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ABSTRACT

The complex interconnections between various critical infrastructure sectors make the system of systems
(SoS) vulnerable to failures and highlight the importance of robustness and resilience. To this end, we first
establish holistic probabilistic networks to model the interdependencies between infrastructure components.
To capture the underlying failure and recovery dynamics, we further propose a Markov decision processes
(MDP) model in which the response policy determines a long-term performance. To address the challenge
of a large dimensionality, we exploit the sparsity of the network interconnections and solve an approximate
linear program by the variable elimination, which leads to a distributed control policy under mild assumptions.
Finally, we use a case study of the interdependent power and subway systems to corroborate the results
and show that the optimal resilience resource planning and allocation can reduce the failure probability
and mitigate the impact of failures caused by natural or artificial disasters.

1 INTRODUCTION

Presidential Policy Directive 21 (PPD-21) identifies 16 critical infrastructure sectors including energy,
communication and transportation systems as so vital that their malfunctions and incapacitation can lead
to an enormous economic loss and public safety threat (Obama 2013). Driven by the recent advances in
information and communication technologies (ICTs) and the Internet of Things (IoTs), these sectors become
highly interconnected, enabling faster information exchange and a higher level of situational awareness for
real-time operations. For example, (Zimmerman et al. 2016) and (Zimmerman et al. 2018) investigate the
interdependency between food, energy and water. (Gao et al. 2014) shows that on the one hand, supervisory
control and data acquisition (SCADA) systems control the power generation, transmission, and distribution
according to the monitoring information from the communication sector. On the other hand, the energy
sector provides the power to guarantee the normal operation of the SCADA systems.

Protection of interdependent critical infrastructures (ICIs) against natural or human-made disasters is
essential for providing support to a reliable and sustainable economy. The increasing interdependencies,
however, make systems vulnerable to these catastrophes because a failure of one system will propagate
to others and cause cascading failures without appropriate, rapid responses. Lessons of the September 11
attack, hurricanes Sandy and Irma have highlighted that protection and prevention against such disruptions
are not always possible. Hence a paradigm shift to emphasize the preparedness and response is indispensable
to enhance the resilience of ICIs as shown in Fig. 1.

Many works have investigated the modeling, simulation, and design of interdependent critical infras-
tructures (Ouyang 2014; Zimmerman et al. 2017). Network flows (Lee II et al. 2007) and the interacting
dynamic model (Rosato et al. 2008) are used to assess and manage the risks. Built upon the modeling
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Figure 1: The systematic resilience consists of
three phases. First is the robustness against dis-
ruptions to prevent failures. Second is the impact
mitigation to guarantee the essential services under
failures. Third is the prompt response and recovery.
A paradigm shift from protections to the mitigation
and recovery is indispensable for catastrophes.

Figure 2: Multi-layer networks representing in-
terdependent infrastructures such as power grid,
subway and communication networks. They can
be viewed as a large-scale aggregated network.
The directed link between two nodes indicates ei-
ther physical, cyber or logical influences from the
source to the sink.

of interdependent infrastructures, (Yuan et al. 2015) focuses on designing a resilient control for power
grid. (Wang et al. 2013) has proposed an L1Simplex architecture to address both physical and software
failures in the cyber-physical systems. If an intelligent attacker rather than a random accident causes the
network component failure, (Zhu and Basar 2015; Huang et al. 2017b) apply dynamic game frameworks
to incorporate the strategic participants who adapt to the defense policy.

Despite these pioneering works, challenges still remain to build a holistic model that captures not
only distinct characteristics of individual infrastructures but also complex dependencies among sectors due
to geographical, logical, cyber-physical, or human connections (Rinaldi et al. 2001). Without a holistic
framework, we cannot integrate the data or models of individual sectors to make a globally optimal planning
and defense decisions. For example, system operators should not only make plans for normal operations of
their own system but also be concerned about the possible failures of other dependent sectors and prepare
for the potential influences. The framework should also be general enough to include various sectors and
straightforward enough to enable real-time plannings for large-scale SoS, which motivates the MDP model
in Section 2 to abstract the complex networks, unify the multi-layer interdependences, and design resilient
control mechanisms.

