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ABSTRACT

Hybrid simulation, combining exact and approximate algorithms, provides an alternative to a completely
stochastic simulation. However, one challenge for the efficient implementation of hybrid simulations is
the additional overhead due to frequent switches between the two regimes. The amount of additional
overhead considerably increases with the number of discrete events in the stochastic regime. However,
reactions that take place rather frequently cannot completely be avoided due to the accuracy requirements.
In this paper, we present an improved hybrid simulation method which takes advantage of the Hybrid
Rejection-based Stochastic Simulation Algorithm (HRSSA), a variant of the hybrid simulation approach.
To reduce the overhead on account of the switches from the stochastic to the deterministic regime, we
analyse and record the dependencies of reactions as well as species between the stochastic and deterministic
subnetworks. Comparing our technique with existing ones shows a clear improvement in terms of runtime,
while preserving accuracy.

1 INTRODUCTION

The construction and execution of biological models has been recently attracting more and more attention.
The Stochastic Simulation Algorithm (SSA) Gillespie (1977) is one of the well-known simulation approaches
that is used to simulate a set of reactions in a well-mixed biochemical reaction system. Although there
are many improvements of the key SSA idea (see, e.g., Gibson and Bruck (2000)), its drawback of being
prohibitively slow when simulating reactions occurring too frequently may prevent its application for certain
types of biological models (Herajy et al. 2018; Iwamoto et al. 2014). While the SSA procedure is rather
simple, it includes two steps which consume the majority of the processing cycles (Thanh et al. 2014): the
search for the next reaction to fire and the update of the state-dependent propensities each time a reaction
takes place. For the former step, many methods have been proposed to reduce the search runtime, while
the best known idea for the latter is to construct a dependency graph (Gibson and Bruck 2000), which is
then deployed to update only affected propensities. As another (exact) approach to reduce the frequent
updates of reaction propensities, a new algorithm has recently been proposed in Thanh et al. (2014) called
Rejection-based Stochastic Simulation Algorithm (RSSA). The idea of the RSSA is to define a lower and
upper bound of the system state called fluctuation interval. Reaction propensities are updated only when
some or all of the system state entries are outside of the corresponding fluctuation interval. However, despite
all improvements, the pure stochastic simulation is still known as a slow simulation approach which is not
able to simulate larger biological models or models with frequent firing of reactions.

Hybrid simulation (Haseltine and Rawlings 2002; Herajy and Heiner 2012; Salis and Kaznessis 2005)
may serve as an alternative to study the dynamics of models which cannot be executed in reasonable time
via a pure SSA. Hybrid simulation involves partitioning the reaction network into two parts: slow and fast,
and then executing the slow subnetwork applying the exact SSA, while approximating the fast subnetwork
applying a deterministic or an approximate stochastic solver. The partitioning process can be done either

978-1-5386-6572-5/18/$31.00 ©2018 IEEE 1346



Herajy and Heiner

statically (just once before the simulation) or dynamically (repeatedly during the simulation). In this paper,
we are interested in a hybrid simulation method where the deterministic part is simulated using an Ordinary
Differential Equations (ODE) solver. A time transformation equation (also called jump equation (Salis and
Kaznessis 2005) permits to accurately locate the exact time where a stochastic event is to occur (Gillespie
1991; Haseltine and Rawlings 2002). Nonetheless, one drawback of the hybrid simulation is the additional
overhead due to frequent switches between the stochastic simulation and the ODE solver (Herajy and
Heiner 2016).

The overhead considerably increases with the number of stochastic events occurring in the stochastic
regime. However, abundant stochastic events in hybrid models cannot simply be avoided due to one of the
following reasons. First, as soon as the number of slow reactions increases, the number of discrete events
increases correspondingly. Second, a hybrid model may include fast reactions that cannot be assigned to the
deterministic regime as they would violate the thermodynamic assumption which renders the deterministic
simulation reasonable to execute such models (e.g., reactions with high rate constant, but including species
with a few number of molecules).

Therefore, in Herajy and Heiner (2016) we have introduced a general approach that accelerates the
performance of hybrid simulation by reducing the number of times the ODE solver is reinitialised. This
involves the automatic identification of the stochastic reactions acting as interface reactions, i.e., their
firings affect the system state of the deterministic regime. According to this approach, the ODE solver is
reinitialised only when one of these interface reactions occurs. However, one problem of this method is the
approximation of the jump equation used to locate the exact time when a stochastic reaction has to occur.

