Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

TRANSLATION OF STRING-AND-PIN-BASED SHORTEST PATH CONSTRUCTION
INTO DATA-SCALABLE AGENT-BASED COMPUTATIONAL MODELS

Yun-Ming Shih Jasper van de Ven
Collin Gordon Christian Freksa
Munehiro Fukuda

Division of Computing and Software Systems Bremen Spatial Cognition Center
University of Washington Bothell University of Bremen
18115 Campus Way NE Enrique-Schmidt-Straie 5
Bothell, WA 98011, USA Bremen, 28359, GERMANY
ABSTRACT

From the viewpoint of strong spatial cognition in graph problems, the shortest path can be identified in one
physical action using strings and pins that respectively represent graph edges and vertices. By pulling a start
and an end pin, we can construct a series of stretched strings as the shortest path. We use agent-based models
(ABMs) to translate this action into computational representations. Assuming that a set of strings and pins
are hung on a wall with a start pin, agents are disseminated downward to a destination as gravity forces.
We implemented three models: a discrete-event, an asynchronous, and an aggregated agent dissemination
on top of the MASS (multi-agent spatial simulation) library. To address large-scale network environments,
we blended HDFES into MASS so that a graph data set is read over a cluster system in parallel. This paper
presents these ABM implementations and performance measurements over a cluster system.

1 INTRODUCTION

Finding the shortest path is a typical problem encountered in traffic simulations and network-routing
protocols. The most common algorithm used to address this is Dijkstra’s algorithm. Despite its popularity,
the algorithm has two drawbacks: (1) representing a graph structure as an adjacency matrix is not intuitive
to code as iterating over the matrix involves repetitive traversals, backtracking, or both; and (2) it is not
scalable nor is it easily parallelizable because of the nature of dynamic programming.

From the viewpoint of strong spatial cognition in graph problems, the shortest path construction
can be solved in one physical action using strings and pins that respectively represent graph edges and
vertices (Furbach et al. 2016; Freksa et al. 2016). All one needs is to hold a start pin and pull an end pin
so that a series of stretched strings will give the shortest path. This method raises a question for algorithm
designers: how can the string-and-pin-based approach be represented in code? One solution is to conduct
a contiguous simulation that observes all the movements of pins affected by a human action. However,
this would require a tremendous amount of computation as compared to Dijkstra’s algorithm.

Instead, we use the concept of agent-based models (ABMs) to offset the computational load. If we
consider hanging a set of strings and pins on a wall as holding a start pin, agents can diffuse as gravity forces
from a start to an end pin along strings. Three implementations can be conceived. The firstis a discrete-event
simulation where each agent’s movement on a string is scheduled as an event. The event occurs over an
interval of time corresponding to the string length. The second is an asynchronous dissemination of agents
along all the strings emanating from a start pin where agents with a shorter route overwrite the answer
for the shortest path. The third is a special form of asynchronous agent dissemination where agents are
aggregated for their computation and migration (named doall simulation in the following discussion). Our
ABM approach is not only intuitive but also inherently parallelizable as many agents can run in parallel.

978-1-5386-6572-5/18/$31.00 ©2018 IEEE 881

Shih, Gordon, Fukuda, van de Ven, and Freksa

Despite that, its execution performance would not yet be comparable to Dijkstra’s algorithm in small scale
graphs, because of agent creation, migration, and termination overheads.

Given these backgrounds, we are pursuing the following two goals to model and run the string-and-pin-
based shortest path construction in an acceptable time: (1) maintaining the ABM intuitive programmability
and (2) targeting large-scale and dynamically-changing network environments. For this purpose, we have
described and executed the above-mentioned three implementations of string-and-pin approach on top of
the MASS (multi-agent spatial simulation) library (Chuang and Fukuda 2013), and have blended HDFS
(http://hadoop.apache.org) into MASS so that a large scale graph dataset can be read into a cluster system
in parallel. This paper presents our implementations and performance measurements.