Moreover, the probabilistic and persistent transition of system status requires system operators to prepare
for the uncertainties in a dynamic perspective and avoid the following two extremes. First is the blind
optimism that satisfies with the current normal operation and makes no sufficient contingency plan for
probabilistic failures. Second is the pursuit of absolute security that would result in a huge inspection and
maintenance cost. Thus, it is crucial to make proactive and cost-effective controls based on the real-time
status of SoS to reduce the long-term risk economically and globally.

In this paper, we first establish a holistic network model to capture the relationships between nodes
within an individual infrastructure and across the infrastructures. We use a probabilistic model to assess
the impact of the couplings between different components in a system, in which the failure probability of
one component depends not only on its state but also on state of its connected ones. One fundamental
characteristic of the infrastructures is their dynamics in real-time operations (Zimmerman et al. 2018). For
example, the load on a bus in a power grid changes due to the time-varying demands, and the bus would
encounter a load shedding if the demand exceeds the supply. The concept of resilience involves the phase
of recovery of infrastructure after disastrous events. This process is naturally a dynamic one (Chen et al.
2017). Hence, building on the probabilistic failure model, we propose a Markov decision processes (MDP)
model to take into account the underlying dynamic processes of ICIs and develop resilient mechanisms for
heterogeneous interdependent infrastructures.
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The MDP model has naturally a large state-space due to the large-scale feature of infrastructure networks
and exponential increases of the system states with respect to the number of components (Huang et al. 2017b;
Hayel and Zhu 2015). The curse of dimensionality of the MDP makes the control design computationally
intractable even in a moderate-size system with 15 nodes. To this end, we reduce the dimension by first using
basis functions to reformulate the problem as an approximate linear program (ALP) and then leveraging
the sparsity of the interconnections to simplify the ALP with factored graphs. The approximated problem
yields a low computational complexity. Under mild assumptions on the dependence structures and the
separability of reward and control cost functions at each node, the resilient control policies can be designed
in a distributed fashion. We can show that the system performance under the distributed control scheme
is equivalent to the one achieved under the centralized one. We corroborate the established MDP model
and analytical results with case studies of an interdependent power and subway network.

The remainder of the paper is organized as follows. Section 2 establishes the MDP model of the
interdependent infrastructures. Problem analysis is given in Section 3. The structural results including the
optimal and distributed resilient control policies are obtained in Section 3.3. The case study of a power
and transit network is presented in Section 4, and Section 5 concludes the paper.

2 SYSTEM MODEL

In this section, we introduce the network model to represent the complex interdependent SoS and the MDP
model to produce resilient plannings of ICIs. The resilient plannings are both proactive, i.e., maintain
high-risk nodes in advance of failures to reduce the future risks, and cost-effective, i.e., delay the repair of
low-influence nodes due to the restrained or costly resources.

2.1 Network Model

ICIs can be modeled by a multi-layer network as shown in Fig. 2, where nodes represent heterogeneous
components in multiple infrastructures such as buses in power grid, subway stations in transportation, and
base stations in the communication network. The links connecting nodes in the network represent the
dependencies either homogeneous, e.g., the failure of one subway station can disrupt the service of the
next station, or heterogeneous, e.g., the power loss of the grid leads to the shutdown of subway stations.
Moreover, the inter-dependency implies the ping-pong effect. For example, the shutdown of subway stations
can, in turn, slow down the power recovery because maintainers may take extra time to commute. The
vicious spiral can lead to the cascading failure. Without loss of generality, we use an aggregated network
G = (N ,E ) to capture the heterogeneous components in the multi-layer network, where N denotes a set
of nodes and E is a set of links.

2.2 MDP Model

Each infrastructure node i∈N in the network G has a state Xi representing its working status. State Xi admits
values from a binary set {0,1}. Specifically, Xi = 1 indicates that node i works normally and Xi = 0 means
otherwise. In a network of |N |= n nodes, the system state can be denoted by X = [Xi]i∈N ∈X := {0,1}n.
Due to the interdependencies between different nodes, the failure probability of one component depends
not only on its own state but also on its connected ones. Similarly, each infrastructure node i ∈N can
be controlled by taking action Ai ∈ {0,1}. Specifically, Ai = 1 represents repair (if node is faulty) or
maintenance (if normal) of node i, and Ai = 0 indicates that no action is applied. The system action is a
vector A = [Ai]i∈N ∈A := {0,1}n including all the actions of each node.

