
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A.A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

SIMULATION ANALYSIS OF A DEEP REINFORCEMENT LEARNING APPROACH FOR

TASK SELECTION BY AUTONOMOUS MATERIAL HANDLING VEHICLES

Maojia Patrick Li Amlan Ganguly

 Prashant Sankaran Andres Kwasinski
Michael E. Kuhl Raymond Ptucha

Industrial and Systems Engineering Department Computer Engineering Department

Rochester Institute of Technology Rochester Institute of Technology
Rochester, NY 14623, USA Rochester, NY 14623, USA

ABSTRACT

The use of autonomous vehicles is a growing trend in the material handling and warehousing. Some

challenges that face material handling include the navigation within a warehouse, precision localization and
movement, and task selection decisions. In this paper, we address the issue of task selection. In particular,
we develop a deep reinforcement learning methodology to enable a vehicle to select from among multiple
tasks and move to the closest task in the context of material handling in a warehouse. To evaluate the deep
reinforcement learning methodology, we conduct a simulation-based experiment to generate scenarios to
first train and then test the capabilities of the method. The results of the experiment show that the method

performs well under the given conditions.

1 INTRODUCTION

The use of autonomous vehicles is a growing trend in the material handling and warehousing. Companies
have used Automated Guided Vehicles (AGVs) for decades where vehicles travel along a guided path
making scheduled stops to pick-up or drop-off items. However, as technology has advanced, a new
generation of material handling equipment is being developed. In particular, the automated technologies

that enable self-driving cars, collision avoidance systems for the automotive industry are beginning to be
applied to material handling. Some challenges that face material handling that are different than the
automotive industry include the navigation of vehicles indoors (without GPS), precision localization and
movements, and task selection decisions, among others.
 To address the issues of control and decision-making of autonomous vehicles in the context of material
handling, we are developing what we call an intelligent Material Handling (iMH) system which we feel

will represent the next major step in the advancement of warehouse productivity and safety. iMH integrates
mapping and localization, sensors, computer vision, communication, and decision-making for autonomous
vehicles in a warehouse setting. As part of this effort, we are developing machine/deep-learning approaches
to enable adaptability of a fleet of autonomous vehicles to a facility and refined situational decision-making.
In particular, we are interested in the problem of task selection. That is, if a fleet of vehicles has a list of
tasks to complete, how can vehicles autonomously determine task selection to complete the list of tasks as

efficiently as possible? Given this goal, the focus of this paper is on task selection for a single vehicle that
is given multiple alternatives to select from among. We develop and conduct a simulation study on a deep
reinforcement learning methodology in the context of material handling to enable a vehicle to select and
move to the closest task given the layout and obstacles (racks, pallets, etc.) of a warehouse.

The remainder of the paper is organized as follows. In Section 2, we present a review of related work.
In Section 3, we develop the deep-learning methodology. We discuss the simulation-based experiment in

Section 4 and the results in Section 5. Finally, conclusions and future work are presenting in Section 6.

1073978-1-5386-6572-5/18/$31.00 ©2018 IEEE

Li, Sankaran, Kuhl, Ganguly, Kwasinski, and Ptucha

2 RELATED WORK

Much of the available research on autonomous vehicle systems focuses on vehicle navigation and path
planning. The early industrial autonomous vehicles, which are usually referred as automated guided
vehicles (AGV) are navigated by physical guide path such as, buried wire or magnetic tape. Such a system
requires floor alternations and reduces the flexibility of vehicles. The second generation of autonomous
vehicles use wireless guidance systems, such as laser and inertia systems, to overcome these issues. Thanks

to the recently advanced deep learning and computer vision techniques, we now have the next generation
of autonomous vehicles, which rely on vision-based guidance systems. These vehicles can localize
themselves and track pre-determined paths with a minimal level of supervision. Researchers have been
trying to implement vision guidance systems on autonomous vehicles since the early 2000s. Fang and Xie
(2004) combines three navigation modules to help autonomous vehicles follow a designated path. The main,
conflict-free, and special navigation modules are used for lane recognition, obstacle detection, and special

landmark identification. Ramer et al. (2015) implemented a data fusion technique to integrate information
collected by cameras, odometer, LIDAR, and collision avoidance sensors for the purpose of navigation.
 As autonomous vehicles are no longer constrained by a guide path or artificial landmarks, it becomes
more challenging for the vehicles to find an efficient and safe path to the destination. The most common
approach is to convert the floor plan into a grid map so that the vehicle will search for the shortest, obstacle-
free path. Martínez-Barberá and Herrero-Pérez (2010) compare A* (Hart et al. 1968) and D* (Stentz 1994)