Avoiding the reinitialisation of the ODE solver can result in substantial improvements of the overall
performance of the hybrid simulator for at least two reasons. First, to reduce the effects of switching from
the stochastic to deterministic regime, hybrid simulation is usually used in combination with ODE solvers
that employ single step approaches (e.g., Runge-Kutta family solvers). However, the step size should
be recomputed after each firing of a stochastic reaction. This can result in a performance bottleneck for
larger models (for an example see (Nagaiah et al. 2012)). The ODE solver cannot continue the numerical
integration using the current step size because the solution state might have been considerably changed.
Second, for a large class of models, multi-step ODE solvers that employ history information to advance
the step size can result in a much better performance. However, combining such solvers with the hybrid
simulator will considerably degrade the overall simulator performance, because the history information is
cleared each time a stochastic event occurs.

Recently, a new hybrid simulation algorithm, called Hybrid Rejection-based Stochastic Simulation
Algorithm (HRSSA), has been proposed in Marchetti et al. (2016), which does not rely on a jump equation
to locate the occurrence time of the next stochastic event. Instead, HRSSA performs the jump when the
fluctuation interval requires an update. Nevertheless, the HRSSA still requires frequent switches between
the stochastic and deterministic regime as well as frequent checks of the system state for being inside of
the fluctuation interval. The latter check is rather expensive and performed repeatedly.

The contribution of our paper is to combine the ideas from Herajy and Heiner (2016) and Marchetti
et al. (2016). Additionally, we also consider the set of indirect interface reactions while simulating hybrid
models. To improve the performance of the HRSSA, we collect a set of interface species similar to the set
of interface reactions permitting the dynamic simulation of reaction networks by applying the accelerated
hybrid simulation approach.

This paper is organised as follows: First, we recall some background information of stochastic simulation,
(hybrid) rejection-based stochastic simulation, and accelerated hybrid simulation. Afterwards, we present our
approach of improving the performance of the HRSSA by depicting and extracting the reaction dependency
information. To evaluate the proposed approach, we present three case studies. Finally, we summarise the
paper outcome and outline future work.
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2 BACKGROUND

In this paper we consider simulating a system of M chemical reactions involving N species. The species
(denoted by the set S) are assumed to interact in a well-mixed system of molecules (Gillespie 1977). Eq. 1
shows the form of the j-th reaction in the reaction set R.

k' ! ! !
5j1S1 +6j2S2+ "’+5jNSN RN 5j1S1 +5J~2S2+ cee +5jNSN, (1)

where s; € S is the amount of the i-th species, §;; is the stoichiometric coefficient of s; when participating

in reaction r; € R as a substrate, 5]'-1. is the stoichiometric coefficient of species s; when participating in
reaction r; as a product, k; is the reaction rate constant of reaction r;, and j takes the values from 1 to M.

The system state is characterised by a vector, usually denoted by x, which gives the current number of
molecules of each species. Moreover, each reaction r; is associated with a state-change vector vj specifying

the change in each species when the reaction r; takes place. That is v;; = J/.i — 0ji. Obviously, when r;
does not influence s;, the value of v;; will be zero. This can happen either when s; does not participate in r;
or when 6;-1- = 0j;. Using an appropriate kinetic rule (e.g., mass action), we can easily construct a system of
ODEs that describes the evolution of species concentrations with respect to time (Herajy and Heiner 2018).
However, this approach yields only an approximation of the system dynamics.

As an alternative and a more realistic simulation method, stochastic simulation can be employed to
overcome the limitation of the deterministic simulation. The stochastic simulation algorithm (SSA) Gillespie
(1977) produces exact numerical realisations of the Chemical Master Equation (CME). The latter is used
to describe the system evolution in terms of the probability that the system will be in a certain state at
time #. A fundamental premise to all SSA algorithms is the reaction propensity, a;(x), which can be
deployed to calculate the probability that a reaction r; will occur in the next instance of time (Gillespie
1977). However, when a chemical system contains many reactions, or even only a few reactions which do
fire fairly frequently, the time steps between two successive reaction firings will be very small and the
simulation procedure will consume a lot of runtime to reach the desired end of the simulation time.