The rest of this paper is organized as follows: Section 2 discusses about potential computational
representations of string-and-ping-based shortest path construction and applies ABMs to the original
algorithm; Section 3 explains the MASS parallelization of the ABM implementations; Section 4 analyzes
MASS execution performance; and Section 5 concludes the outcomes.

2 COMPUTATIONAL REPRESENTATIONS OF STRING-AND-PIN-BASED SHORTEST PATH

This section considers four computational representations to run the string-and-pin-based shortest construc-
tion that was proposed from the strong spatial cognition’s viewpoint in (Freksa et al. 2016). They are a
direct computational representation and a gravity-based computational representation, where the latter can
be even coded in three different agent migrations: a discrete-event, an asynchronous, and an aggregated
(or doall) migration.

2.1 An Approach Using Strings and Pins

The original idea of strong spatial cognition in graph problems finds a shortest path using strings and
pins, each respectively representing vertices and edges (see Figure 1). Given a start and an end point, the
shortest path between them is identified by one physical action of fixing the start pin and pulling the end
pin outward or just simply pulling both pins away until they can no longer move apart due to the fully
stretched strings between them, in which case we can measure the length of the stretched strings as the

'./_I\ -
:

Figure 1: Shortest path construction using strings and pins.

2.2 Direct Computational Representation

While the string-and-pin-based shortest path construction completes in one physical motion (i.e., pulling
two pins away at once), its direct simulation would not run in O(1). As illustrated in Figure 2-(a), we

882

Shih, Gordon, Fukuda, van de Ven, and Freksa

can represent pins as objects or agents that can move over a simulation space. There the agents maintain
their communication channels, each representing a string that connects two pins mapped to the agents.
The simulation gets started with moving the end pin (or the end agent) rightward gradually, so that the
other pins (or agents) can move in response to the dynamic strength of strings pulled by the end pin. This
results in contiguous but not discrete-event simulation. Although the computational complexity at a given
simulation time will be O(|V|?) where V = #vertices), a question is how precisely these pins (or agents)
should move. Furthermore, regardless of this precision of time advances, the number of time ticks required
for this direct simulation will be proportional to the length of the shortest path between a given set of start
and end pins. Therefore, the total computational complexity is upper bound to [V |> where [= the distance
between two mutually furthest pins.

2.3 Gravity-Based Computational Representation

Pulling two pins can be also realized by using gravity in the real world. This modification intends to fix
the start pin on a wall and allow gravity to pull the other pins towards the ground — see Figure 2-(b). This
effectively stretches the strings and reaches all the other pins including the endpoint. This physical motion
can be simulated in discrete events where gravity forces disseminate from the start pin along its emanating
strings down to all the other pins in parallel. In an actual implementation, we may represent gravity as
agents, each scheduling its next movement as a discrete event whose timing is the same as the edge weight
on this agent’s direction. We conclude that the very first agent that has reached a given end point carries
the shortest path information.

timet,

gravity agents

disseminated down

[] .
no tension
> staying here
pulled but got (% ¥

to stay here

[] [] []
Eu&d pu'LEd >
moving moving™ moving

[xsl vs] [Xz, y2] [er, yzr] [xlv V1] [le’ yl’] [xe' ye] [er' yg’]

(a) Direct representation. (b) Gravity-based representation.

Figure 2: Two computational representations of string-and-pin approach.

If we remove the discrete-event concept from this gravity-based computational representation, it will
simply behave as information diffusion (i.e., asynchronous gravity diffusion) from a given start to all the
other pins. This asynchronous agent migration has advantages and disadvantages particularly when applied
to a cluster system. An advantage is that we can get rid of overhead incurred by inter-agent synchronization
and event retrieval among cluster nodes. On the other hand, a disadvantage is that a large number of gravity
agents will be spawned and flooded chaotically over the underlying cluster system. To mitigate both agent
synchronization and flooding overheads, we can aggregate agent computation and migration in a batch,

883

Shih, Gordon, Fukuda, van de Ven, and Freksa

which we call doall migration. Yet, we have to note that, while information diffusion intends to flood the
same information over an entire network, discrete-event simulation stops the computation as soon as the
first gravity agent arrives at a given destination.