algorithms for autonomous vehicle path planning within a partially structured warehouse. Jeon et al. (2011)
propose a routing method for autonomous vehicles in container terminals using a Q-learning algorithm.
Herrero-Perez and Martinez-Barbera (2010) introduce a hierarchical approach to reduce the computational
cost for path planning. The two-level approach uses a topology map to store high-level description of the
environment and grid maps for local information. Another hierarchical approach proposed by Contreras-
Cruz et al. (2015) combines an artificial bee colony algorithm and an evolutionary programming algorithm.

 Despite the considerable amount of recent research on autonomous vehicle navigation and path
planning, few researchers have focused on the task assignment problem. Egbelu and Tanchoco (1984)
classifies autonomous dispatching into vehicle-initiated and workstation-initiated problems. In a
workstation-initiated problem, there are multiple available autonomous vehicles and one transportation
request. In contrast, a vehicle-initiated problem refers to the circumstances where multiple requests are
waiting but only one autonomous vehicle is available. Egbelu and Tanchoco (1984) show that the

performance of an autonomous vehicle system is mainly governed by the vehicle-initiated problem.
Summaries of researches about vehicle-imitated problems can be found in several reviews (Le-Anh and De
Koster 2006; Fazlollahtabar and Saidi-Mehrabad 2015). Two of the most popular dispatching methods are
policy-based dispatching rule and optimization techniques. However, these approaches, for instance the
shortest travel distance (STD) rule, assumes that the vehicle can easily determine the distance from its
current location to each request’s pickup location. Such an assumption is not held for vision-guided vehicles

as it has a large number of options to move from one location to another. One possible approach is to utilize
A* or reinforcement learning based technique to compute the distance from the vehicle to each potential
destination and then compare their distances. However, such an approach will lead to high computational
cost and the distance information of the unselected requests are usually discarded.

3 METHODOLOGY

We propose a deep reinforcement learning based decision-making framework where the system makes

decisions based on the current situation or current state in a dynamic environment. The decision-making

framework is represented in Figure 1. The autonomous agent will interact with the environment through

control hardware and collects sensory inputs (current situation or state representations), which is

preprocessed into state data, containing the current layout represented as a multi-dimensional array

including the current location of the agent, tasks and obstacles in the layout. This state data is fed into the

decision support system for task selection.

1074

Li, Sankaran, Kuhl, Ganguly, Kwasinski, and Ptucha

Figure 1: Deep reinforcement learning based decision-making framework.

 The decision support system, illustrated in Figure 2, takes the state input and translates it into the virtual

environment and performs a search operation to find a task by virtually moving the vehicle using available

control. With regards to deep reinforcement learning the reward system design within the virtual

environment is critical in enabling the agent to learn appropriate policies and improve the search process,

thereby leading to selection of the best task. The virtual environment is exited once a task is selected and

the result thus obtained is returned as an output of the decision support system. Further, the system will also

be able to measure its own performance based on future state input and thus improve.

Figure 2: Illustration of the decision support system.

1075

Li, Sankaran, Kuhl, Ganguly, Kwasinski, and Ptucha

 In the context of the warehouse environment, the autonomous vehicle will decide about the next task

selection based on inputs about the current system state in terms of the list of available tasks, the locations

of the vehicle and available tasks, etc. The vehicle will utilize the trained deep reinforcement learning model

in combination with the virtual environment to render a task decision. The vehicle then executes the decided

task. Upon completing the task, the performance of the decision can be analyzed and feedback provided to

reinforce the learning process.

 For a successful reinforcement learning implementation, the problem needs to be formulated as an

Markov Decision Process (MDP), where in an MDP an agent in an environment at a given state will receive

an observation (new state data) and needs to choose an action from a finite set of actions (search directions).

The action moves the agent into a new state so that the agent will capture a new observation and receive a

reward. The goal is to maximize the total reward over time. Given its characteristics, we hypothesize that

the autonomous vehicle task selection problem can be formulated as an MDP.