A more recent approach, called Rejection-based Stochastic Simulation Algorithm (RSSA), is introduced
in Thanh et al. (2014) to improve the SSA performance. The main goal of the RSSA is to minimise the
frequent updates of reaction propensities, which is achieved by defining a fluctuation interval for the system
state, [X, X]. The lower and upper bounds of the fluctuation interval (x and X, respectively) are calculated by
subtracting from and adding to each entry a percentage value pr, 0 < pr < 100%, of the same entry. A
lower and upper bound propensity are defined for each reaction as a;(x), a;(X), respectively, based on the
system state’s fluctuation interval. Then the reaction propensities are updated only when the current state x
leaves the fluctuation interval; i.e., when (2) becomes invalid.

x<x<X ()

The upper bound propensities help to initially select a reaction to fire in a similar way as in the basic
SSA. With other words, the index of the next reaction to fire is the minimum index u satisfying (3)

a;j(x) > prao(X), 3)

=

j=1

where p; is a random number from the uniform distribution U(0,1), and ao(X) is the cumulative
propensity computed using the upper bound fluctuation interval. The initially selected reaction is first tested
with the first part of Eq. (4), where p; is a random number from the uniform distribution U (0, 1). If it
passes this test, the reaction will be fired. Otherwise, the second test is performed.
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Hence, a reaction propensity is only updated when the second test in (4) is required. According to the
mathematical analysis in Thanh et al. (2014), this does not happen frequently. The time step until the next
event is to occur is calculated by (5):

(&)

where ps is a random number from the uniform distribution U (0, 1). Although RSSA can substantially
improve the performance of the basic SSA, it is still considered to be a pure stochastic simulation algorithm
unable to deal with systems having a huge number of stochastic events.

Another approach to tackle the problem of handling a huge number of events is to use hybrid simulation
(Haseltine and Rawlings 2002). Hybrid simulation algorithms usually partition the set of reactions into
two subsets: Gy and Grqy. Afterwards, Gy, are simulated stochastically, while Gy, are executed
deterministically or using an approximate stochastic technique as in Salis and Kaznessis (2005). To exactly
locate the time where a stochastic event is to occur, a jump equation is required. In Haseltine and Rawlings
(2002) the authors propose the use of Eq. (6), based on the probability density function derived in Gillespie
(1991), to locate the occurrence time of the stochastic event.

M
/ Z a;j(x)dt = —log(p), (6)
t j=0

where p is a random number uniformly distributed from U(0,1), j is the index of the j”* slow reaction,
and M*/°" is the number of slow reactions. The firing of a stochastic reaction may introduce a discontinuity
in the solution of the system of ODEs. To overcome this problem, the ODE solver must restart the numerical
integration from the time point where the discrete event occurred. However, frequent switches between the
stochastic and deterministic regime introduce additional overheads. In Herajy and Heiner (2016), we have
classified all reactions in the stochastic regime according to their relation with the deterministic regime into
three groups: reactions with direct dependency, reactions with indirect dependency, and reactions without
dependency. Fig. 1 gives an example for each type of relation. To simplify the discussion, we use Petri net
notations (adopted from (Herajy and Heiner 2012; Herajy et al. 2013)) to illustrate the dependency type of
two reactions.

A stochastic reaction is called a direct-dependent reaction if it shares at least one species with the
deterministic regime. In other words, when a dependent reaction fires, it changes one or more entry values

of the deterministic simulator’s system state. For instance, in Fig. 1a, the two reactions S| + 5> - P, and

P+ 83 k—2> P> share a common place P;. A stochastic reaction is called an indirect-dependent reaction if it
does not share a common species with the deterministic regimes, however, one or more of its participating
species are used to define the rate of deterministic reactions. Such indirect-dependent reactions do not directly
affect the system state of the deterministic simulator, but they can indirectly influence it by manipulating

the rate function. For instance, the two reactions in Fig. 1b: S; 4+ .5, kﬁl P, and S5+ 54 kz*—Pl> P, are in an
indirect-dependent relation. Finally, a stochastic reaction is called independent reaction, if it does not share
any species with the deterministic regime and its manipulated species are not involved in the definition of
any reaction rates. For example the two reactions in Fig. 1c are completely independent.
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Figure 1: An example for the different dependency relations between reactions: (a) two reactions with a
direct dependency, (b) two reactions with indirect dependency, and (c) two reactions with no dependency.