In order to design resilient mechanisms for the real-time operation of ICIs, we use an MDP model to
capture the dynamics of the infrastructure states as well as the underlying failure and recovery processes
of each node. Our objective is to determine a stationary policy π : X 7→A that yields the optimal control
of nodes to achieve the largest long-term benefit of ICIs.
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To achieve this goal, we further define the reward function R : X ×A 7→R and the objective function
Vπ(x) : X 7→R. The reward function measures the performance of the ICIs at one step by taking the number
of working nodes into account. The objective function accumulates the obtained reward at each step over
an infinite horizon: Vπ(x) = Eπ [∑

∞
t=0 γ tR(X t ,π(X t)) |X0 = x], where γ < 1 is a positive discounted factor,

x is an initial state, and X t is a random variable denoting the system state at stage t. The state transition
probability follows the Markov property, i.e., the system state at the next time step only depends on the
current system state and the adopted action. For example, P(x′|x,a) = P{X t+1 = x′|X t = x,At = a}, ∀t,
denotes the transition probability from state x ∈X to x′ ∈X under control a ∈A . Note that transition
probability P captures the interdependencies between connected infrastructure nodes. Further, the value
function V (x) = maxπ Vπ(x) := Vπ∗(x) is the maximum achievable economic benefit of the ICIs starting
from state x under the optimal policy π∗. A larger value of V (x), ∀x, indicates a better performance of
ICIs, and the network is resilient to failures by using the control policy π∗.

3 PROBLEM ANALYSIS

In this section, we introduce a sequence of solution techniques of the MDP problem and tackle the curse of
dimension by exploiting the sparse nature of the large-scale infrastructure networks. Approximation with
the factor graph and the variable elimination technique leads to equivalent distributed policies.

3.1 Linear Programming

One way to characterize the optimal policy of the MDP is via dynamic programming with the Bellman
operator (TV )(x) := maxπ R(x,π(x))+γ ∑x′∈X P(x′|x,π(x))V (x′), ∀x. Then, the value function V (x) is the
fixed point of T , i.e., V (x) = (TV )(x),∀x. Linear programming (LP) provides a convenient and efficient
approach to solve the Bellman equation with value functions as LP variables, i.e.,

(LP) : min
V (x)

: ∑
x∈X

α(x)V (x)

s.t. V (x)≥ R(x,a)+ γ ∑
x′∈X

P(x′|x,a)V (x),

∀x ∈X , ∀a ∈A .

(1)

LP has the benefit to be easily extended to include both endogenous and exogenous constraints. For
example, if we add an endogenous action constraint ∑ai = 1 which limits to single repair due to the limited
resources at each stage, the LP formulation remains the same with only a reduced dimension of action
space A ′ as in (Huang et al. 2017a). Similarly, we can directly add exogenous action constraints such as
∑ci(ai)<C which gives a bound on the action cost due to limited budges at each step.

The disadvantage of (1) is that the curse of dimension appears in both state space |X |= 2n := N and
action space |A |= 2n := N when solving the LP directly. Therefore, we use ALP and FMDP method to
reduce the computation complexity (Guestrin et al. 2003).

First, we use the linear value function (Farias and Pucci 2002) to approximate the value functions
V (x) = ∑

k
i=1 wihi(x), where hi and wi is the ith basis function and its weight, respectively. Hence the number

of LP variables is reduced from N = 2n to k and we obtain the ALP with new variables {w1,w2, ...,wk}.

(ALP) : min
w ∑

x∈X
α(x) ∑

i∈N
wihi(x)

s.t. ∑
i∈N

wihi(x)≥ R(x,a)+ γ ∑
x′∈X

P(x′|x,a) ∑
i∈N

wihi(x′),

∀x ∈X , ∀a ∈A .