Once we have a problem formulated as an MDP, we can use a suitable deep reinforcement learning

architecture that uses a combination of convolutional neural network, and Q-learning to train the model

using simulation. A deep convolutional neural network architecture is used to automate the learning process

of filters that extracts the layout features such as corners, edges, task location, obstacles etc., given input

layout data through a backward propagation of the convolutional layers, while a Q-learning is used to

determine the appropriate search policy. An example of a deep convolutional neural network architecture

containing both the convolutional, and fully connected layers for search direction prediction can be found

in Figure 4. During the training process the exploration rate governs the extent of learning. The exploration

rate is computed as,

𝜖 ≡
𝜖𝑚𝑎𝑥 − 𝜖𝑚𝑖𝑛

𝑛𝑒𝑥𝑝
∗ 𝑛𝑐𝑢𝑟

where the constants 𝜖𝑚𝑎𝑥, 𝜖𝑚𝑖𝑛, and 𝑛𝑒𝑥𝑝, represent the maximum exploration rate, minimum exploration

rate, and number of search iterations to explore, and the variable 𝑛𝑐𝑢𝑟 is the current search iteration. For

example, if the exploration rate is 0.5, there is 50% chance to select a random action or search direction and

rest 50% based on experience or action with a maximum Q value.

To illustrate the effectiveness of this approach to address the task selection problem in material

handling, we conduct the following simulation-based experiment.

4 SIMULATION-BASED EXPERIMENT IN MATERIAL HANDLING CONTEXT

The framework developed addresses the need effective task selections decisions in a warehouse
environment, where tasks arrive and depart at random time intervals and a large fleet of autonomous
vehicles (agent) are used to execute the pickup and drop off tasks. To demonstrate the potential of our

framework, we chose to conduct simulation experiments on a single agent to investigate the ability of the
agent to learn and perform task selection based on a measure of shortest travel distance.
 The simulation environment used consists of a generalized layout of 26 x 26 grid with each grid size

equal to the size of the autonomous vehicle. Figure 3 illustrates the warehouse layout under consideration

in the experiment. During each simulated replication, the agent is randomly placed in one of the pathway

locations throughout the facility. The tasks are randomly placed in any of the 240 locations adjacent to a

potential storage location. During a replication, if the current exploration rate 𝜖 is greater than 0, the

replication is defined as an exploration replication. Otherwise, the replication is an exploitation replication,

since all the actions are chose based on the highest state-action values.

 The deep reinforcement learning model used in our simulation is Deep Q-Network (DQN), which was

developed and advanced by Google DeepMind (Mnih et al. 2013; Mnih et al. 2015). The DQN algorithm

is designed for Markov Decision Processes (MDP) and combines deep Convolutional Neural Network

(CNN) and Q-learning.

1076

Li, Sankaran, Kuhl, Ganguly, Kwasinski, and Ptucha

Figure 3: Layout depicting task locations (T), the autonomous vehicle (V) and walls and shelves marked

as hatches and patterns, respectively.

The agent is trained using this simulated environment with a modified version of DQN that adapts to

our specific problem. DQN uses a convolutional neural network as a function approximator to get a good

estimate of state specific action choices that lead to maximum reward on an accrued basis. This method is

computationally efficient in searching under unseen states as against traditional A* type methods. As a

general guideline, learning algorithm become robust if the training is free from over or under estimation

error. To achieve that we address the underestimation problem using large replications (about 1,000,000

action steps). Overestimation, specifically of the action values (Van Hasselt 2010) or search directions, is

addressed by using DQN with double Q learning, which separates the policy estimates and its action values

using two different value functions (Van Hasselt et al. 2016).

 The network used for our application is given in Figure 4, which explains the deep convolutional neural

network architecture. The input of dimension 26 x 26 (floor layout) and 4 consecutive state representations

each containing the current location of the vehicle/agent, tasks and obstacles obtained from the virtual

environment, are passed into the network, which using 32, 7 x 7 x 4 (filter width, height and depth

1077

Li, Sankaran, Kuhl, Ganguly, Kwasinski, and Ptucha

respectively) dimensional filter convolved to produce hidden layer (Conv 1) of dimension 20 x 20 x 4,

which is further convolved to produce a 9 x 9 x 64 - dimensional hidden layer (Conv 2) and then 7 x 7 x 64

- dimensional hidden layer (Conv 3). Next, the last hidden layer (Conv 3) is fully connected to 3136 neurons

(FC5), further it is fully connected to 512 neurons (FC6) and lastly connected to 4 outputs, or search

directions or actions – up, down, left and right. As the state input (current situation) is passed through the

network, the network performs a forward propagation to predict a state-action value 𝑄(𝑆𝑡 , 𝑎) for each action

and chooses an action based on the exploration rate.