Such dependency information is important because we can skip the reinitialisation of the ODE solver
when an independent stochastic reaction fires. In these cases, the switch from the stochastic to the
deterministic regime will be much easier, since no special treatment is required.

Therefore, the overall performance of the ODE solver will be improved, when the number of dependent
reactions is minimised during net partitioning. However, Eq. (6) also requires the reinitialisation of the
ODE solver each time a stochastic event occurs (because it is simultaneously integrated with the system
of ODEs). Thus, in Herajy and Heiner (2016), we have replaced (6) by (7), which can be evaluated
independently of the numerical integration of the system of ODEs.

M slow

Y a;(x)-At=—log(p), 7
=0

where AT is time from the firing of the previous event to the current one. Although the approximation
error in (7) is of O(h), where h is the step size, this can still result in a good approximation when there are
many stochastic events in the simulated model. With other words, the time step between two successive
discrete firings will be very small and correspondingly the error will also be very small. Nevertheless,
we show in this paper how we can avoid the use of (7), while still exploiting the accelerated approach
introduced in Herajy and Heiner (2016).

The HRSSA (Marchetti et al. 2016) takes advantage of RSSA by switching from the deterministic to
the stochastic simulator when one of the following two condition occurs: (i) the time of the next stochastic
event is reached, (ii) any of the system state entries leaves the interval [x, X] (see Eq.(2)). Condition (i) can
be satisfied if there is no change in the time-dependent propensities of slow reactions due to the evolution of
the deterministically simulated ones, while condition (ii) is met when the ODE solver affects one or more
propensities of slow reactions. HRSSA does not require the integration of (6) suggesting its combination
with the accelerated algorithm in Herajy and Heiner (2016).

3 IMPROVED HYBRID SIMULATION

In this section we present a more efficient hybrid simulation algorithm by carefully analysing the structure
of the reaction networks. We consider first reaction dependency without assuming any reaction partitioning.
Afterwards, we record the set of direct interface reactions (R*) between the stochastic and deterministic
regime based on the extracted dependencies. To improve the performance of the HRSSA, we also record
the set of interface species (S*). Moreover, the effect of indirect interface reaction firings is considered by
extracting the set of monitored species (5™).
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3.1 Reaction Dependency

The idea of dependency graphs has been used in Gibson and Bruck (2000) to record dependent reactions such
that when a reaction fires, all dependent reaction propensities are updated. For example, when the reaction
r1 in Fig. 1a fires, the propensity of reaction r, has to be updated (assuming the two reactions are simulated
via SSA). In this paper, we collect the complementary dependency information which allows us to extend the
method in Herajy and Heiner (2016) to easily support dynamic hybrid simulation. We record for each reaction
r; the set of other reactions which enforce r; to update its propensity when any of them fires. For instance in
Fig. 1a, instead of recording r; as a reaction dependent on r;, we record r| as an updater reaction of r,. In what
follows we elaborate on how to compute and use this information, but first we formally define the following sets.

Definition 1. Reactants and Products: let ry, € R and s; € S, then the sets of Reactants and Products of ry,
denoted by Reactants(ry) and Products(ry), respectively, are defined as follows:

e Reactants(ry) = {si|s; appears as a substrate of the reaction ry}
o Products(ry) = {si|s; appears as a product of the reaction ry}.

Definition 2. Manipulated Species: let ry € R and s; € S, then the set of manipulated species of ry,, denoted
by Manipulated(ry), is defined as follows:

Manipulated(ry) = {si|s; € (Products(ry) U Reactants(ry)) and vy; # 0}.

Definition 3. Direct and Indirect Components: let s; € S, then the sets of direct and indirect components
of the propensity of reaction ry, € R, denoted by dComponents(ay) and iComponents(ay ), respectively, are
defined as follows:

e dComponents(ay) = {si|s; appears in a, and s; € Reactants(ry) and vy; # 0}
e iComponents(ay) = {si|s; appears in ay and s; ¢ dComponents(ay)}.

Definition 4. Direct and Indirect Updaters: let rj,ry € R and s; € S, then the sets of direct and indirect
updaters of ry, denoted by dU pdaters(ry) and iU pdaters(ry), respectively, are defined as follows:

o dUpdaters(ry) = {rj|Manipulated(ry,) N Manipulated(r;) # ¢ }
e iUpdaters(ry) = {rj|(iComponents(ay) "\Manipulated(r;) # §)}.

