
Proceedings of the 2018 Winter Simulation Conference 
M. Rabe, A.A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds. 
 

 COMPARISON OF DATA ANALYTICS APPROACHES USING SIMULATION 
 
 

Sanjay Jain Anantha Narayanan 
  

George Washington University  University of Maryland  
Department of Decision Sciences Department of Mechanical Engineering 

Funger Hall #415, 2201 G Street NW  Glenn L. Martin Hall, 4298 Campus Dr. 
Washington, DC 20052, USA College Park, MD 20742, USA 

  
Yung-Tsun Tina Lee 

 
National Institute of Standards and Technology 

Engineering Laboratory 
100 Bureau Drive 

Gaithersburg, MD 20899, USA 
 
 
ABSTRACT 

Manufacturers need to quickly estimate cycle times for incoming orders for promising delivery dates. This 
can be achieved by using data analytics (DA) / machine learning (ML) approaches. Selecting the right 
DA/ML approach for an application is rather complex. Obtaining sufficient and right  type of data for 
evaluating these approaches is a challenge. Simulation models can support this process by generating 
synthetic data. Simulation models can also be used to validate DA models by generating new data under 
varying conditions. This can help in the evaluation of alternative DA approaches across expected range of 
operational scenarios. This paper reports on use of simulation to select an approach to support the order 
promising function in manufacturing. Two DA approaches, Neural Networks and Gaussian Process 
Regression, are evaluated using data generated by a manufacturing simulation model. The applicability of 
the two approaches is discussed in the context of the selected application. 

1 INTRODUCTION 

Initiatives for advances in manufacturing, such as Smart Manufacturing, Industry 4.0, etc., call for 
exploiting the large volumes of data now available through ubiquitous sensors, to improve decision making 
by using Data Analytics (DA) and Machine Learning (ML) approaches. Though DA and ML are technically 
different, we use DA to cover both terms in this paper. The selection of the right DA approach is rather 
complex and requires significant expertise and effort. Manufacturing industry comprises of a wide range of 
configurations generally grouped into process and discrete production with multiple variations within each. 
Production of the same product by different companies may be set up using different philosophy. For 
example, a discrete product may be made using an assembly line setting, a batch production setting, or a 
job shop depending on the volumes and customization provided.  Production systems may be configured 
differently even within the same production setting. For example, the division of work between sub-
assembly lines and main line can vary for assembly lines for the same product. Beyond physical 
configuration, the operational policies can vary between push and pull, again with multiple further 
classifications within each. The level of technology employed to collect data and support real time decision 
making is another  aspect with large variety. It is thus difficult to develop one approach that is applicable 
for manufacturing industry given the complexity due to the variety of product configurations, production 
system configurations, operation policies, and technology employed. 

1084978-1-5386-6572-5/18/$31.00 ©2018 IEEE



Jain, Narayanan, and Lee 
 

A number of DA approaches have been developed over the years, and new combinations continue to 
appear with ongoing research efforts.  DA applications have been classified as descriptive, diagnostic, 
predictive, and prescriptive. DA approaches can fit multiple application classes. For example, Jain et al. 
(2017) discuss the use of simulation in diagnostic, predictive and prescriptive analysis roles and as a support 
application for other DA approaches. Recent efforts have focused on data-driven approaches to glean new 
learning from the data, and thus go beyond the modeling approaches based on known theoretical 
frameworks of systems. Such approaches include neural networks (NNs), Gaussian process regression 
(GPR), Bayesian networks, support vector machines (SVM), etc. It is rather complex to identify the 
approach that will work best for an application. In particular, the expertise required to identify the best 
approach for an application may not be generally available in manufacturing organizations.   

This paper presents a simulation based approach for evaluating two DA approaches, NNs and GPRs, 
for a potential application in manufacturing. The two approaches were selected for this evaluation based on 
the reports in literature indicating these approaches generally worked better than other approaches (for 
example, see Scholz-Reiter et al. (2010)). The next section reviews relevant applications of NNs and GPRs 
in manufacturing and comparative evaluations of the two approaches in general. Section 3 discusses the use 
of simulation for generating the data for training and testing the two approaches. Section 4 describes our 
implementation of NN and GPR for predicting throughput in a small job shop environment, and Section 5 
presents the experimental set-up used for this study. The results are presented and discussed in Section 6, 
and the last section concludes the paper.  