Figure 4: Deep convolutional neural network architecture used to determine action values.

 A backward propagation process is performed to adjust the weights, which improves the state-action-

value prediction. A loss function that compares the prediction 𝑄(𝑆𝑡, 𝑎) and ground truth 𝑌𝑡 is employed to

compute the partial derivative during the backward propagation process,

𝛿 = (𝑄(𝑆𝑡 , 𝑎) − 𝑌𝑡)2.

 The function used for predicting ground truth state-action values for our model is (Van 2016),

𝑌𝑡 ≡ 𝑅𝑡+1 + 𝛾𝑄 (𝑆𝑡+1, argmax
𝑎

𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡) , 𝜃𝑡
−),

where 𝑅𝑡+1 is the reward from the system at time t + 1, 𝛾 is the discount factor which determines the extent

of future rewards allowed to influence current actions, Q (St+1, a; θt) is the Q state-action value based on a

forward propagation given weights 𝜃𝑡 , and lastly 𝜃𝑡
− is the target network weight. The target network is

obtained by copying the current network after each 10,000 action steps. The forward and backward

propagation processes are reviewed by Goodfellow et al. (2016).

 The state input from the simulation environment is loaded into the virtual environment, which the agent

uses for searching the shortest path task. The loaded environment is shown in Figure 5. The future state

inputs from the virtual environment changes based on the search directions performed. The following

numbers were used in the virtual environment to represent the various state transitions: -1 indicating

obstacles (walls, shelves, etc.), 33 for the agent’s current location and 100 for task locations. Further, to

improve the agent’s learning process we have used -5 to indicate previously searched or traversed locations

of the agent.

 Lastly, the experimental configurations are set to train and evaluate the agent’s accuracy in determining

the shortest path when there is two, three, and four tasks, keeping network design and hyper-parameters

constant. Each scenario is run for 80,000 replications, where each replication terminates if the agent finds

1078

Li, Sankaran, Kuhl, Ganguly, Kwasinski, and Ptucha

a task location or has exceeded 250 action or search steps. We have observed that the limit on the maximum

number of action steps per replication is important as it can accelerate or decelerate learning during the

exploration stage. Based on the preliminary results on the average number of actions for a single task

scenario, we observed values of less than 250 in all replications. Further, rewards system of the virtual

environment is designed to penalize by -0.01 for every action or search step taken, -0.05 for revisiting a

previously searched location, +1 for the step that reaches the task location and -1 for entering an obstacle.

 (a) (b)

Figure 5: State representations - (a) Initial state input; and (b) Final state.

5 RESULTS

The performance of the autonomous vehicle/agent is measured by the accuracy of determining the closest
task location with respect to the vehicle. The closest task can be determined by computing the distance from
the vehicle to each goal location using the A* algorithm. If the goal location that autonomous agent chooses
is the same as the closest task verified by the A*, the replication is marked as a success. If the autonomous
agent fails to identify the closest task, we keep track of the difference between the distance to closest task

and the task selected by the autonomous agent. For each 100 replications, the percentage success rate is
collected, as well as the percentage of choosing a task that is 5 ft., 10 ft., and 15 ft. further than the closest
task. That is, from a practical standpoint, we are interested in whether the vehicle made a good selection or
a poor selection. We would consider a selecting an task that is within a few feet of the closest task to be
acceptable. Figure 6, 7, 8 show the accuracy of the autonomous agent when there are two, three, and four
tasks in the system, respectively. The dashed line and solid line sections represent the performance of the

autonomous agent during the training and testing, respectively. Table 1 shows a comparison of the scenarios
based on the average percentage and the standard deviation of the percentage of tasks selected that were
within the specified distance of the closest task.
 Note: The layout in our experimental setup is inspired from an actual warehouse modified to generalize

to a typical warehouse space, where aisles are long, and vehicle paths are rectilinear. The author

acknowledges that duration of training might be different for different layouts and different deep

reinforcement learning network architectures.

