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ABSTRACT 

This article proposes a discrete event simulation model of an organization that maintains computer hosts 
and incurs several millions of dollars in maintenance and incident response costs. The common maintenance 
policy is referred to as “out-of-sight is out-of-mind” (OSOM) because the majority of hosts are absent from 
scans and ignored. Hosts are “dark” (absent) because they are not accessible (turned off or with restricted 
permissions). The proposed model is used to compare OSOM with alternatives including improved 
analytics that make dark host vulnerabilities visible. Findings clarify the apparent benefits of OSOM unless 
indirect costs for intrusions or improved policies are applied. Also, benefits from using Windows operating 
systems and improved policies are clarified including millions in expected savings (vs. Linux).  

1 INTRODUCTION 

Cyber-security-related costs are important on multiple levels from national and international politics to 
electric grids connecting thousands of organizations to expenditures within individual organizations. 
Discrete event models have explored political effects (Naugle et al. 2016). Models at the power grid level 
include those described by Nguyen et al. (2015). Also, attack simulation models include Shinet al. (2015) 
and Case (2016). 

In our own research, we have explored Markov decision process models of organizational expenses 
focusing on the evolutions of single hosts (Afful-Dadzie and Allen 2014; 2016). Computer hosts may be 
ordinary personal computers, laptops, servers, printers, or even exercise equipment. Here, we focus only 
on devices connected to the Internet that could be compromised and are scanned and maintained. These 
devices are used for student, research, and administrative tasks. These devices have so-called 
“vulnerabilities” which are weaknesses that attackers can exploit. For example, a host might use a weak 
password, software with an out-of-date encryption, or software without sufficient checks on the size of 
inputs or outputs. These vulnerabilities are rated by the U.S. National Institute of Standards (NIST) and the 
common vulnerability scoring system.  

Here, we propose to extend the data and assumptions for maintenance policy development to discrete 
event simulations. This is similar to patch management in electric utilities addressed by Gauci et al. (2017) 
except that we consider a larger number of past incidents and a broader assortment of policies and host 
types. Benefits of discrete event simulation include relatively intuitive ways to include the inception and 
destruction of hosts and finite patching and incident response resources. We argue that host “end of life” 
issues are important to consider because, anecdotally, we are aware of hosts that were believed to be retired 
being used and causing incidents. 

In our experience, a common policy is to require that staff attempts to patch or mitigate high or critical 
level vulnerabilities within one month of the time when  the vulnerability is observed in the monthly scans. 
The policy ignores the medium- or low-level vulnerabilities which tend to accumulate. Also, typically 70% 
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of the almost 50,000 distinct hosts that we studied were missing from the scans in any given month. This 
can occur because the host is turned off during the scan or permissions are lacking. Some methods to impute 
the vulnerabilities missing in the scan data are described by Afful-Dadzie and Allen (2014; 2016). Recently, 
we have methods that can predict with high accuracy (0.05% errors) the vulnerabilities on hosts which are 
not present (“dark”) in the monthly scans. 

Here, we consider the implications of 21 months of observed transitions from month to month of 
approximately 50,000 hosts.  The resulting transition probability estimates are shown in Table 1. The 
probabilities reflect the combined effects of at least four factors. First, users of the hosts are constantly 
adding software and the software they already added is aging. Second, hackers are constantly searching for 
vulnerabilities, observing the acknowledgement of vulnerabilities that are publically reported, and 
obtaining exploits (which are also often freely published). Third, vendors are constantly attempting to 
automatically patch their software remotely. Fourth, staff is attempting to patch vulnerabilities according 
to organization policy with lists of vulnerabilities obtained from scans and the results of their own searches 
for available patches, testing patches obtained for not destroying functionality, and applying patches found 
and tested (if any). 

Here also, we consider only two types of hosts. These are Linux and Windows hosts for which the user 
has administrator privilege to install new software and the host is not controlled by administrators. 
(Controlled hosts are generally much safer.) Here, we refer to the common maintenance policy in which 
dark hosts are ignored as “out-of-site is out-of-mind” (OSOM). A major objective of this article is to clarify 
issues with the OSOM policy and the possible benefits of more sophisticated policies. 