2 RELATED WORK 

This section identifies applications of NNs and GPR in manufacturing process and system control. Section 
4 provides more technical details about NNs and GPR models and how we use them. For theoretical 
background on NNs and GPR, we refer the reader to Haykin (2004) and Rasmussen (2004). There are a 
number of applications of both approaches in maintenance area but they are not included due to space 
constraints. Comparative applications of the two approaches are included that are from outside of 
manufacturing due to lack of such works in manufacturing context. 

2.1 Neural Networks for Manufacturing Applications 

A number of applications of NNs have been proposed in the manufacturing domain at the process level 
with a few examples included here. Li et al. (2015) use a back propagation NN to optimize the cutting 
parameters in sculpted parts machining. The approach is shown to select process parameters leading to less 
machining time, less energy consumption, and better surface roughness compared to traditional approach 
for a test piece. Ding et al. (2016) use a NN for identifying the relationship between process parameters and 
aluminum bead geometry in arc-welding based additive manufacturing process. The authors use a Taguchi 
design for efficient data collection for training the NN. The weld settings are then selected based on the NN 
model.  Khorasani and Yazdi (2017) similarly use a NN for identifying the relationship between milling 
process parameters and surface roughness of the product with a training data set collected using a full 
factorial design of experiment. 

Recent reported applications of NN at levels higher than processes in the manufacturing management 
hierarchy are harder to find.  Scholz-Reiter et al. (2010) cite an example of use of NN for dispatching rule 
selection from 2006 and a few other similar papers from the last millennium. Recently, Miller et al. (2014) 
train a NN for estimating the assembly times of vehicle sub-assemblies using geometric part information 
as inputs. The authors evaluate more than a hundred architectures of NN and use the top five to generate 
probability density plots of estimated assembly times. They achieved moderate success using this approach 
with predicted values falling within a +/-15% range of the associated target value. Rehman et al. (2016) 
develop a NN for estimating organization performance measures based on green manufacturing data on 
design initiatives, standards adaptation, purchasing, disposal, etc. for companies in the Indian industry. The 
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developed NN is applied to a steel company and was found to be useful in verifying company’s initiatives 
and for providing further guidance. 

2.2 Gaussian Process Regression for Manufacturing Applications 

GPR applications in manufacturing focus at process level similar to NN applications and again a couple 
representative examples are provided here. Bhinge et al. (2014) use GPR methods to predict the energy 
used to machine a part based on machine monitoring data. They process the raw machine monitoring data 
into derived data that is then further process through a cutting simulator to generate operation parameters.  
GPR is applied with operation parameters as inputs and power consumption as output to develop an energy 
prediction model. Liu et al (2015) utilize an ensemble GPR approach to predict a measure of viscosity of 
the product of an industrial rubber mixing process based on parameters and recipes. The authors also include 
the ability of GPR based approach to generate uncertainty measures for the predictions as an advantage 
over other available approaches for the purpose. 

2.3 Comparison of NNs and GPR 

There are a handful of efforts available in literature that compare NNs and GPR in application settings. 
Goebel et al. (2008) compared three DA approaches, NNs, GPR, and Relevance Vector Machines (RVM), 
for prediction of remaining useful life based on damage for a rotating aerospace equipment on test stand. 
The set up was limited to a small damage data set given the expensive set up. The authors found NNs 
performance was dependent on choice of data and the design of its architecture.  Performance of GPR was 
similarly dependent of the choice of the covariance function used but it offered the advantage of providing 
confidence bounds around mean predictions. GPR was identified as scaling typically as O(n3) with the 
number of training data points and thus would demand high computation power and time. The authors also 
indicated the need for domain specific measures to compare performance beyond accuracy. 

Scholz-Reiter et al. (2010) compare GPR with NN and other approaches for dynamically selecting 
dispatching rules in production scheduling. They train the approaches using utilization and due date 
tightness as inputs and tardiness as outputs. They found that GPR generally outperformed other approaches 
including NN. Interestingly, their results differ from all other comparative studies as they indicate that GPR 
is outperformed by NN for smaller learning data sets.  They identify some issue with hyperparameter setting 
of GPR for this anomaly and propose to further investigate it. 