(2)

Our second step is to reduce the dimension of the transition probability matrix P(x′|x,a) ∈RN×N×N . The
system transition probability P(x′|x,a) can be factored into a multiplication of local transition probabilities
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∏
n
i=1 P(xi|xΩ̄i

) where Ω̄i is the node set that can affect the local transition probability of node i. With
the assumption that the network G is sparse, we have |Ω̄i| < n. Notice that the co-domain of each basis
function hi(x) is determined by some subset of X . The effective domain of gi(x,a) := ∑x′ P(x′|x,a)hi(x′)
is also restricted to a set much smaller than X and a special case is discussed under assumption 1. Define
ḡi(x,a) := γgi(x,a)−hi(x), the constraints ∑i wihi(x)≥ R(x,a)+γ ∑i wi gi(x,a),∀x,a is rewritten in a more
compact form 0≥maxx,a R(x,a)+∑i wi ḡi(x,a),∀a ∈A .

The reward function R(x,a) can also be factored into a sum of functions with the domain restrained
to some subsets of X . Then, we can use the variable elimination method to eliminate each element of x
and a step by step (Huang et al. 2017a).

3.2 Approximate Optimal Policy

The optimal centralized policy under the approximate form of LP is obtained by maximizing the objective
function given the initial state x, i.e., a∗ ∈ argmaxa∈A [R(x,a) + γ ∑x′∈X P(x′|x,a)V (x′)]. Similarly, an
approximation is adopted to reduce the computation to k+ 1 multiplications and k summations for any
given pair of (x,a), i.e.,

a∗ ∈ argmax
a∈A

[
R(x,a)+ γ

k

∑
i=1

wigi(x,a)

]
. (3)

To solve (3), for every state x, we need to search for action a, which means that we have to compute (3)
for |X |×|A |= 22n times. However, by exploiting the structure of the problem, we can make assumptions
in Section 3.3 to achieve a distributed computation of the optimal policy.

3.3 Main Structural Results

To study the interdependent infrastructure network consisting of n nodes, we choose the basis function
hi(x) to be the indicator function of node i’s state, i.e., hi(xi,x−i) = xi,∀x−i ∈ {0,1}n−1. Hence the number
of basis functions is of the same size of the nodes, i.e., k = n. Weight parameter wi shows the importance
of node i in the measure of economic benefits.

The advantage of choosing such basis functions is that the value function V (x) at state x = [xi]i∈N
is approximated by the summation of the weight wi of all working node xi = 1 at state x. With a larger
number of critical nodes functioning, the system achieves a higher reward in the long run. This choice of
basis functions is particularly suitable for sparse networks because they primarily capture local effects. We
can add new basis functions such as hi(xi,x j,xN \{i, j}) = xi ·x j,∀ j ∈Ωi, which is necessary when non-local
effects play a major role. We make the following reasonable assumptions to achieve a distributed repair
policy.
Assumption 1 The local transition probability of node i is not affected by the control value of other nodes,
i.e., P(xi|xΩ̄i

,a) = P(xi|xΩ̄i
,ai).

Under the above assumption, we obtain the following equations:

gi(x,a) = ∑
x′∈X

P(x′|x,a)hi(x′i) = ∑
i∈N

∏
j∈N

P(x′j|xΩ̄ j
,a)hi(x′i)

= ∑
x′i

P(x′i|xi,xΩi ,a)hi(x′i) = P(X
′
i = 1|xΩ̄i

,ai).

Assumption 2 We can separate and factor the reward function R(x,a) into the net reward ∑
n
i=1 ri(xΩ̄i

) and
the action cost −∑

n
i=1 ci(ai), where ri(xΩ̄i

) and ci(ai) are the local reward and the cost function of node i,
respectively.
Theorem 1 A distributed policy ai ∈ argmaxai γwigi(xΩ̄i

,ai)− ci(ai) achieves the same reward obtained
by the centralized optimal policy using (3) based on assumption 1 and 2.
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Theorem 1 holds as we can represent the RHS of Eq. (3) in a factored form, i.e.,

max
a1,...,an

[R(x,a)+ γ ∑
i

wigi(x,a)] =
k

∑
i=1

ri(xΩ̄i
)+

n

∑
i=1

max
ai

γwigi(xΩ̄i
,ai)− ci(ai).

The distributed policy only takes into account the states of node j ∈ Ω̄i and reduces the computation
complexity from O(|X |× |A |) to n · 2Ωi . In many applications, the policy designer can only control a
limited number of nodes. Thm. 1 still holds as the sparse control condition can be viewed as a special
case.