-1 -1

-1 0 -1 -1 -1 0 -1 -1

-1 0 -1 -1 -1 0 -1 -1

-1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1

-1 0 -1 -1 -1 0 -1 -1

-1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 0 0 0 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 100 0 0 0 0 0 0 -5 -5 -5 33 0 0 0 0 0 0 0 0 -1 -1

-1 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -5 0 0 0 0 0 0 0 0 0 0 0 -1 -1

-1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -5 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -5 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 -5 -5 -5 -5 0 0 0 0 0 0 0 0 0 0 0 -1 -1

-1 0 -1 -1 -1 0 -1 -1

-1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1

-1 0 -1 -1 0 -1

-1 0 -1 -1 0 -1

-1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1

-1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1

-1 0 -1 -1 0 -1

-1 0 -1 -1 0 -1

-1 0 0 -1 0 0 -1 -1

-1 0 0 -1 0 0 -1 -1

-1 -1

1079

Li, Sankaran, Kuhl, Ganguly, Kwasinski, and Ptucha

Figure 6: Performance of autonomous agent in two task scenario under exploration and exploitation.

Figure 7: Performance of autonomous agent in three task scenario under exploration and exploitation.

Figure 8: Performance of autonomous agent in four task scenario under exploration and exploitation.

1080

Li, Sankaran, Kuhl, Ganguly, Kwasinski, and Ptucha

Table 1. Comparison scenarios having two, three, and four tasks, respectively. Average percentage (std.
dev.) of tasks selected that are within the specified distance of the closest task.

Accuracy (Closest Task) 2 Tasks 3 Tasks 4 Tasks

Within 0 ft.
 89.76

(1.44)

85.11

(2.17)

82.82

(2.16)

Within 5 ft.
 92.89

(1.22)

89.37

(1.99)

87.87

(1.87)

Within 10 ft.
 95.02

(1.07)

92.29

(1.72)

91.51

(1.70)

Within 15 ft.
 96.46

(0.92)

94.54

(1.38)

93.95

(1.32)

6 CONCLUSION

In conclusion, we have presented a deep reinforcement learning methodology for task selection by an
autonomous vehicle in a warehouse environment. The results of the simulation-based experiment indicate
that the method can consistently select the closest task given a random set of task location at a high level
of performance. Based on these results, we anticipate that we will be able to extend this methodology the
task selection of multiple autonomous vehicles where task priorities may be based on other factors such as
due date, urgency, or other priority. Our future work includes this extension along with application of the

methodology to a physical material handling system. Future work includes an evaluation of the robustness
of our architecture on different layouts, and the proposed multiple autonomous vehicle extension along with
application of the methodology to a physical material handling system.

ACKNOWLEDGMENTS

This research is sponsored in part by a grant form Toyota Material Handling of North America.

REFERENCES

Contreras-Cruz, M. A., V. Ayala-Ramirez, and U. H. Hernandez-Belmonte. 2015. “Mobile Robot Path
Planning Using Artificial Bee Colony and Evolutionary Programming”. Applied Soft Computing 30(C):
319-328.

Egbelu, P. J. and J. M. Tanchoco. 1984. “Characterization of Automatic Guided Vehicle Dispatching

Rules”. International Journal of Production Research 22(3):359-374.
Fang, Q. and C. Xie. 2004. “A Study on Intelligent Path Following and Control for Vision-based Automated

Guided Vehicle”. Fifth World Congress on Intelligent Control and Automation, 4811-4815.
Piscataway, New Jersey: IEEE..

Fazlollahtabar, H. and M. Saidi-Mehrabad. 2015. “Methodologies to Optimize Automated Guided Vehicle
Scheduling and Routing Problems: A Review Study”. Journal of Intelligent & Robotic Systems. 77(3-

4):525-545.
Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio. 2016. Deep learning. Cambridge: MIT Press.

Hart, P.E., N. J. Nilsson and B. Raphael. 1968. “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths”. IEEE transactions on Systems Science and Cybernetics 4(2):100-107.

Herrero-Perez, D. and H. Martinez-Barbera. 2010. “Modeling Distributed Transportation Systems

Composed Of Flexible Automated Guided Vehicles in Flexible Manufacturing Systems”. IEEE
Transactions on Industrial Informatics 6(2):166-180.

1081

Li, Sankaran, Kuhl, Ganguly, Kwasinski, and Ptucha

Jeon, S. M., K. H. Kim, and H. Kopfer, 2011. “Routing Automated Guided Vehicles In Container Terminals
Through The Q-Learning Technique”. Logistics Research 3(1):19-27.

Le-Anh, T. and M. B. M. De Koster. 2006. “A Review of Design and Control of Automated Guided Vehicle
Systems”. European Journal of Operational Research 171(1):1-23.