The worst case scenario is having to examine all potential paths regardless of the approach we use.
When an agent encounters multiple edges at the current vertex, it must spawn the same number of children
as #edges — 1 where it will choose one of the emanating edges for itself to move along. Therefore, we expect
that the computational complexity is O(#agents) where #agents is the total number of agents spawned.

2.4 Related Work

Since shortest path algorithms are key to route planning in scalable road networks, various improvements
have been made so far to perform faster than Dijkstra’s algorithm. For instance, highway hierarchies
represent a hierarchical structure of streets, boulevards, and highways, which are more realistic and capable
of bypassing unnecessary route computation. More generalized are contraction hierarchies that iteratively
contract the least important vertex by replacing paths going it through with a shortcut (Geisberger et al.
2012). Time-dependent contraction hierarchies have addressed dynamic changes in traffic. However,
contraction hierarchies introduce many additional edges and thus require more memory space. An MPI-
based parallelization facilitated distributed memory to contraction hierarchies and accelerated distributed
query processing (Kieritz et al. 2010). Although we use agent-based parallelization, our focus is placed
on computational representations on strong spatial cognition but not necessarily on pursuit of fast route-
planning techniques. In the next section, we will show how the MASS library implements each of the
approaches proposed for the string-and-pin-based shortest path algorithm.

3 AGENT-BASED PARALLELIZATION

To describe and parallelize the shortest path search with agents, we use the MASS (multi-agent spatial
simulation) library we have implemented in Java, C++, and CUDA. The following discussions focus on
the Java version.

3.1 MASS Library

The MASS library distinguishes two classes of objects: Places and Agents. Places are objects in a multi-
dimensional array that is mapped over a cluster system. Each array element is called place, accessed with
a cluster-independent logical index, and capable of exchanging information with others. Agents is a group
of mobile agent objects capable of carrying its internal state from one place to another, communicating
with their current place, and using their current place to communicate with other nearby agents.

As illustrated in Figure 3, the MASS library uses a collection of multithread processes, each spawned
from JSCH (http://www.jcraft.com/jsch) onto a different cluster node to manage a portion of places and
agents residing there. It hides all platform-dependent, parallel-programming constructs. Instead, model
designers can perform parallel execution of places and agents, using the method calls summarized in Table 1.

Table 1: A list of MASS methods.

Methods ‘ Specifications

Places.callAll(function): invokes each place’s function in parallel.

Places.exchangeAll(function): | allows each place to collect data from its neighbors’ function.
Places.exchangeBoundary(): exchanges boundary information among neighboring places.
Agents.callAll(function): invokes each agent’s function in parallel.

Agents.manageAll(): performs agent spawning, terminating, and moving operations.

In addition to parallel places/agents execution, the MASS library also facilitates parallel I/O for NetCDF
(https://www.unidata.ucar.edu/software/netcdf) and text files. Each place can open an identical file if not yet

884

Shih, Gordon, Fukuda, van de Ven, and Freksa

opened and thereafter read/write only its corresponding file data, using the built-in functions: Place.open(
fn), read(fd), write(fd, bytes), and close(fd), where fn is a file name and fd is a file descriptor. The
MASS parallel I/O (Shih 2018) partially uses HDFS to duplicate a given file as many times as the number
of cluster nodes, thus each maintaining at least one replica. Once the file has been automatically made
available at each cluster node’s /tmp directory, the MASS parallel I/O allows all places to read their own file
data in parallel. When places simultaneously invoke wrifte() and close(), their data chunks are temporarily
stored in /tmp, thereafter collected back to the master node, and finally assembled as one consistent file.