Our next step is to find a pattern to quickly identify each node’s optimal action, i.e, repair or not.
Thm. 2 achieves the above objective under an arbitrarily given set of controllable nodes without explicitly
computing ai ∈ argmaxai γwigi(xΩ̄i

,ai)−ci(ai). With assumption 3, we can find the repair policy thresholds as
summarized in Thm. 2, which means that we switch to the opposite action if the condition is not satisfied. Let
Ω̄i = {i,Ωi} and xΩ̄i

= [xi,xΩi ]. Besides, we define a shorthand notation PxΩi= j := P(X
′
i = 1|XΩi = j,Ai = 0).

Assumption 3 We further assume that a repair is always effective P(X
′
i = 1|x,ai = 1) = 1,∀i,∀x and the

node stays faulty without a repair P(X
′
i = 1|xi,xΩi ,ai = 0) = xi ·PxΩi

,∀i,∀x. In addition, the cascading failure
means that PxΩi=1 > PxΩi 6=1, where 1 represents a vector with all n elements as 1.
Theorem 2 With assumptions 1, 2 and 3, we only repair node i when it is faulty and its action cost is relatively
low, i.e., when ci satisfies ci(1)− ci(0)< wi. If 0 < ci(1)− ci(0)< wi(1−Px

Ω̄i
=1), we repair node i even

when nodes in Ω̄i are all working normally. We choose to repair node i, i.e., Ai = 1, when i is working Xi = 1
yet other nodes in Ωi have states xΩi 6= 1 under the condition wi(1−Px

Ω̄i
=1)< ci(1)−ci(0)< wi(1−PxΩi 6=1).

To show Thm. 2, we first look at the case when only one given node is controllable. Since action ai is
binary, we can obtain the optimal policy by comparing which action leads to a larger value. We generalize
the one-node case to the case of multiple nodes because the Thm. 1 guarantees that each node’s policy
can be decided independently of others’ actions.

4 CASE STUDY

In this section, we use a case study motivated by Hurricane Sandy, which struck New Jersey on Oct. 29,
2012, resulting in an estimated $50 billion economic loss and at least 147 direct deaths. It wreaked havoc
on critical infrastructures such as power grid, transportation and communication systems. In this case study,
we focus on the impact of the power and subway failures in the lower Manhattan and downtown Brooklyn
as shown in Fig. 4.

4.1 Power and Subway

The most direct impact of Sandy has been on the power grid. Much of Manhattan south of 39th Street has
suffered a massive power cut because of the floods and the high wind. A blast of one Consolidated Edison
(ConEd) substation on 14th Street at 9 p.m. on Oct. 29 has intensified the power outage. Besides, ConEd
took parts of its grid offline due to the rising water. Load shedding arose when the demand strained the
capacity during the storm. The massive damages made ConEd unable to restore most of the power outages
in lower Manhattan until 2 November. The whole power system has taken weeks to recover completely,
and nearly 8.5 million people have suffered from power outages.

As shown in Fig. 3, the normal operation of subway system relies heavily on a stable power supply.
Thus, the subway system has been significantly affected as well. The Metropolitan Transportation Authority
(MTA) shuts down the entire subway system from 7 p.m. on Oct. 28 to move trains away from lowland
and vulnerable area. Floodwaters brought by the storm surge of Sandy began to enter the subway tunnels
and stations after 9 p.m. on 29 October. All seven East River subway tunnels connecting Manhattan,
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Figure 3: After the high-voltage transmission of 69/138kV, area substations transform the power voltage
to 13/27kV, convert it to direct power current and feed it for the 600-volt third rail of the track to propel
the train. Besides, transformers in the distribution grid further lower the voltage to 120/208V to power
signals, lights, and track switches in subway stations.

Brooklyn, and Queens have suffered from floods a day later. Besides, Hurricane Sandy wiped out tracks
on the A train in the Rockaways and severely damaged new South Ferry station.

Since after flooding, water can short-circuit electrical devices including signals, switches, and the
electrified third rail, the subway has to remain closed before dewatering. The pump system of the normal
drainage does not function during Sandy because of the power cut. Thus, it takes a long time to pump
out water with limited backup power generators. After seawater has been pumped out, MTA needs extra
effort to clean the salt deposits and debris, inspect, test and repair the electrical components to guarantee
the safety of train operations. Unfortunately, not only the resilience of electric power has a significant
impact on the recovery of the subway system, the repairing process of electric power systems is strongly
influenced by the subway as well because the subway shutdown creates difficulty for ConEd crews to reach
faulty components.