Definition 5. Interface Species: let rj,ry € R, then the set of interface species between the reactions r;
and ry, denoted by S;ft j» s defined as follows:

Syj = (dComponents(ay ) UiComponents(ay)) N Manipulated(r;).

Definition 6. Monitored Species: For each r; € R and ry € R/%' the set of monitored species is given
by:
S™ = Manipulated (r;) UiComponents(ry).

We can easily design an algorithm to extract the dependency of all reactions. The Reaction Dependency
Extraction Algorithm (RDEA) in Fig. 2 takes the set of reactions R as input. For each reaction ry in R, we
check all other reactions r;. If the intersection of r;’s manipulated species and the ones of r; is not empty
(step 3), r; is added to the set of direct updaters of r; (step 4) and the set of interface species between the
two reactions is recorded (step 5). If this is not the case, the RDEA checks the intersection between the
indirect components of r;,’s propensity and the manipulated species of r; (step 6). If the resulting set is not
empty, r; will be added to the set of indirect updaters of r; (step 7), and the set of interface species is
recorded (step 8). At the end, the set of reactions together with the set of direct and indirect updaters of
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Require: R: the set of reactions;
1: for each r; in R do
2. for each rj in R—{r,} do
3 if Manipulated(ry,) N"Manipulated(r;) # ¢ then
4 Add r;j to the set of dU pdaters(ry)
5: Sy.j = dComponents(ay) N Manipulated(r;)
6 else if iComponents(a,) "\Manipulated(r;) # ¢ then
7 Add r; to the set of iU pdaters(ry)
8 Syj = iComponents(ay) NManipulated(r;)
9

end if
10:  end for
11: end for

12: return R with the dependency information;

Figure 2: Reaction Dependency Extraction Algorithm (RDEA).

each reaction are returned. Please note that a reaction can either be marked as a direct or indirect updater
of the same reaction. Moreover, a reaction cannot be marked as direct or indirect updater to itself.

The time complexity of the RDEA is of the order O(M?), where M is the number of reactions. This
will rapidly slow down the simulation’s initialisation for bigger models. However, the RDEA can easily
be simplified to be of order O(M) by performing the calculations in two rounds. In the first round, we
record for each species the set of reactions that manipulate it. This can easily be obtained through the local
information provided in the reactions’ species. In the second round, for each species s; € Reactants(ry), we
add all reactions that manipulate s; to dU pdaters(ry). Similarly, we add the set of reactions that manipulate
si € iComponents(ay) to the set iU pdaters(ry) (assuming they were added to dU pdaters(ry)).

3.2 Extracting Interface Reactions

Using the dependencies collected by RDEA as input, the Direct Interface Reactions Extraction Algorithm
(DIREA) ( Fig. 3) detects the set of direct interface reactions (R*). The reactions in R* reset the numerical
integration as soon as they occur, since they directly change the system state of the ODE solver (Herajy and
Heiner 2016). A reaction r; is classified as a direct interface reaction if the following two conditions hold:
(i) r; belongs to the set of slow reactions and (ii) r; is listed as an updater of one of the fast reactions. Hence,
we will not be able to determine R* unless the reaction network is partitioned into slow and fast subnets.
For instance, r| is a direct interface reaction in the network in Fig. 1a. The inputs to DIREA are the set of
slow reactions Gy, the set of fast reactions Gy, and the dependency information extracted by RDEA.
DIREA iterates over all reactions in the fast group (step 2). It marks the slow reactions in the direct
updaters of ry, as direct interface reactions (steps 3-7). Finally, it returns the set of direct interface reactions.
There are two other types of reactions which are not classified by this algorithm: indirect interface
reactions and independent reactions. Indirect interface reactions are those which indirectly affect the system
state of the deterministic solver when they fire. They are discussed in more detail in the next section.
Indirect Interface Reactions and Monitored Species Indirect interface reactions are intricate to deal
with as they do not influence the system state when they fire. Instead, they may cause discontinuity in the
fast regime when they impose abrupt changes in the system state of the ODE solver. Therefore, we have
to consider their effects when such an abrupt change is to occur. A reaction is classified as an indirect
interface reaction, if (i) it belongs to the set of slow reactions, and (ii) it belongs to one of the indirect
updaters of the fast reactions. In Herajy and Heiner (2016) we have ignored indirect interface reactions
and relied on the ODE solver to overcome the discontinuities due to their firing. For instance, some ODE
solvers (e.g., CVODE (Hindmarsh et al. 2005)) return with a special error code when they are not able to
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Require: Gy, and Gy, the sets of slow and fast reactions, respectively;
Require: dUpdaters(r;), Vrj € Grqq (see Figure 2);