3.2 Discrete-Event Model

Using the MASS library, we have translated the string-and-pin-based shortest path construction into a
discrete-event model of agent migration. Figure 4 describes the agent behavior composed of two functions:
onArrival() and departure(). Upon an arrival at a new vertex, the agent deposits its footprint to the current
vertex, (showing where it came from) and spawns new children. Thereafter, all the agents including the
parent and children migrate to their next vertex.

e
Departuref}—

/\—/)
] Ne

Xt vertex

: g
< Previous vertex Current vertex
1 1 1 — — =
Cluster Node O \\ ClusterNode1l -~ Cluster Node 2
Figure 3: The MASS (multi-agent spatial simu- Figure 4: Agent behavior on arrival at and depar-
lation) architecture. ture from a vertex.

Figure 5 shows a code snippet of the main() function that starts MASS (line 3), creates a street map
(lines 4-5) and populates the very first gravity agent (line 7). The Argument(10, 0, 0) in line 6 is passed to
the agent’s constructor, denoting place[10], place[0], and time 0 as its destination pin, start pin, and first
migration time respectively. Thereafter, the execution goes into a for-loop in line 9 that repetitively calls
gravity agents’ departure() and onArrival() functions (lines 10 and 13). When an agent has reached the
end pin, it returns —1 from onArrival() (line 14), which finishes the simulation (line 18).

Figure 6 describes the gravity agent’s behavior. When initialized, each agent receives the final destination,
the next place to hop, and the time to go (line3). Upon an onArrival() call (line 11), an agent deposits its
footprint to the current vertex and spawns new children (lines 16 and 19). In departure() (line 5), when
the simulation time has come to its departure time (line 7), the agent migrates to the next vertex (line 9).

3.3 Asynchronous Model

The discrete-event model shown above can be converted into an asynchronous model by allowing gravity
agents to migrate over a given map freely without waiting for the next event to be fired. However, the first
agent that arrived at a given destination is no longer guaranteed to find the shortest path from the start pin.
Therefore, as shown in Figure 7, main() must collect all the agents that have finished their travel (i.e.,
#agents should be 0 or gravity.nAgents() == 0). Figure 8 shows the changes to the agent behavior. Agents
no longer have to be concerned with timing (lines 6-7). Instead, each place.footprint should be used to
record the current travel cost from the start pin (line 17). Only agents whose travel cost is shorter than the
current footprint can continue migrating to the next place, otherwise they will be terminated (line 13).

885

Shih, Gordon, Fukuda, van de Ven, and Freksa

1 public class Gravity extends Agent {
2 public Gravity(Argument arg) {
3 dest = arg.dest; next = arg.next; dept = arg.

1public class DiscreteEventModel { dept;

2 public static void main(String[] args) { 4 X . .
3 MASS.init(); 5 pu_bllc vou! depart}lre(l.nteger time) {
4 Places map = new Places(1, Map, nVertices); 6 int currTime = time.intValue();)
5 map.callAll(Map.init_); 7 if (currTime == dept)'{ // my departure time?
6 Argument arg = new Argument(10, 0, 0); 8 prevVertex = place.index;
7 Agents ag = new Agents(2, Gravity, arg, map, 9 migrate(nextNode);
1); 10

8 int nextEvent = —1; 11 public Integer onArrival(Integer time) {
9 for (int t = 0; ; time = nextEvent) { 12 if (place.footprint == —1 || place.index ==
10 ag.callAll(Gravity.departure_; time); dest) {
11 ag.manageAll(); 13 dept = —1
12 Integer[] allEvents 14 kill();
13 = ag.callAll(Gravity.onArrival_); 15 } else {
14 if ((nextEvent = minInt(allEvents)) == —1) 16 place.footprint = prevVertex;
15 break; 17 Argument([] args
16 ag.manageAll(); 18 = createArg(place.neighbors—1, dept);
17 } 19 spawn(args);
18 MASS finish(); 20 dept = time + place.neighbors[0].weight;
19} } 21

22 return dept;

23} }

Figure 5: Main in the discrete event model. Figure 6: Agents in the discrete event model.