4.2 Network Construction

Lessons learned from Sandy has indicated that the lack of sufficient backup power decreases the recovery
efficiency due to the failure of conventional pumping systems. Hence, backup generators (e.g., diesel
generators) or local energy storage devices should be prepared in case of power failures. For instance,
Verizon’s Garden City central office powered by seven fuel cells has saved it from the loss of power
(Kwasinski 2013). Thus, Microgrids can be adopted to supply power to local users when the centralized
power distribution network breaks down as what has happened during Sandy. In this case study, we construct
a 20-node interdependent network illustrated in Fig. 4, where each microgrid node 1-10 represents a local
backup generator located at the corresponding subway station 11-20. Transmission lines in red connect the
microgrid so that loads of each node can change due to its working status. The blue lines construct three
simplified subway lines. Let Xi = 1 be the state of normal operation while Xi = 0 indicates the failure of
node i.

Backups can fail and we set up the failure model of the microgrids based on our previous work (Huang
et al. 2017a). The failure of microgrids at subway stations can lead to the meltdown of the public transit
system. For example, if subway station 17 is out of service due to the power outage of node 7, the entire
line 4/5 has to suspend as trains cannot get through. On the other hand, the subway system affects the
microgrids through reward ri(xΩ̄i

) of node i. We adopt the proposed framework to illustrate how we achieve
the resilience of the microgrids and the subway lines under our optimal policy. For each node i, Ai = 1

1102



Huang, Chen, and Zhu

Figure 4: Network representation of the suggested interdependent microgirds and subway system at the
lower Manhattan and downtown Brooklyn area. Red and blue links represent power and subway lines,
respectively. Power nodes are indexed from 1 to 10 while the coupled subway stations are indexed from
11 to 20. The size of node i is proportional to its reward ri(xΩ̄i

), indicated by the people flow density data
from the MTA website. Power and subway nodes of the same place inside one yellow circle share the
same local reward.

means to repair or maintain the node based on the state of the node. On the other hand, Ai = 0 means that
no action is taken.

The coupling of the power and subway system exists as an illustration of the interdependent infrastruc-
tures. The failure of microgrids at subway stations can lead to the meltdown of the public transit system.
The subway system affects the microgrids through reward ri(xΩ̄i

) to node i.

4.3 Computation Result

Table 1 shows that the weight of each node obtained by ALP follows the same ordering as the local reward
except for node 1 and 5. This result arises from the fact that the topology of the network has less influence
on the weight than the local reward. The centralized and the distributed search methods yield the same
policy as indicated by Thm. 1 and the optimal policy satisfies the pattern stated in Thm. 2. The optimal
policy is not to just myopically repair defective nodes but also maintain some healthy nodes to achieve
a long-term system-wide performance. For instance, we observe that the policy of the most critical node
(WTC) is not repaired only when node 6 and 7 are both working as shown in Fig. 5. We choose to maintain
node 7 when X6 = 0,X7 = 1 to prevent node 7’s outage in later stages. Other neighboring nodes 6 and 8
are not influential on the policy of node 7 because they have relatively small weights as shown in Table 1.
As for the computation complexity, it takes the centralized search method about 13843.7 seconds to solve
the case after weights w are computed while our distributed search process requires only 2.1 seconds.

4.4 Simulation Result

We choose X = 1 as the initial state and show the system resilience under our optimal policy in Fig. 7.
Averaged under 50 iterations, the data of the y-axis shows the average number of working nodes and also
measures the resilience of the system. Without controls, although the prior failure probability is set to a
small number 0.01, cascading failure still occurs, and the survival number of nodes quickly decreases to
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Table 1: Results of ALP with all nodes controllable.