Ahmed et al. (2010) compared eight machine learning approaches including multiple variations of NNs 
and GPR for business-type time series. They used monthly time series of the benchmark M3 competition 
data (IIF 2017) for the study. The multilayer perceptron (MLP), referred to as NN in this paper, and GPR 
were found to be the top performing approaches. The performance was found dependent on the 
preprocessing of the data with MLP performing best for the commonly used lagged-value and moving 
average techniques. GPR was found to have second best performance with the two preprocessing techniques 
but was found to be robust for the difference technique also. 

Chen et al. (2014) compare GPR with NN for wind power forecasting and find that GPR provided 9-
14% improvement over NN for two large data sets. They note the advantage of GPR improved to 17% for 
the third data set with limited amount of training data. 

Kamath et al. (2018) compare the two for representing potential energy surfaces in molecules with more 
than 3 atoms. They found the GPR outperformed NNs, that is, achieved higher accuracy with smaller data 
sets used for fitting. However, they point out that GPR is slower compared to NNs and needs training data 
points that are sufficiently far apart. NNs can  work with overlapping data points, but can suffer from 
overfitting. NNs were considered easier to build and recommended when the cost of data collection is low. 
The authors suggested that both approaches can gain from optimized sampling of the training data points. 

The comparative studies report above do draw some common conclusions across the widely different 
application areas. GPR appears to have an accuracy advantage over NNs when training data size is limited. 
Also, GPR is identified as computationally expensive approach compared to NNs. Only one comparative 
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study by Scholz-Reiter et al. (2010) mentioned above used a manufacturing application scenario and 
interestingly it differed in its assessment of GPR performance for smaller data sets from all the other studies 
cited above. The different results suggest that the performance of the DA approaches may depend on the 
application. With the push towards smart manufacturing there is a need to evaluate the potential 
manufacturing system level planning and control applications of DA approaches.   

3 DATA GENERATION USING SIMULATION 

DA approaches such as NN and GPR require data for training the respective models that can be used in a 
predictive capacity. While the models can provide predicted outcomes for input data for situations that were 
out of the coverage range in the training data, such predictions may have low accuracy. It is best to have 
such predictive models be trained across the range of situations that they will then be required to assess. 
For manufacturing applications, it can take a long time and lot of effort to collect such data from the real 
manufacturing system. Simulation models of manufacturing allow the option of creating a range of 
situations in the virtual representation and collecting the necessary data for training the predictive models. 
 Also, it is generally difficult to access data from manufacturing organizations for researchers. This 
paper, hence, uses a virtual factory prototype, essentially a multi-resolution simulation model of 
manufacturing, for generating the data. This section provide brief information on the use case, the virtual 
factory prototype and the set-up for data generation. The reader is referred to Jain et al. (2017) for more 
details. 

3.1 Use Case 

The use case for this work is based on the order promising scenario for a small job shop that produces three 
part types that are essentially the same part but produced using different materials: aluminum, titanium, and 
steel. The small job shop consists of a turning cell with 4 machines and a milling cell with 2 machines. All 
parts go through two operations, the first one being in the turning cell and the second one in the milling 
cell. Each arriving batch goes from a raw material stock to a finished good area after being successively 
processed in the two cells. Each batch is composed of ten parts. Each type of part requires different value 
ranges of machine parameters leading to different processing times. Orders are received at the source and 
specify the part type and the number of parts to be processed in the shop. In the base scenario, the order 
frequency follows a normal distribution with a mean of 60 minutes. The order frequency is varied to mimic 
different load levels in the shop. 