3.4 DoAll Model

The doall model is a special form of asynchronous model where we aggregate agent computation and
migration. Figure 9 shows the aggregation in main(). The doAll() function receives a list of agent methods
(line 10), each called simultaneously as in callAll(). It differs from callAll() in that doAll() does not
synchronize among cluster nodes. Furthermore, each time doAll() completes a given agent method, it
automatically invokes manageAll() that handles agent creation, termination, and migration. The advantages
of doall are two-fold: (1) mitigating the number of cluster-wide synchronizations and (2) controlling chaotic
agent flooding over a graph.

3.5 Logical Network Construction Using HDFS

In the previous sub-sections, we have focused on only the descriptions of agent behavior. Obviously before
agents start their travels, Places must construct a street map over a cluster system. This corresponds to
map.callAll(Map.init_) in Figure 5’s line 5. We prepare a text file that has described a street map in an
adjacency matrix where each row lists distances from a given vertex to the others. When each place calls
init() as shown in Figure 10, it is guaranteed to simultaneously capture only the corresponding row of the
matrix file (line 10) so that it can internally maintain its neighbors and their distances (see Figure 11).
The MASS parallel file I/O addresses two typical problems in allocating spatial data over a cluster
system. One is to use HDFS for the purpose of preventing the master node or NFS from behaving as a
bottleneck of data distribution. The other is to allow a user to generate a random graph in a file in advance
rather than create a graph in a simulation program on the fly. The latter case is familiar to many graph
applications that need to generate a different random graph repeatedly to find a particular graph relation
such as a network motif (Andersen et al. 2016). The problem is how to generate an identical graph between
sequential and parallel settings. A cluster system must maintain the same sequence of random number

886

Shih, Gordon, Fukuda, van de Ven, and Freksa

6 int currTime = time.intValue();
7 if (currTime == dept) { // my departure time?

9 for (int t = 0; ; time = nextEvent) { are no longer needed. The footprint should record

10
11 the shortest cost (i.e., dept) from the start pin:
12
13 12 public Integer onArrival(Integer time) {
14 if ((nexstEvent = minInt(allEvents)) == —1) 13 lf(pla)C{e~footprlnt<:dept || place.index==dest
S 14 dept = —1
should be replaced with: s ill():
9 while (gravity.nAgents() > 0) { 16 }else { .
17 place.footprint =
dept; // instead of prevVertex

Figure 7: Main in the asynchronous model. Figure 8: Agents in the asynchronous model.
10 ag.callAll(Gravity.departure_; time);
11 ag.manageAll();
12 Integer[] allEvents
13 = ag.callAll(Gravity.onArrival_);
14
15
16 ag.manageAll();

should be replaced with

10 ag.doAll(new int[] {Gravity.departure_, Gravity.onArrival_});

Figure 9: Main in the doall model.

generations over all nodes as the sequential version generates. A pair of vertices must be synchronized if
they create a bidirectional edge, which results in cluster-node communication if these two vertices reside
on a different node. Therefore, it is relatively easy to generate a graph file first and thereafter to let each
cluster node read a different portion of the file, using the MASS parallel 1/O.

4 EXECUTION PERFORMANCE

Given these three ABMs to represent the string-and-pin-based shortest path construction, we have evaluated
their execution performance, using the University of Washington Bothell’s shared Linux cluster: 16 Dell
Optiplex 710 desktops, each with an Intel i7-3770 Quad-Core CPU at 3.40 GHz and 16 GB RAM. Our
evaluation covers (1) our ABMs’ parallel execution over the cluster system, (2) the effect of multithreaded
execution, (3) the performance of MASS parallel I/O, and (4) execution overheads in discrete-event,
asynchronous, and doall agent migrations. Regarding evaluation item 4, discrete-event simulation finishes
its computation when the very first gravity agent reached the destination, whereas both asynchronous
and doall agent migrations must wait for all agents to get terminated (i.e., until all nodes are thoroughly
examined).