Martínez-Barberá, H. and D. Herrero-Pérez. 2010. “Autonomous Navigation of an Automated Guided
Vehicle in Industrial Environments”. Robotics and Computer-Integrated Manufacturing 26(4):296-

311.
Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, M. 2013.

“Playing Atari with Deep Reinforcement Learning”. NIPS Deep Learning Workshop
(arXiv:1312.5602) https://arxiv.org/abs/1312.5602?context=cs.LG, accessed 6 August 2018.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, and S. Petersen. 2015. “Human-Level Control through Deep

Reinforcement Learning”. Nature 518(7540):529.
Ramer, C., J. Sessner, M. Scholz, X. Zhang, and J. Franke. 2015. “Fusing Low-Cost Sensor Data for

Localization and Mapping of Automated Guided Vehicle Fleets in Indoor Applications”. In
Proceedings of the 2015 IEEE International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), 65-70. Piscataway, New Jersey: IEEE.

Stentz, A. 1994. “Optimal and Efficient Path Planning For Partially-Known Environments”. In Proceedings

of the IEEE International Conference on Robotics and Automation, 3310-3317. Piscataway, New
Jersey: IEEE.

Van Hasselt, H. 2010. “Double Q-learning.” In Proceedings of the 23rd Int. Conference on Neural
Information Processing Systems. 2613-2621. http://dl.acm.org/citation.cfm?id=2997046.2997187,
accessed 6 August 2018.

Van Hasselt, H., A. Guez, and D. Silver. 2016. "Deep Reinforcement Learning with Double Q-Learning."

In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2094-2100.
http://dl.acm.org/citation.cfm?id=3016100.3016191, accessed 6 August 2018.

Veres, S. M., L. Molnar, N. K. Lincoln, and C. P. Morice. 2011. “Autonomous Vehicle Control Systems—
A Review of Decision Making”. Proceedings of the Institution of Mechanical Engineers, Part I:
Journal of Systems and Control Engineering 225(2):155-195.

AUTHOR BIOGRAPHIES

MAOJIA PATRICK LI is a Ph.D. student in Engineering at Rochester Instiutte of Techology. His e-mail
address is mxl8487@rit.edu.

PRASHANT SANKARAN is a Master of Science (MS) student in Industrial and Systems Engineering at
Rochester Institute of Technology. His research interests include the application of simulation,
optimization, and machine learning approaches to supply chain and manufacturing systems. His e-mail

address is pxs8917@rit.edu.

MICHAEL E. KUHL is a Professor in the Department of Industrial and Systems Engineering at Rochester
Institute of Technology. He earned his Ph.D. in Industrial Engineering from North Carolina State
University. His research interests include modeling and simulation of stochastic arrival processes, and the
application of simulation and simulation-based optimization to systems including healthcare,

manufacturing, cyber security, and project management. He is a member of the WSC Board of Director
representing the INFORMS Simulation Society. He has also served WSC as Proceedings Editor (2005),
Program Chair (2013), and Mobile App Chair (2014-2018). His e-mail address is Michael.Kuhl@rit.edu.

AMLAN GANGULY is an Associate Professor in the Computer Engineering Department at Rochester

Institute of Technology. He earned his Ph.D. in Electrical and Computer Engineering from Washington

1082

Li, Sankaran, Kuhl, Ganguly, Kwasinski, and Ptucha

State University. His research interests are in energy-efficient interconnection architectures for multicore

chips and multichip systems such as servers using novel technologies such as wireless and photonic

interconnects and data center networks. His e-mail address is axgeec@rit.edu.

ANDRES KWASINSKI is a Professor in the Computer Engineering Department at Rochester Institute of
Technology. He earned his Ph.D. degree in Electrical and Computer Engineering from the University of
Maryland. He is Chief Editor for the IEEE SigPort and Area Editor for the IEEE Signal Processing
Magazing. His research interests include cognitive radio and networking, multimedia communications and

networking, Internet-of-Things, and smart infrastructures. Dr. Kwasinski is an IEEE Senior member. His
e-mail address is axkeec@rit.edu.

RAYMOND PTUCHA is an Assistant Professor in the Computer Engineering Department at Rochester
Institute of Technology. His research interests include machine learning, computer vision, robotics, graph
processing and signal processing, all with an emphasis with deep learning. His the chair of the local IEEE

Signal Processing Society and is passionate about STEM education. His e-mail address is rwpeec@rit.edu.

1083

