3) objective detection of Lagrangian vortices in unsteady velocity 

data, and (4) data assimilation and controls for atmospheric multiscale dimensional processing. 

 The history of DDDAS extends from two decades of developments. To organize the diverse set of 
literature, three areas include: (1) scientific theory, (2) domain methods, and (3) architecture designs.  
Key areas for theory are based in the scientific areas with large data collections and complex models. 

Methods include various engineering designs for various domains – space, air, and ground, requiring 
dynamic response and control. Finally, computational architectures focus on systems design. Given the 
diverse DDDAS literature, various taxonomies could be highlighted; however, the conclusions drawn 
from the survey review is that DDDAS has a wide-ranging applicability on the scientific, development, 
and design communities, as shown in the Table 1, that organizes the literature for the reader. 
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Table 1: Summary of DDDAS Literature Review*. 

 Awareness Monitoring Data Fusion Application 

Scientific Theory Weather Forecasting Wildfire Monitoring Ash Detection Medical Support 

Domain Method Space Awareness Structural Health State Estimation  Self-Aware Vehicles 

Architecture Design Network Trust Energy Analysis Image Computing Cyber-Physical Systems 

 
*Valid reviewer concerns suggested a taxonomy of applications (e.g., space awareness), methods (e.g., 

KF), and models (e.g., GITM) as described previously; however, the diverse areas revealed specific 

theory, methods, and models for each application of the elements in the table. 

5.1 Scientific Theory – Modeling and Analysis 

The DDDAS paradigm began with enhancing the phenomenology of science models such that 
measurement information would enhance the resulting model. In 2003, key attributes included 
measurement information, data assimilation, and adaptive sampling incorporated into multiphysics, ocean 
forecasting, and atmospheric modeling (Sandu et al. 2004).  

As the DDDAS methods showed promise in science applications, a key area was in weather 
forecasting such as assessing tornado prediction (Trafalis et al. 2007). Simultaneously, DDDAS began 
addressing theoretical uncertainty and quantifying error minimization (Royet et al. 2007). Years later, 
Ravelaet al. (2012) and others began to use the information from weather forecasting (e.g., coherent fluid 
analysis) for advances in applications UAV controls, routing, and sensing (McCune et al. 2013). 
 Along with weather forecasting was another related application for wildfire monitoring such as agent-

based simulations for fire propagation modeling (Michopoulos et al. 2004), which is still valid today. A 
set of researchers, lead by Coen, (Mandel et al. 2007), continued to use the DDDAS paradigm for 
inclusion of advanced physical models of wildfire prediction with that of real-time sensing. Within the 
CAWFE® (Coupled Atmosphere-Wildland Fire Environment) modeling system, various sensors such as 
the Visible Infrared Imaging Radiometer Suite (VIIRS), provided analysis of smoke plume detection in 
the United States. The wildfire assessment method was extended to other geographic locations such as 

Europe (Rodriguez-Aseretto et al. 2013). Furthermore, fire detection and mitigation sought to understand 
the management of water distribution (Wang et al. 2014). 
 A recent example is that of volcanic ash detection (Patraet al.2013). Atmospheric analysis can have 
impacts on commercial air transport, such as the recent eruption in Iceland. The particulates in the air 
from the eruption could have disastrous effects on combustion engines moving an aircraft through the 
sky. Likewise, with the detection of changes in the weather content, environmental wind context, and 

navigational data could be used to alter the air traffic management of the networked skies. Advances in 
uncertainty quantification were incorporated into the ash movement modeling so as to prepare aviation for 
future events and provide passenger safety. Uncertainty quantification helps in estimate error reduction in 
complex modeling and estimation methods (Rao et al. 2014).   
 Science applications also include areas for bio-sensing and analysis for medical applications. One 
example is using image recognition for tracking human responses to stress and expressions. Metaxas et 

al.(2004) developed DDDAS methods using image recognition and face tracking. Other examples include 
using the sensing to update models of humans in support of neurosurgery (Majumdar et al. 2005) and 
laser treatment of cancer. In each of these cases, DDDAS supported enhancements in medical treatment 
through advanced modeling. Further DDDAS developments include diagnostics, chemical treatment, and 
pandemics. 