Table 1: Estimated transition data from a major university (a) Linux hosts, (b) changed transitions 
reflecting improved informatics, (c) Windows hosts, and (d) changes from improved informatics. 

   (a)    

 Low-Med. Low-Med.-Dark High-Crit. High-Crit.-Dark Comp. Comp.-Dark
Low-Med. 0.2820 0.6580 0.0177 0.0413 0.0005 0.0005 

Low-Med.-Dark 0.2820 0.6580 0.0177 0.0413 0.0005 0.0005 
High-Crit. 0.1290 0.3010 0.1560 0.3640 0.0250 0.0250 

High-Crit.-Dark 0.0000 0.0000 0.2250 0.7000 0.0250 0.0500 
Comp. 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Comp.-Dark 0.0000 0.0000 0.0000 0.0000 0.8000 0.2000 
   
  (b)  

High-Crit.-Dark 0.1290 0.3010 0.1560 0.3640 0.0250 0.0250 
   
  (c)  
 Low-Med. Low-Med.-Dark High-Crit. High-Crit.-Dark Comp.. Comp..-Dark

Low-Med. 0.2760 0.6440 0.0239 0.0559 0.0001 0.0001 
Low-Med.-Dark 0.2760 0.6440 0.0239 0.0559 0.0001 0.0001 

High-Crit. 0.1444 0.3369 0.1554 0.3627 0.0003 0.0003 
High-Crit.-Dark 0.0000 0.0000 0.2988 0.7000 0.0006 0.0006 

Comp. 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Comp.-Dark 0.0000 0.0000 0.0000 0.0000 0.8000 0.2000 

   
  (d)  

High-Crit.-Dark 0.1444 0.3369 0.1554 0.3627 0.0003 0.0003 
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The remainder of this paper is organized as follows. In Section 2, the structure of the proposed model 
is described. Section 3 documents a computational experiment involving six alternative systems. In Section 
4, the implications for decision-makers and opportunities for future research are given. 

2 THE PROPOSED MODEL 

2.1 Unit Size and Time Period 

Our discrete event simulation model necessarily specifies the number of servers and entities typically within 
the system (Allen 2011; Law and Kelton 2000). We observed that a large university is generally organized 
as multiple, largely independent departments, each with typically 100 hosts. Each organization has an 
administrator principally responsible for repairing vulnerabilities and facilitating responses to known 
incidents. Therefore, the model includes somewhat more than 100 hosts (on average) over a period of more 
than 100 years to approximately capture maintenance and response costs for a university. As noted in Afful-
Dadzie and Allen (2016), we assume that patching vulnerabilities costs are on average $150 and responding 
to known incidents costs on average $2,000. Therefore, impacts of vulnerabilities are counted but only in 
relation to direct costs for legally addressing known incidents. 

2.2 States 

Following Afful-Dadzie and Allen (2016), we categorize hosts by the highest risk vulnerability, e.g., a host 
with any critical vulnerability is categorized as critical. In the common policy, low- and medium- risk hosts 
are generally ignored. Hosts can also be compromised, e.g., the host has malware that is attempting to 
contact the hacker or hacker team but is intercepted by the intrusion prevention system. Because some hosts 
are “dark” in the scan and some intrusions are unknown, we consider states in addition to the trashed or 
recycled host state. States include visible and dark combinations of low-medium, high-critical, and 
compromised. Low and medium and high and critical are paired because they are often treated as equivalent 
in organizational policies. 

Note that knowing about the vulnerabilities or the intrusions may not help the perceived goals of the 
organization. Yet, observability is clearly a desirable property of “resilient” systems (Allen et al. 2016). A 
major objective of this article is to clarify the possible benefits of improved observability. 
 