4.1 Parallel Execution over a Cluster System

Figure 12 presents the computation time of shortest path search in the discrete-event model. The model
did not show any CPU scalability with up to eight cluster nodes while the graph could be stored in a single

887

Shih, Gordon, Fukuda, van de Ven, and Freksa

1 public class Vertex extends Place {

2 public int[] neighbors = null;
3 public int[] distances = null;
4 public int footprint = —1; // cost from the
source

5 public Place(Integer arg) {
6 footprint = arg;
7
8 public void init(String filename) {
9 int f = open(filename, 0);
10 Scanner data = new Scanner(new String(read(‘

);
11 Scanner values = new Scanner(data.nextLine() s ‘

); =
12 for (int i = 0; values.hasNextInt(); i++) {
13 int distance = values.nextInt(); 7 7 7
14 if (distance >= 0) {
15 neighborsList.add(new Integer(i)); Cluster Node O Cluster Node 1 Cluster Node 2
16 distances.add(distance);
7} b))

Figure 11: A logical network construction with

Figure 10: Places initialization. MASS Places.

computing node (i.e., while the graph size stays below 2,048 vertices). We can infer that this is because
of agent migration overheads. However, as we further increased a graph size, its entire graph could no
longer fit to a smaller number of cluster nodes. Shortest path search over a graph of 16,382 vertices was
able to complete only with eight computing nodes. This in turn means that our ABM demonstrated good
memory scalability.
Figure 13 measured the entire execution of discrete-event model including graph creation over the
cluster system. No CPU scalability was observed with up to 1,024 vertices. Beyond that number, the
entire execution performed better with more cluster nodes. Similar to the computation-only performance,
the entire execution shows better memory scalability. These results support the efficiency of the MASS
parallel file I/O.

350000
300000

200000

100000

elapsed time (ms)

0

120000
100000
80000
60000

/ 40000
20000

2048
vertices

nodes 5 128

Figure 12: Computation time of discrete-event simulation.

Table 2 compares execution performance between Dijkstra’s algorithm and eight-way parallel discrete-
event simulation when they create a 2,048-node network and compute the shortest path. The parallel
simulation can create an on-the-fly network so quickly, while performing much slower, even using eight

888

Shih, Gordon, Fukuda, van de Ven, and Freksa

350000 -
300000 -

200000

100000

elapsed time (ms)

0 +

nodes

8192

2048

vertices

350000
300000
250000
200000
150000
100000
50000
0

16382

Figure 13: Total execution of discrete-event simulation including graph creation.

computing nodes, than Dijkstra’s algorithm. Beyond 2,048 nodes, Dijkstra’s sequential execution consumes
the entire memory space in one computing nodes, and therefore parallelization using distributed memory

enables scalable shortest path computation.

Table 2: Sequential Dijkstra’s algorithm versus eight-way parallel simulation (milliseconds).

Measures for a 2048-node network

Dijkstra’s algorithm

8-way parallelization

Network creation from file
On-the-fly network creation
Computation time

2,430
25,942
19

2,427
1,201
3,435

4.2 Multithreaded Execution

Since each cluster node includes four CPU cores, we also evaluated the effect of multithreaded execution.
Table 3 compares single, two-, and four-threaded executions of the discrete-event model. No performance
improvements were observed. Since agents disseminate over a graph like a wave, they move to and reside
on closer or even identical vertices (or places), multiple threads would compete for accessing the same
memory space and thus increase cache thrashing.

4.3 Graph Creation Performance

In addition to the MASS parallel file I/O’s CPU and memory scalability, we also measured its competence
in graph creation. Figure 14 determines the thresholds for the MASS parallel I/O to outperform on-the-fly
random graph creation. Although it could never perform faster than on-the-fly creation in single execution,
the MASS parallel I/O worked faster on a graph beyond 1,024 vertices, when using two through to eight

computing nodes.