Customers place orders for defined quantities of one of the three part types. The planner performing 
the order promising function has to provide an expected shipment date for the order. It is complex to 
estimate the shipment date as it can vary based on several factors including the ordered quantity, current 
load on the shop, and machine failure characteristics. Simulation models that use the current situation on 
the shop floor as the starting condition can be used for estimating the shipment date, but it can take time to 
generate such estimates and may require more expertise than a typical planner may have. Also, the company 
wouldn’t want to have customers wait for several minutes for finding out the shipment date.  The planner 
needs to be supported by an application that generates shipment date estimates for proposed orders within 
seconds. The two DA approaches are being evaluated to meet the need for estimating the cycle time for an 
incoming order based on the current conditions on the shop floor.  

3.2 Virtual Factory Prototype 

The virtual factory prototype is an initial effort towards implementing the virtual factory concept described 
in Jain et al. (2017). The prototype allows development of integrated multi-resolution model that can be 
executed at the selected resolution. The levels include a physics-based process representation, an agent 
simulation based machine representation, and a discrete event simulation based cell or factory 
representation. It includes the capability of reading in data files describing a small manufacturing system, 
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generating a discrete event simulation model using a library of machine level models, executing the model 
together with a basic animation, and generating selected output graphs.   

3.3 Data Generation Set-up 

The data generation set-up is shown in Figure 1. The virtual factory model has been set-up with standards 
based interfaces. The input files include manufacturing configuration data in Core Manufacturing 
Simulation Data (CMSD) standard format (SISO 2012), machine instructions in STEP-NC format (ISO 
2007), and some custom formats for machine data. The virtual factory model is generated mostly 
automatically using the input data files together with the library. Following the execution of the model, in 
addition to the standard results generated by the simulation software, output files are generated using 
standard formats as shown in the figure. The factory data files in Business To Manufacturing Markup 
Language (B2MML; MESA 2013) are used for training the DA approaches for this study. 
 

Figure 1: Data generation using virtual factory prototype.  

4 METHOD IMPLEMENTATIONS 

4.1 Neural Network Implementation 

The NN implementation was described in Jain et al. (2017) and is briefly summarized here. Artificial Neural 
Networks (ANNs) are a type of predictive model that consist of an input layer, a number of hidden layers, 
and an output layer. Each layer consists of one or more neurons, and the neurons between layers are 
connected by weighted edges. The neurons of the input layer correspond to the known system variables, 
and the neuron in the output layer corresponds to the metric to be predicted. The ANN consists of a series 
of linear and non-linear transformations that turn the input variables to the output metric. During training, 
the weights on the edges of the NN are adjusted to produce the correct output value for each combination 
of input values from a training data set. 
 In this work, the output value to be predicted is the duration expected to complete an incoming job. The 
input values are the number of parts in the job, the material type, and the current load on the system. The 
current load on the system is modeled by a triplet (nA, nS, nT), which denotes the parts of material type 
aluminum, steel, and titanium currently being processed in the system. The NN had one hidden layer with 
ten neurons. We generated a large data set from simulations. The data set was split into two parts, one for 
training the NN, and the other for validating the trained NN model. The details of the NN implementation 
and the results of the validation are described in detail in Jain et al. (2017). 

Factory data  
(B2MML) 

Factory flow 
data (B2MML) 
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4.2 Gaussian Process Regression Implementation 

Gaussian process regression (GPR) is a probabilistic method of interpolation to determine a target value 
from given inputs. Instead of computing a single polynomial with a fixed number of parameters to fit the 
training data, GPR determines a distribution of random functions that best fit the data. The distribution of 
random functions that fits the data (called the posterior) is determined from a prior distribution of random 
functions, which is defined by a covariance and mean. GPR uses a Gaussian distribution for the priors.  

The goal of GPR is to determine an unknown target function f(x) from the prior distribution and some 
known data points. To define the prior distribution, we use a kernel function that approximates the 
covariance, which is a measure of the geometrical distance of closely located input points and their 
corresponding function values. The chosen kernel function determines the geometrical shape of the target 
function, and depends on the scenario and data we are interested in. There are many choices for the kernel 
function. In this study, we chose the radial basis function (RBF), also called the squared exponential, which 
is a commonly used in many situations.  