Node Index and Name Local Reward ri(xΩ̄i
) Weight wi

1 Jay St. 11 15.3215 18.5749
2 Court St. 12 7.1197 8.7800
3 Clark St. 13 2.4738 3.8601
4 High St. 14 2.9452 3.9617
5 Broadway 15 15.7205 17.5535
6 Chamber St. 16 14.1986 14.2076
7 WTC 17 20.4828 25.2162
8 Fulton St. 18 1.7065 2.6374
9 Wall St. 19 9.3785 11.2510

10 Bowling Gr 20 10.6528 12.8872

zero. On the other hand, our optimal policy repairs the proper nodes so that the system quickly recovers
and stays at the healthy state X = 1. The variance of the subway system is larger than that of the microgrid
because one subway station out of service makes the entire line break down.
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Figure 5: The blue circles at the top two sub-
figures show the state transition of node 7 and 6
respectively. The subplot at the bottom shows the
corresponding action of node 7.
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Figure 6: Variations of the average number of work-
ing nodes when only node 7 (WTC) and node 8
(Fulton St.) are controllable. The red dots indicate
an average number of the working node with error
bars shown in blue.

We compare three other policies. Policy 1 is a straightforward strategy, i.e., to repair every faulty node
and leave alone working nodes. Policy 2 represents a random strategy that chooses to restore each outage
node with probability 4/5 and repair each non-outage node with probability 1/5. Taking no action is
applied as policy 3. Our simulation results show that policy 1,2,3 achieve the value of 979.81,947.17 and
796.87 with initial state X = 1, while our optimal policy achieves a higher value of 985.44. The optimal
value obtained by ALP is 989.2963, which is close to the ‘actual value’ obtained from the simulation. Note
that it is computationally expensive to directly solve the exact LP. We can approximate the exact value by
simulating over a long horizon and averaging over a sufficient large number of samples.

Finally, we study the case when only part of nodes is controllable. In Fig. 6, we maintain the resilience
of some nodes with a sparse manageable set. For example, optimal control of nodes 6 and 8 keeps on
average four nodes healthily working. More controllable nodes lead to a larger value function as shown
in Fig. 6 and the growth is approximately linear with the size of controllable nodes.
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Figure 7: The resilience of the microgrid and subway system with and without the optimal policy. The
dot indicates the mean value while the error bar shows the variance of the sample trajectory. Our optimal
policy largely reduces the variance and thus makes the system more stable.

4.5 Large-scale Demo

We illustrate the cascading failure of a two-layer network (https://drive.google.com/drive/u/0/folders/
0B6-Q8-SnvO6lYmlxX2FuN3ZuV1U) with 100 nodes representing mixed components. The failure prob-
ability of each node is proportional to the number of its connected faulty nodes and is illustrated via the
color bar. A lighter color corresponds to a higher failure probability, and the white color means the node
has failed. If a node is repaired or maintained, then it will not fail in a few stages afterward and is shown in
black. We introduce both edge-based and node-based resilience metrics, i.e., connectivity and the reward
of the working nodes, respectively. They are normalized to 100 with their maximum values. As we can see
from the video demo, the system starts with a two-node failure and propagates to the neighboring nodes
quickly without effective controls.

On the contrary, the dynamic recovery demo shows how the network can recover quickly and wholly
from the catastrophic event where almost all nodes fail. Also, the resilient planning manages to maintain
a stable, healthy state of the entire network in the long run after the recovery. We assume that the limited
resources can only support one node recovery at each stage to obtain a clear visualization. Our optimal
control policy achieves a tradeoff between a high-level resilience and the cost it takes.

5 CONCLUSION

In this paper, we have formulated a factored MDP model for large-scale ICIs and significantly reduced the
complexity of computing optimal policies. A distributed optimal control policy is designed to enhance the
resilience and security of ICIs. The proposed framework has been applied to a case study motivated by
Hurricane Sandy. We have shown that our policy manages to harden the security by reducing the failure
probability and achieve resilience by acting on proper nodes. Moreover, the cost achieved by the found
policies is the lowest. The framework developed in this work would be useful to mitigate large-scale
infrastructure networks through optimal dynamic resilience planning. Even with a small subset of hardened
nodes through planning, we have observed a sizable loss reduction for extreme events. We have used
microgrids and subway systems in lower Manhattan and downtown Brooklyn as a case study to illustrate
the significant resilience improvement in event of Hurricane Sandy. Our framework can be applied to
develop resilience policies for other interdependent infrastructures including water distribution systems,
food systems, data centers, and communication infrastructures. The future work would aim at understanding
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implementation and resource constraints on the policies and developing a large-scale solver that would
provide usable infrastructure solutions.
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