Table 3: Multithreaded execution of discrete-event simulation (milliseconds).

vertices | 1 thread 2 threads 4 threads
128 692 715 701
2,048 43,586 43,264 43,076

889

Shih, Gordon, Fukuda, van de Ven, and Freksa

From files

Onthefly ----

250000
50000
10000

elapsed time (ms)

16382
8192

1 2048
vertices

g~ 128

Figure 14: Graph creation from file data versus on the fly.

4.4 Overheads in Discrete-Event, Asynchronous, and DoAll Migrations

Our performance evaluation revealed that the discrete-event model always performed better than asyn-
chronous and doall models. Table 4 compares their execution performance when using eight cluster nodes.
As scaling up the graph size, the difference in their execution performance even grew larger. To make
matters worse, neither asynchronous or doall model could complete its computation in five minutes beyond
2,048 vertices.

Table 4: Computation time (in milliseconds) of discrete-event, asynchronous, and doall models.

vertices ‘ Discrete event Asynchronous Doall

128 803 1,138 1,216
2,048 12,438 60,569 59,113

Figures 15 and 16 give us hints about why they performed much slower than the discrete-event model.
Figure 15 counts the total number of simulation cycles, each migrating all agents from one vertex to
another during a simulation. For a smaller graph, the discrete-event model could walk an agent to the final
destination in less cycles than the other two models. On the other hand, for a larger graph, the asynchronous
and doall models completed their simulation in a fewer cycles. The problem is not the number of simulation
cycles but the number of agents.

In Figure 16, solid lines observe the growth of cumulative number of agents spawned during a simulation.
Both asynchronous and doall models exponentially increased the number of agents to walk over a graph.
The dotted lines indicate the number of agents to walk per each cycle (i.e., cumulative #agents/#cycles).
We can infer that this number in both asynchronous and doall models would jump up beyond 800,000
agents when searching for 4,096 vertices. This is the reason behind various run-time errors including using
up memory, causing disk thrashing, and never completing computation.

890

Shih, Gordon, Fukuda, van de Ven, and Freksa

In summary, although the asynchronous model can walk agents freely over a graph with less synchro-
nizations and in a fewer simulation cycles, it causes the explosive growth of agent population. The doall
model can slightly mitigate agent-spawning overheads, however this is not sufficient enough to yield better
performance than the discrete-event model.

301 PSR T
-
kS
[$]
) o
c 20 <
S @
g o o
=] e
% — Discrete event (cumulative)
e 10F Async. migration (cumulative)
Doall migration (cumulative) ——
Discrete event —+— Discrete event (per step) ---#---
Async. migration Async. migration (per step) ---s---
‘ Doall migration ---x--- 0 __ Doall migration (per step) ---=---
458 512 2048 8192 16382 10528 512 2048 8192 16382
vertices # vertices
Figure 15: Total number of simulation cycles Figure 16: The number of agents created in dis-
needed in discrete, asynchronous, and doall simu- crete, asynchronous, and doall simulation.
lation.

5 CONCLUSIONS

We examined ABMs to represent the string-and-pin-based shortest path construction that can complete in
one human action by pulling both start and end pins apart and stretching strings between them. Our models
walk agents over a graph as gravity forces and distinguishes three different implementations: discrete-event,
asynchronous, and doall agent migration models. Our discussions and experiments have clarified that, while
the discrete-event model needs logical-time management, thus yielding more complicated programmability
than the other two, it demonstrates the best execution performance by pacing the agent dissemination and
keeping its lower population. We also confirmed the efficiency of the MASS parallel file I/O that manages
all /tmp disks in a cluster system using HDFS. Our future work includes the following two tasks:

1. Agent population control: This new feature temporarily freezes an excessive number of agents,
using Java serialization and resumes their execution when the population gets decreased sufficiently.
We will apply it to both asynchronous and doall agent migration to see their improvements in both
CPU and space scalability.