1: Set R* = ¢; {The set of direct interface reaction is initially empty}

2: for each ry in Gyuy do

3. for each r; € dUpdaters(ry) do

4 if 7; € Gy, then

5 Add r;j to R*; {Mark r; as a direct interface reaction}
6: end if

7:  end for

8: end for

9: return R*;

Figure 3: Direct Interface Reactions Extraction Algorithm (DIREA).

deal with a discontinuity. In this case we can make use of such an opportunity and restart the numerical
integration from this time point, when such an error code is returned. However, this strategy cannot easily
be applied for all kinds of ODE solvers. Therefore an efficient solution to this problem will be of paramount
importance to improve the accuracy of the accelerated approach.

One simple solution is to record all indirect interface reactions similar to the direct ones. During the
simulation we check if any of the indirect interface reactions will cause an abrupt change in the system state
of the ODE solver by examining the propensities of the affected reactions before and after the firing of r;.
However, this will complicate the implementation and introduce additional overhead due to the repeated
updating and checking of the reaction propensities.

In this section we propose a different solution by recording the set of intersection species between the
manipulated species of the indirect interface reactions and the indirect components of the corresponding
affected fast reactions. We call this set monitored species (S™). Later during the simulation, if any of such
monitored species involves an abrupt change, the ODE solver will be reinitialised. Fortunately, we do not
need to do that for each reaction firing, instead we can make such check while updating the fluctuation
interval (see Section 2). The reason for this assumption is the following. If any of the system state entries
exhibits an abrupt change, the fluctuation interval will need to be updated. The Monitored Species Extraction
Algorithm (MSEA) in Fig. 4 extracts the set of monitored species by taking the partitioned net as well as
the extracted dependency information as inputs. The set of monitored species is initially set to empty (step
1). Afterwards, MSEA iterates over each reaction ry in the group of fast reactions (step 2). For each slow
reaction in the set of indirect updaters of r;, we add the intersection of the manipulated set of r; and the
indirect components of ry to the set of monitored species (step 5). At the end, the set S is returned.

Extracting Interface Species One drawback of the hybrid approach presented in Marchetti et al. (2016)
is the check of Eq. (2). As this check is performed several times for every call of the ODE solver, it will
consume a substantial amount of time, particularly for larger models. However, we do not need to check all
the species since many of them are not affected by the ODE solver (e.g., all discrete species). Therefore,
we select only those species which change the propensities of the slow reactions. We call them interface
species. Once we have extracted the set of interface species, the check in Eq. (2) can be simplified to (8)

X <x* <x¥ €))

where x* C x is a subset of the state vector which only involves the values of interface species, and x*
and x* are the corresponding lower and upper bounds of the fluctuation vector corresponding to the set of
interface species. The Interface Species Extraction Algorithm (ISEA) (Fig. 5) extracts all interface species
between the fast and slow regime. It iterates over the sets of direct and indirect updaters of slow reactions
(steps 2-7). If any of them belongs to the fast group, the set of interface species between the two reactions
will be added to S* (step 5).
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Require: Gy, and G the sets of slow and fast reactions, respectively;
Require: iUpdaters(rj), Vrj € Gy (see Figure 2);

1: S = ¢; {the set of monitored species is initially empty}

2: for each ry, in Gyuy do

3. for each r; € iUpdaters(ry) do

4 if rj € G0 then

5: Add Manipulated(r;) UiComponents(ry) to 8™ ;
6 end if

7:  end for

8: end for

9: return S™;

Figure 4: Monitored Species Extraction Algorithm (MSEA).

Improved Hybrid Simulation Algorithm Once interface reactions and species have been extracted,
they can be fed to the HRSSA algorithm. In Fig. 6 is an accelerated version of the HRSSA given
in Marchetti et al. (2016). The proposed improvements include introducing constraints when reinitialising
the deterministic solver and the use of a subset of the system state vector to implement the jump equation (2).