The squared exponential covariance function is defined as below: 
 

 𝐾(𝑥, 𝑥ᇱ) =  𝜎ଶ𝑒𝑥𝑝 −
1

2
ቆ

𝑥 − 𝑥′

𝑙
ቇ

ଶ

൩ (1) 

 
where, 𝐾(𝑥, 𝑥ᇱ) represents the covariance function for the pair of inputs x and x’, and 𝜎 and l are the 
hyperparameters that represent the amplitude and length scale, respectively. The amplitude signifies the 
overall magnitude of the covariance value, and the length scale indicates the relevance of the input features 
to the response y. In simple terms, adjusting 𝜎  changes the overall magnitude of the covariance, and 
adjusting l changes the smoothness of the target function curve. These hyper parameters must be tuned 
appropriately to obtain a good target function that matches the data. 

5 EXPERIMENTAL SET-UP  

The data generation using the virtual factory prototype is described in Jain et al. (2017), and summarized 
briefly in Section 5.1. Section 5.2 describes the data generated for training and validation for this study. 

5.1 Data Generated using the Virtual Factory Prototype 

The virtual factory prototype was used to mostly auto-generate a model of the small job shop described in 
Sections 3.2 and 3.3. The execution was set up to run primarily at the cell level of detail using the discrete 
event simulation model in the hierarchy of models generated in the prototype for the scenario.  
Corresponding to the execution at the cell level of detail, the model was set up to generate the factory flow 
data files in B2MML format (MESA 2013) while the generation of machine event data stream was disabled. 
In the simulated scenario, raw material is processed through a turning cell, and then a milling cell, and then 
ends in the finish goods area. The simulation of failure and repair time of machines is included. The time 
to failure follows an exponential distribution with a mean time between failures (MTBF) defined in the 
virtual factory model. The machine model remains in the failure state for a sampled value of repair time. 
The repair time follows an exponential distribution with a mean time to repair (MTTR) also defined in the 
virtual factory model. 
 Two different B2MML files were generated. First file recorded the total number of parts produced for 
each part type and the total duration to produce those parts. The second file recorded the following 
information for each order completed: ID, start and end times, part type and number of parts ordered, and 
the load of the factory at the time the order was released captured as number of parts of each of the three 
part types in process in the job shop at the time. The B2MML files are converted to comma-separated value 
(CSV) format to facilitate further processing by the DA approaches. 
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6 RESULTS AND DISCUSSIONS 

In this section, we discuss the results of the tests. First we look at the overall prediction by the GPR model, 
and compare it with the performance of the NN. Figure 2 shows the graph of the predictions for the test 
data set. The predicted values from the GPR model are represented by a blue line with diamond markers, 
the predictions of the NN model are represented by a green line with ‘+’ markers, and the corresponding 
test ground truth values are represented by an orange line with dot markers. The gray area represents the 
confidence bounds of the GPR prediction, up to one standard deviation above and below the mean. Note 
that the x-axis is simply a sequence of incoming orders – and does not show the other parameters associated 
with that order. Each point on the x-axis corresponds to a point in the test data set that includes the following 
values: the number of parts in that order, the material type for that order, and the current load on the factory 
denoted as a triplet (nA, nS, nT). It is expected that in a realistic system, the parameter representing load on 
the system will be a continuously monitored variable of the system, rather than a part of the order 
specification. For the purpose of our study, we denote this parameter explicitly as an input parameter. 

In the case of the GPR model, the root mean squared error (RMSE) was 1626 seconds, and the mean 
absolute error (MAE) was 1241 seconds for the test data set. The hyperparameters of the model were 
empirically chosen. The mean duration in the test data set was 61426 seconds. This represents an error of 
about 2% on average in the predicted order-completion duration. The NN model had a poorer performance, 
with an RMSE of 4013 and MAE of 2414. As can be seen in Figure 2, the NN model performance suffers 
in the range of orders between Order Number 200 and 500, which corresponds to a high load on the system 
in the test set. The GPR performs better in this region, and not only produces more accurate average 
predictions, but also provides confidence bounds that reflect the confidence in the prediction, which can 

help decision making. 
It may be possible to tune the models to further reduce the errors. From the test results, it can be 

observed that the predictions of both models are less accurate in the range of orders corresponding to the 
factory being under heavy load in the simulation, as seen by the orders that require a long duration to 
complete from the moment of order arrival, due to the number of jobs already running on the machines and 
waiting in the queues. For clarity and comparison, Figures 3 and 4 show expanded views of different 
portions of the same test data in Figure 2. Notice the difference in order duration on the y-axis of the two 

Figure 2: Order-completion duration predictions for test data. 
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figures. For the high duration orders in Figure 4, it can be seen that the predictions are less  accurate. Some 
additional model tuning may be performed to address this portion, and is left as future work. 