2. GPU computing: As we have developed MASS CUDA, we will port our ABMs to this platform
and compare their execution performance with the C++ native execution of Dijkstra’s algorithm.

Finally, the MASS library and its sample applications including our shortest-path search program are
all available at the following website: http://depts.washington.edu/dslab/MASS.

ACKNOWLEDGMENTS

We acknowledge funding through the DFG CRC 1320 EASE - Everyday Activity Science and Engineering
(subproject P3 - Spatial reasoning in everyday activity).

891

Shih, Gordon, Fukuda, van de Ven, and Freksa

REFERENCES

Andersen, A., W. Kim, and M. Fukuda. 2016. “MASS-Based NemoProfile Construction for an Efficient
Network Motif Search”. In Proceedings of the 2016 IEEE International Conference on Big Data and
Cloud Computing in Bioinformatics, 601-606. Atlanta, GA: IEEE.

Chuang, T., and M. Fukuda. 2013. “A Parallel Multi-Agent Spatial Simulation Environment for Clus-
ter Systems”. In Proceedings of the 2013 International Conference on Computational Science and
Engineering, 143-150. Sydney, Australia: IEEE.

Freksa, C., A. Olteteanu, A. L. Ali, T. Barkowsky, J. van de Ven, F. Dylla, and Z. Falomir. 2016. “Towards
Spatial Reasoning with Strings and Pins”. Advances in Cognitive Systems 4:1-15.

Furbach, U., F. Furbach, and C. Freksa. 2016. “Relating Strong Spatial Cognition to Symbolic Problem
Solving — An Example”. arXiv preprint arXiv:1606.04397.

Geisberger, R., P. Sanders, D. Schultes, and C. Vetter. 2012. “Exact Routing in Large Road Networks using
Contraction Hierarchies”. Transportation Science 46(3):388-404.

Kieritz, T., D. Luxen, P. Sanders, and C. Vetter. 2010. “Distributed Time-Dependent Contraction Hierarchies”.
In Proceedings of the 2010 International Conference on Experimental Algorithms, 83-93. Naples, Italy:
Springer-Verlag.

Shih, Y.-M. 2018. “MASS HDFS: Multi-Agent Spatial Simulation Hadoop Distributed File System”. MS
Capstone Final Report, MS in Computer Science & Software Engineering, Univ. of Washington Bothell.

AUTHOR BIOGRAPHIES

YUN-MING SHIH holds an MS in Computer Science and Software Engineering from University of
Washington Bothell. Her graduate research centered around design and implementation of parallel file /O
to support agent-based models. She is working as a software engineer at Security Invocation. Her email
address is shihy4@uw.edu.

COLLIN CORDON holds an MS in Computer Science and Software Engineering from University of
Washington Bothell. During his graduate study, he conducted research on agent-based machine learning
as Research Assistant. He is working as a software engineer at JBT FoodTech. His email address is
colntrev @uw.edu.

MUNEHIRO FUKUDA is Professor of Computing Software and Systems Division at University of Wash-
ington Bothell. He holds a Ph.D. in Information and Computer Science from University of California,
Irvine. His research interests include multi-agent systems, agent-based simulation, and parallel computing.
His email address is mfukuda@uw.edu.

JASPER VAN DE VEN is Researcher of Cognitive Systems Group/Bremen Spatial Cognition Center at
University of Bremen. He holds a Ph.D. in Informatics from University of Bremen. His research focuses
on methods to apply ambient intelligence and qualitative spatial and temporal reasoning. His email address
is jasper.vandeven @uni-bremen.de.

CHRISTIAN FREKSA is Professor of Informatics at University of Bremen and Director of Bremen Spatial
Cognition Center. He holds a Ph.D. in Artificial Intelligence from University of California, Berkeley. His
research interests focus on knowledge representation, cognitive science, reasoning, and spatial cognition.
His email address is freksa@uni-bremen.de.

892