The improved HRSSA takes as inputs the sets of slow and fast reactions, the set of direct interface
reactions, and the sets of interface and monitored species. Initially, the simulation time is set to zero and
the ODE solver is initialised with the initial state vector. Afterwards, the algorithm repeats steps 3-25 until
the end simulation time is reached.

Each time, when the fluctuation interval requires an update, the interval as well as the lower and upper
propensity bounds are calculated in steps 4-5. The propensity bounds are then used to fire reactions until
they become no longer valid (i.e., the state vector leaves the interval [x,X]). This may happen in one of the
following circumstances: (i) when a stochastic event fires causing a larger change in the state vector (step
14), (ii) Eq. (8) becomes invalid (step 19), or (iii) it is not possible to select a stochastic reaction according
to Eq. (3)- (4).

Between the updates of the fluctuation interval, the algorithm calculates the time for the next reaction
to occur (step 8). Afterwards, the ODE solver is called to solve the system of ODEs that corresponds to the
fast reactions (step 9). The ODE solver stops the integration when either the time of the stochastic event is
reached or Eq. 8 is violated. In the former case, a reaction is selected to fire (steps 12-13), while in the
latter the fluctuation interval is updated (step 19). In both cases, the simulation time is advanced by a time
step taken by the ODE solver. Unlike the original algorithm in Marchetti et al. (2016), the deterministic
solver does not need to be reset at every occurrence of stochastic reactions. Instead, only a few cases will
generally require such a heavy reinitialisation. The first case is when the reaction selected to fire belongs
to the set of direct interface reactions (steps 15-17). The second case is when this reaction belongs to
the set of indirect interface reactions and the firing will have a considerable effect on the rate of one ore
more reactions in the deterministic regime (steps 23-25). This check is done only during the update of
the fluctuation interval. Furthermore, in some models, an abrupt change of the monitored species does
not imply the same for the corresponding reactions. For instance, if a reaction propensity is defined using
Michaels-Menten kinetics, then the change of a substrate from one to zero does not imply the same change
for the propensity. Thus, a pre-analysis of the reaction propensities can preclude some of the species which
have previously been marked as monitored species.

4 EVALUATION

In this section we evaluate our approach of improving the hybrid simulation using three case studies as
benchmarks. These comprise two models devoted to yeast (62 species and 194 reactions) and eukaryotic
cell cycles (26 species and 51 reactions), and another model to study calcium dynamics (10,252 species and
57,401 reactions). The yeast cell cycle model is based on the stochastic kinetics from Barik et al. (2010).
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Require: Gy, and G4 the sets of slow and fast reactions, respectively;
Require: iUpdaters(r;) and iU pdaters(r;), Vrj € Gyqy (see Figure 2);
1: §* = ¢; {the set of marked species is initially empty}
2: for each r, € Gy, do
3. for each r; € dUpdaters(ry) UiU pdaters(ry) do

4 if rj € Gf(m then
5: Add S;lj to S*;
6 end if

7 end for

8: end for

9: return S*;

Figure 5: Interface Species Extraction Algorithm (ISEA).