5.2 Domain Methods –Applications 

Building upon the DDDAS principles for science applications influenced another area of development 
which moved from data assimilation analysis to that of control and filtering. As highlighted earlier, an 
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extension of the scientific modeling of the air environment was to the atmosphere that extends to space 
awareness. Bernstein’s research group (Kim et al. 2006) utilized the DDDAS principles for data 
assimilation using the global ionosphere-thermosphere model (GITM). While it was a scientific analysis, 
it moved the DDDAS community towards adaptive control and sensing. Simulations were conducted to 
determine the effects on planetary motion and movement of atmospheric elements (Morozov et al. 2013). 
A third example extends these developments for the Retrospective Cost Model Refinement (RCMR) that 

includes modeling, sensing and control (Burrell et al. 2015). The developments provide for advances in 
satellite protection, space-based sensing, and space awareness (Blasch et al. 2017). 
 Protection of platforms, such as satellites, is also a key area for DDAS including structural health 
monitoring (SHM). Farhat et al. (2006) utilized the DDDAS principles towards SHM of materials 
assessments of equipment. Having an accurate model, with embedding sensing, supports real time 
response to a dynamically changing environment. Additionally developments include reduced-order 

modeling (ROM) such that the ensemble of models can be refined over model parameters, uncertainty 
estimation, and sensing bias. Oden’s research group provided additional benefits of SHM for damage 
assessment and others highlighted modeling updates that account for materials damage (Prudencio et al. 
2015) which are useful for aerospace systems resiliency. 
 To achieve the efforts in analysis over multiple domains requires the data coordination and 
estimation. Using the ensemble Kalman filter, Sanduet al. (2004) addressed the computational aspects of 

data assimilation for aerosol in the atmosphere while Ravela et al. (2006) devised methods for air 
platform positioning. Other methods looked at the methods to use in forecasting (Jiaet al. 2016). If the 
DDDAS methods are able to forecast the movements, they can be use field alignment to estimate vehicle 
locations such as with quadrature information (Ravela et al. 2007). Likewise, the fidelity of the 
parameters affects the estimation of model accuracy (Henderson et al. 2013), which enables a mixture of 
ensembles (Tagade et al. 2014).  

 Estimation methods are elements of data fusion techniques (Zheng et al. 2018). The integration of 
measurements includes data, sensor, and information fusion aligns well with the DDDAS principles 
(Blasch 2013a). DDDAS improves automatic object recognition ((Blasch et al. 2012a, Blasch et al. 
2013c) such as nonlinear classification of moving objects using signal and pixel data (Chin et al. 2015). 
Moving object analysis utilizes data fusion for ground vehicle tracking and multidimensional assignment 
of hyperspectral data to gather relevant features of the moving object (Uzkent  et al. 2016). 

Recently, Wilcox’s group (Allaire et al. 2013) have utilized online/offline modeling in support of self-
aware vehicles which paves the way for autonomous systems. Included in their research is a focus on the 
model dimensionality for operational performance. As a second example, Mohseni’s research team (Peng 
et al. 2014) applying DDDAS for control and atmospheric sensing using air and water autonomous 
systems. The monitoring of the environment supported the health monitoring of the vehicles with a 
changing environment. These developments have been incorporated into the control of soaring vehicles 

(Frew et al. 2013). The third example includes onboard avionics to sense fault detection (Silva et al. 
2015). Varela’s group (Imai et al. 2017) has led a group to bring together computations with that of 
electronics health assessment for safe flight of self-aware vehicles using estimation techniques. 
 The DDDAS concept leverages models such as scene, roads, or other terrain information (Blasch 
2013b). Context aware approaches were investigated (Nguyen et al. 2013), along with the need to learn 
the measurement models (Virani et al. 2015). These methods were furthered by the information fusion 

community for context-enhanced information fusion which shows how DDDAS techniques can improved 
tracking over many operating conditions for robust performance (Snidaro et al. 2016).Context 
enhancement solutions leverage theory and methods, but effective and efficient applications require 
architectural design. 