Generating data from simulations allows us to build and test these predictive models, and pay close 
attention to different system conditions, such as light load versus heavy load. Such comparisons are harder 
to make if we relied only on real factory data.  

Figure 3: Order-completion duration prediction for test data at low load levels. 
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Figure 4: Order-completion duration prediction for test data at high load levels. 
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Our training data in the above example consisted of 800 training points from simulated data. As an 
experiment, we performed the training on a highly reduced training set of only 40 points (choosing every 
20th in the original training set). Surprisingly, this reduced training set produced good predictions on the 
same data set, with only a slightly larger error. The GPR model had RMSE of 2938 seconds, while the NN 
model had an RMSE of 8670 seconds. The GPR model performed significantly better on the reduced 
training set. The error in the predicted duration is still quite small, compared to the average order-
completion duration of 61426 seconds. Figure 5 shows the reduced training set. The important point to note 
is that the reduced training set still has good coverage over the range of duration values observed. The 
predictions for corresponding models are shown in Figure 6. In real factory situations, getting quality 
training data may often prove difficult. Simulated data such as this can be used to quickly evaluate the 
performance of different models, and make an appropriate choice of model to train on the limited factory 
data. The performance of the models has been summarized in Table 1. 

 

 

 The training time for GPR models increases as the data sets become large, and can become 
computationally expensive over large data sets. In our tests, the training times for the GPR model using the 
full training data and the limited training data were 75 milliseconds and 3 milliseconds, respectively. While 
the individual model training times may be improved by optimizing the code and improving system 
hardware, the relative times are indicative of the time savings when the model can be trained with less data. 
In our study, GPR proved to be a good model for training over smaller data sets, as long as the data sets 
had a good coverage over the expected operational range of the system parameters. In real factory scenarios, 
it may be difficult to quickly build a data set that has this kind of coverage. Our study using simulated data 
shows that GPR model performs very well with limited data. The simulations can be a guide to obtain good 
factory data over the required range of values, and train a good predictive model with limited data. 

 
 
 

Figure 5: Reduced training data set. 
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Table 1: Performance of machine learning models. 

Model Data Set RMSE MAE 
GPR Full 1626 1241 
NN Full 4013 2414 
GPR Limited 2938 2008 
NN Limited 8670 6353 

  

7 CONCLUSION 

In this paper, we studied GPR as a machine learning model to predict throughput for a small job shop. We 
compared the GPR model with an NN model for the same purpose. A simulation of the job shop was used 
to generate data under varying load conditions, and the generated data was used to train and validate the 
machine learning models. Being able to generate synthetic data from simulation models allows us to build, 
test, and compare different machine learning models, which would be difficult to do if access to real factory 
data is limited. Our results showed that the GPR model performed better than the NN model, especially 
when the factory is operating under the high load condition. The GPR model also performed well when 
trained using limited data, while the NN model predictions were less accurate when trained with limited 
data. Testing these models using the simulation allows us to choose a machine learning model based on 
data availability and prediction accuracy. This allows manufacturers to build a data analytics and decision 
guidance system when real factory data is limited or not yet available. The GPR model also provides 
confidence bounds for its prediction which can help decision making. 
 Future directions under consideration include testing the DA and ML approaches for models of larger 
manufacturing systems, enhancing the virtual factory prototype for the purpose, generating a benchmark 
data set for comparing DA and ML approaches, and testing additional DA and ML approaches. 
 

Figure 6: Predictions on reduced training data set. 
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DISCLAIMER   

No approval or endorsement of any commercial product by the National Institute of Standards and 
Technology (NIST) is intended or implied. Certain commercial software systems are identified in this paper 
to facilitate understanding. Such identification does not imply that these software systems are necessarily 
the best available for the purpose.  
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