2.3 SIMIO Model 

The model is implemented in SIMIO software. The “NewHosts” in the upper left of Figure 1 below is the 
source with hosts going to the low-medium vulnerability node where there is no processing.  This lack of 
processing (research, testing, and applying patches if they exist) is a common cost-saving measure in which 
lowly rated cyber vulnerabilities are ignored. Until recently, because of inspection difficulties all non-
network cyber vulnerabilities were largely ignored also by many universities and other organizations. 
Therefore, they are ignored here also. All paths are fixed “time paths” which correspond to one month.  

The weights are proportional to the probabilities in Table 1. The nodes with no processing correspond 
to states 1, 2, and 4. The servers are states 3, 5, and 6. Even though the dark compromised state does not 
require work from the internal staff; a server is used to record cost-related information from that state. The 
retirement node is on the right in Figure 1 in which hosts are recycled or sent to landfills. Overall, hosts are 
created on the left and flow to destruction on the right. They move from safe states at the top to vulnerability 
and compromise at the bottom. 

Of course, in the real world, the computers reside in offices or cafes and experience minimal movement 
(with the exception of  laptops and cell phones). Therefore, the usual logic of moving hosts is applied as 
indicated in Figure 2. Hosts do move at inception and at the end of their “lives” when they enter landfills.  
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Figure 1: The SIMIO model for organizational or departmental cost forecasting. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Part of the common built-in SIMIO logic for the computer hosts. 
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The primary differences between the model in Figure 1 and the Markov Decision Process model in 
Afful-Dadzie and Allen (2016) are the inclusion of the birth and death of hosts here and the relatively less 
thorough exploration of optimal policies here. A major strength of Markov Decision Processes is the ability 
to generate optimal control policies. Yet, the quality of these “optimal” policies is limited by the associated 
assumptions. Also, unknown attacks are considered here in the simulation model and not previously. 

3 RESULTS 

3.1 Raw Outputs 

The raw SIMIO outputs are shown in Table 2. In the results, 100 replications are used to keep 95% 
confidence interval half widths to less than 1% of estimated quantities. The results include “H3VRStation1” 
to clarify that they account only for visits at the visible repair station and not for the dark or unknown 
vulnerabilities. These hypothetical costs are added in the output analysis derivations so that they do not 
derived directly from the simulations. Linux scenarios derived from Table 1(a) and (b) probabilities and 
Windows derived from Table 1(c) and (d) probabilities. 
 The results in Table 2 relate to the numbers of hosts visiting each node. Visiting a repair or incident 
node directly results in a cost incurred as a staff member needs to attempt to patch related vulnerabilities or 
respond to relevant incidents. Therefore, the scenario costs are $150 × (Avg. #Repairs) + $2,000 × (Avg. 
#Incidents). 

Table 2: Raw SIMIO outputs from 100 replications for the numbers of arrivals at the 3 key stations and 
associated expected or mean costs. The four key “objects” or servers are “Active5Repair” (A5R), 
“High3VulnRepair” (H3VR), and “Unknown6Attack” (U6A).  

Scenario  Object Name  Average # Half Width Stdev. Exp. Cost  Stdev.  Scen. Totals

Linux  A5R  1241.5 8.2 40.8 $2,482,980  81,557  ‐

Linux  H3VR  6915.9 30.7 152.8 $1,037,387  22,927  ‐

Linux  U6A  1529.4 11.1 55.4 $3,058,860  110,719  $6,579,227

Linux No D.  A5R  1051.4 6.7 33.4 $2,102,700  66,825  ‐

Linux No D.  H3VRStation1  5733.1 25.7 127.6 $2,866,565  63,808  ‐

Linux No D.  U6A  1201.5 8.4 41.7 $2,402,920  83,436  $7,372,185

Windows  A5R  114.8 2.3 11.3 $229,660  22,511  ‐

Windows  H3VR  8528.2 33.8 168.0 $1,279,229  25,198  ‐

Windows  U6A  69.0 2.1 10.6 $137,980  21,133  $1,646,869

Windows No D.  A5R  90.5 2.0 10.0 $180,920  20,049  ‐

Windows No D.  H3VRStation1  5902.8 25.4 126.3 $2,951,415  63,139  ‐

Windows No D.  U6A  46.5 1.5 7.6 $93,080  15,102  $3,225,415

Linux No Darkness  H3VRStation1  5733.1 25.7 127.6 $2,866,565  63,808  $7,372,185