5.3 Architecture Design – Systems and Software 

The third section of the review includes systems architecture, energy networks, systems design, and cyber 

network analysis, with recent efforts in cloud computing (Liu et al. 2014).  In the early DDDAS methods, 
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there was a need for scalable architectures and agent-based systems where evaluated (Chaturvedi 2006). 
DDDAS showed promise for web-based methods provide a use case for distributed simulations for 
computer data streaming (Anderson et al. 2006). Web-based methods afford query languages for DDDAS 
designs (Aved et al. 2015) and analysis (Blasch, Phoha 2017). 
 The distributed aspects of network analysis were adapted and applied for power system and energy 
analysis (Abed et al. 2006; Celik et al. 2013). Power analysis as a function of microgrids can support the 

power and energy available for aircraft which requires an adequate model of the energy distribution (Frew  
et al. 2013). As for ground vehicles, the energy consumption can be improved both locally for a car and 
globally for traffic (Neal et al. 2016). 
 The networks, whether power grids or equipment, the effective global analysis can improve situation 
awareness for supply chains (Carnahan et al. 2006) and disaster management. The systems approach 
applied to smart cities and urban infrastructures supported assessment of emissions on the climate 

(Fujimoto et al. 2016). Likewise, with the systems analysis, methods can support the design of embedded 
electronics for signal processing (Sudusinghe et al. 2014). These methods were further analyzed for 
adaptive video stream processing (Chakravarthy et al. 2015; Li et al. 2017). 
 Recent trends have changed the network application to include communication networks. While 
traditionally DDDAS looked at these methods for web services, DDDAS revised trust monitoring on a 
network (Onolaja et al. 2010), such that trust and privacy relied on the trust analysis for sensing control 

and assignment (Pournajaf et al. 2014). Recent efforts include extending these and a comprehensive 
analysis of DDDAS and the coordination of trust was explored(Blasch et al. 2014; Badr  et al. 2015). 
 Finally, the integration of DDDAS with cloud computing has shown promise for the advancement of 
systems and software solutions. Verification and validation (Michopoulos et al. 2006) and Quality of 
Service (QoS) optimization improved using DDDAS (Chen et al. 2013). The use of a cloud-based system 
was successful for real-time tracking of objects from Wide Area Motion Imagery (WAMI) streaming data 

(Wu et al. 2016). Another approach used cloud computing for cyber physical systems (CPS) to manage 
the data streams between CPS networked devices and those of sensors at the edge (Shekar et al. 2016). Li, 
Darema, and Chang (Li et al. 2017) combined these methods in a review of DDDAS support to a variety 
of applications such as distributed behavior model orchestration in cognitive internet of things (IoT). 

6 CONCLUSIONS 

Fundamental basic research in DDDAS is gathered from, and contributes to scientific applications, 

mathematical foundations, and infrastructure architectures. Specifically, DDDAS includes(1)theory(e.g., 
data assimilation, process modeling and filtering, and estimation); (2)methods(e.g., structural analysis for 
structural health monitoring, systems control for component processing, and image computing for 
situation evaluation); and (3)design (situation awareness through environmental assessment, energy aware 
power grids, and cyber awareness concerning privacy and security protections). 

The DDDAS paradigm literature survey revealed these commonalities: (1) use of high-dimensional 

models to augment low-dimensional instrumentation systems such as weather models for real-time 
vehicle control, (2) broad applicability manifesting from advances in computation such as cloud 
computing for streaming content network analysis, and (3) alignment with data science trends including 
simulation for context awareness and systems monitoring. Future DDDAS-inspired methods would 
benefit from recent advances in machine learning, distributed computing, and network optimization. 
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