In this model reactions with high rates (e.g., protein interactions) are modelled as deterministic processes,
while reactions with low rates are considered as stochastic events (e.g., gene expression). For the purpose of
our paper, we use a hybrid model constructed in Herajy et al. (2013), providing the model structure, initial
values, and kinetic rate constants. are also available in Herajy et al. (2013). We perform only one hybrid
run for this experiment. The ODE numerical integration library CVODE (Hindmarsh et al. 2005) has been
used to solve the deterministic part. The second case study is the Eukaryotic cell cycle model based on
the hybrid model presented in Herajy et al. (2018), giving also the initial state as well as the kinetic rate
constants. Table 1 compares the runtimes of our method with two other hybrid simulation algorithms. The
calcium model is applied in Nagaiah et al. (2012) to study calcium flow from the endoplasmic reticulum to
the cytoplasm when channels are open. Diffusion reactions and the binding/unbinding of calcium with
buffers are simulated deterministically, while channel state transitions are simulated stochastically. In
this paper we consider a simple discretisation of the grid into 50 x 50 and 25 channels arranged in one
cluster. The model description is available at Nagaiah et al. (2012). The benchmarks are performed using
snoopy Herajy et al. (2017) - a Petri net tool that supports, among others, the simulation of hybrid models.
Snoopy implements Algorithms 2- 6 in addition to the exact version of the Haseltine &Rawlings approach
in Haseltine and Rawlings (2002). The runtimes in Table 1 demonstrate that the accelerated approach in
combination with the HRSSA indeed improves the hybrid simulation performance. The performance gain
increases with a decrease in the number of interface reactions. For instance, our saving in runtime when
simulating the Yeast Cell Cycle model is better than for the Eukaryotic Cell Cycle, since the former has
less interface reactions. For larger models (e.g., the calcium model), the ODE solver will need more time
to be reinitialised. This is a great opportunity to reduce the effects of such a step using the presented
improvements. Moreover, the large number of variables in a model considerably affects the performance of
the HRSSA algorithm (as demonstrated by the calcium model). Therefore, our suggestion to use interface
species (see Eq. (8)) improves the performance of the HRSSA. The accuracy of our proposed approach is
equivalent to the original HRSSA, since our improvements do not alter the way in which HRSSA simulates
hybrid models. In Marchetti et al. (2016), the accuracy of the HRSSA has been compared with many
other simulation algorithms including Gillespie’s direct method. It has been confirmed that the accuracy of
the HRSSA is close to the direct method’s results. Moreover, compared with the accelerated algorithm
in Herajy and Heiner (2016), the improved HRSSA removes the need for approximating the jump equation.

S CONCLUSIONS AND FUTURE WORK

In this paper we have introduced an improved approach to speed up the simulation of hybrid biological
models that require the combination of stochastic and deterministic approaches. Our ideas may best be
used in combination with the static partitioning approach and can be extended to support the dynamic one.

For the simulation of statically partitioned nets, the algorithms outlined in this paper can be considerably
simplified to minimise the initialisation time, particularly for larger nets consisting of hundreds of thousands
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Require: Gy, and Gyay: the sets of slow and fast reactions, respectively;

Require: R*: the set of direct interface reactions;

Require: S*, S™: the sets of interface and monitored species, respectively;

1: Initialise the ODE solver with the initial system state, X¢;

2: Set the current time ¢t = 0;

3: while t < t,,; do

4: Calculate the fluctuation intervals, X, and X;
5:  Calculate the propensity upper and lower bounds, a(x) and a(X);
6: UpdateFluctuationlnterval:=false;
7:  while UpdateFluctuationinterval=false and ¢t < t,,; do
8: Calculate 7 according to (5);
9: Integrate the system of ODEs until time 7+ 7 or (8) is violated;
10: let At= the time step taken by the ODE solver;
11: if Eq. (8) has not been violated then
12: Select a reaction ry to fire according to (3) - (4);
13: Fire r,, and update the system state accordingly;
14: if x leaves [x,X] then UpdateFluctuationlnterval=true;
15: if ry € R* then
16: Restart the integration from 7 + Az using the current system state X;
17: end if
18: else
19: UpdateFluctuationlnterval=true;
20: end if
21: Update the current time, =t + At;

22: end while

23:  if ds; € S™ such that there is an abrupt change in x; then

24: Restart the integration from ¢+ Az using the current system state X;

25: end if
26: end while

Figure 6: Improved HRSSA (iHRSSA).

Table 1: Runtimes (in seconds) for the three case studies using different hybrid algorithms performed on a

Mac Pro. with 3 GHz Core i7 processor and 8GB memory.

Models/ Algorithms Haseltine Accelerated | HRSSA Improved Simulation
&Rawlings HRSSA Time

Yeast Cell Cycle 984.5 423 435.2 163.3 10,000 min.

Eukaryotic Cell Cycle 780 276.2 240 164.2 1,000 min.

Calcium model 22,620 14,460 30,980 10,800 10 sec.

or even millions of species and reactions. This kind of models usually comprise a few stochastic reactions
compared with the number of deterministic ones. In this scenario, the set of direct interface reactions can be
extracted by following the manipulated species of each stochastic transition and checking their connections
with deterministic reactions. One interesting direction to extend the work presented in this paper is to
develop an algorithm to determine the best partitioning of the net that minimises the number interface
reactions, interface species, and monitored species, while partitioning the set of reactions into fast and slow
ones. Moreover, extending our algorithms to support dynamic partitioning is also of paramount importance.
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