Windows Hypoth.  H3VRStation1  5902.8 25.4 126.3 $2,951,415  63,139  $864,283
 

3.2 Comparison of Alternatives 

Six systems are compared in Figure 3 in relation to the predicted expected costs. The outputs for the current 
Linux and Windows systems derive directly from the simulation with inputs in Table 1 and outputs in Table 
2. The so-called “improved analytics” policy for each system relates simply to the probabilities or weights 
coming from Table 1(b) or Table 1(d) for Linux and Windows operating systems respectively. These 
changes correspond to making state 4 equivalent to state 3 in performance so that additional patching 
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operations would occur. In other words, the hidden vulnerabilities are revealed. This added 1/0.3 times the 
cost from the server in state 3 (A3VR).  
 The “Possible Linux” system estimates are based on elicitation from an expert. Questions about what 
would be expected and what would plausibly be too high or too little were used to elicit estimates that 
reasonably include the costs of unknown incidents through a marketing-type elicitation process (Allen and 
Maybin 2004). The possible Linux results are intended to reflect benefits from knowing the vulnerabilities 
on dark hosts.  

The improved policy estimates are based on the likely results that might occur if only critical 
vulnerabilities (1/5 vulnerabilities or less) were patched on Windows systems. Because of vigorous 
automatic patching, our analyses from Markov decision processes indicate that patching high vulnerabilities 
on certain types of Windows systems is not cost effective (Afful-Dadzie and Allen 2016). Yet, there would 
almost certainly be benefits from patching critical vulnerabilities on dark hosts. Therefore, some of the 
results in Figure 3 relate to simulation outputs and others are estimates from elicited expert opinions. 

 

 

Figure 3: Mean predictions for costs for alternative systems. Half-width intervals are generally less than 
1% of the expected costs. 

4 CONCLUSIONS AND FUTURE WORK 

This article proposes a discrete event simulation model to forecast costs of patching and incident costs. The 
models are based on hundreds of thousands of recorded transitions. Yet, there are also considerable 
extrapolations including the effective cost of improved policies or of losses including unknown incidents. 
With these limitations, the following findings emerge: 

  
1. Windows hosts require substantially lower maintenance costs in our dataset and simulation 

predictions than Linux hosts. This assumes that the host owners had administrator privileges 
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making these hosts relatively risky to operate. Yet, the vigorous automatic patching carried out by 
Microsoft likely is associated with lower organizational maintenance costs. 

2. Making dark Windows hosts visible with improved analytics appears not to be cost justified. This 
occurs because the cost of dealing with the likely 70% of vulnerabilities ignored by the out-of-site 
is out-of-mind policy would not be offset by the reduction in known incidents. Yet, if losses to the 
broader society could be accurately estimated, then the reduced incidents from patching the dark 
vulnerabilities might be compensated. 

3. Making dark Linux hosts visible with improved analytics is approximately cost justified and would 
likely benefit the system with improved resilience and societal benefits. 

4. Making dark hosts of all types visible is likely cost justified if the improved analytics are combined 
with an improved policy. For example, for Windows hosts many or all high vulnerabilities might 
be ignored since auto patching likely addresses many, but the critical vulnerabilities on dark hosts 
could be predicted and patched to reduce incident costs. 

 
Key limitations of the proposed model relate to features which are unsupported. Multi-fidelity 

metamodels could provide improved prescriptive ability (e.g., using planning and analysis methods in Allen 
and Bernstheyn 2005 or Allen et al. 2003). The concepts of partial observability and limited observations 
can generate useful maintenance recommendations. Also, using automatic control systems based on 
Bayesian Reinforcement Learning can be applied to direct maintenance and incident response actions that 
recruit data optimally addressing data limitations. 
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