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ABSTRACT

Domain-specific modeling languages (DSMLs) facilitate concise and succinct model descriptions. DSMLs
are commonly realized by defining a custom grammar and executing models in an interpreter. This provides
flexibility in language design as well as in the implementation of simulation algorithms. However, this type
of implementation can lead to a negative impact on simulation performance in comparison to implementing
models in general-purpose programming languages (GPL). To mitigate this problem, we propose using
runtime code generation. This allows us to replace specific parts of a model at runtime by compiling
generated GPL source code. In this paper, we demonstrate the potential benefit of this concept based on
ML-Rules, a DSML for modeling and simulating biochemical reaction networks. Using code generation for
arithmetic expressions in ML-Rules’ reaction rate functions, we were able to decrease the runtime by up to
40% in complex application scenarios.

1 INTRODUCTION

The development of a novel modeling method typically includes a software implementation of the method.
One successful approach is to define domain-specific modeling languages (DSMLs) tailored to a specific
application domain (Miller et al. 2010). Carefully designed DSMLs are powerful tools and enable modelers
to efficiently develop succinct and accessible implementations of complex models. Especially in comparison
to general-purpose programming languages (GPLs), using DSMLs results in more readable and compact
model definitions.

Typically, DSMLs are accompanied by software to read, interpret and simulate models defined in
the DSML. This enforces a separation of model and simulation algorithm, which enables reusing a
simulation algorithm to execute various models, but also executing a model with different simulation
algorithms (Himmelspach and Uhrmacher 2007). Compared with a GPL implementation, however, the
DSML introduces an additional indirection between model definition and execution. For example, when a
simulation model is directly implemented in a GPL and compiled with the GPL’s compiler, the compiler
can optimize the model code. Many compiler implementations employ sophisticated optimization strategies
that can speed up the resulting program significantly (Bacon et al. 1994). However, a model that is defined
in a DSML and interpreted by the already compiled interpreter cannot be optimized by such a compiler.

To reduce the gap between the interpreter and the compiler, we propose the use of runtime code
generation. The idea is that the interpreter generates source code in the same language it is written in.
The generated source code can then be compiled and optimized while the interpreter is running. This way,
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the interpreter can interpret the model and replace parts of it with generated, compiled, and optimized
source code. Runtime code generation in general is a known strategy to improve the performance of
interpreters (Wiirthinger et al. 2012), however, to our knowledge it has not been applied to DSMLs yet.
Which parts of the model should be replaced with generated code depends on the concrete DSML.

In this paper, we demonstrate the potential benefit of this concept by applying it to the DSML
ML-Rules (Maus et al. 2011) — a rule-based language to model and simulate biochemical reaction networks.
Typical for DSMLs for biochemical reaction networks, the dynamics of a model are described by reaction
rules consisting of reactants, products and arithmetic rate expressions. We identify these arithmetic rate
expressions of reaction rules as a language part for which code generation could be beneficial, since they
often produce a significant amount of computational effort and they can directly be mapped to concepts and
structures of common GPLs. Therefore, we extend the existing ML-Rules implementation to generate code
that replaces the rate expression in reaction rules.

The rest of the paper is structured as follows. In Section 2, we motivate the usage of DSMLs and discuss
how applications processing them can be implemented. Afterward, in Section 3, we present possibilities
to combine model interpretation and code generation using the programming language Java. Finally, in
Section 4, we demonstrate how code generation can be integrated concretely within the model interpreter
of the DSML ML-Rules and we show in Section 5 the potential performance benefit on benchmarks and
complex models used in simulation studies. Section 6 concludes the paper.

2 DOMAIN-SPECIFIC MODELING LANGUAGES

Martin Fowler defines the term domain-specific language (DSL) as “a computer programming language
of limited expressiveness focused on a particular domain” (Fowler 2010, pg. 27). We use the term
domain-specific modeling language (DSML) to emphasize that the DSLs we consider in this article are
specifically designed for specifying simulation models. However, many insights from DSL research are
still valuable when working with DSMLs. For example, Fowler emphasizes that processing a DSL should
populate a semantic model, which is a language-independent representation of the concepts of the DSL.

When developing a DSML, the according semantic model should represent the semantics of a concrete
model description. Consequently, the semantic model encodes the meaning of a model and refers to the
formal foundation of the DSML. This enables a separation of models and simulation algorithms — an
important concept in modeling and simulation (Himmelspach and Uhrmacher 2007). It also facilitates
the development of component-based simulation software supporting different simulation algorithms and
different model representations.

Two types of DSLs are typically distinguished: internal (or embedded) and external DSLs (Fowler
2010). Internal DSLs are implemented with constructs of a host programming language. Thus, models
implemented in the internal DSL are always also valid programs of the host language. Users of the internal
DSL can exploit all existing tools (editors, visualizations, IDEs, ...) with essential features like syntax
highlighting or auto-completion available for the host language. Additionally, all features of the host
language can still be used when implementing a model. Even if the developer of an internal DSL does
not integrate all needed features, a user can exploit all capabilities of the host language to realize missing
options. Nevertheless, the designer of an internal DSL cannot freely design the syntax of the language, but
is constrained by the syntax, and capabilities of the host language, possibly preventing the usage of common
domain metaphors. The design of external DSLs is not constrained in this way, as they do not depend
on a host language. Instead, the syntax of external DSLs can be defined by developing formal grammars.
The toolchain to process formal grammars is typically generated automatically by parser generators like
ANTLR (Parr 2013). However, further auxiliary tools either have to be developed manually or by using
existing frameworks, e.g., xXText (Eysholdt and Behrens 2010).

Many DSMLs are external DSLs exploiting the independent language design to suitably map concepts
and metaphors of the application domain to language constructs. For example, a rule-based metaphor is
suitable when dealing with biochemical reaction networks (see Section 4). Therefore, the direct description
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Figure 1: Java source code is compiled to bytecode by the Java compiler. The bytecode is then interpreted
by the JVM. The JVM itself is executed on the operating system.

of rules with a tailored syntax improves the usability of DSMLs for this domain, resulting in the development
of various external DSMLs for biochemical reaction networks, e.g., BioNetGen (Blinov et al. 2004),
Kappa (Danos and Laneve 2004), ML-Space (Bittig and Uhrmacher 2017), and ML-Rules (Maus et al.
2011).

Models defined in an external DSML can be read in and simulated in two ways. Analog to compiling
or interpreting general-purpose programming languages (Aho et al. 2006, Chapter 1.1), DSMLs can be
executed via code generation, or directly in an interpreter (Morris et al. 2015). To generate code, the model
is translated to source code in a general-purpose programming language (e.g., Java or C++). Afterward, the
generated code can be compiled by a compiler of the target language. In contrast, the code executing the
model in an interpreter is typically written in the same language as the parser. Here, the model is processed
directly after parsing it, without generating another representation of the model.

Both approaches have pros and cons (Brambilla et al. 2012, pp. 28-33), e.g., interpreters allow changing
models at runtime, whereby code generation allows a partial generation approach. Further, generated code is
considered to be more efficient, since no interpretation is needed during runtime and the code can be optimized
during generation time (Topgu et al. 2016, p. 33). Nevertheless, developing a program for code generation
is challenging when dealing with abstract and declarative concepts (Iftikhar et al. 2016), possibly leading to
the implementation of code generator only for suitable models not using all features of the DSML and an
interpreter applicable to all models defined in the DSML. For example, in the simulation software Simulink(®)
(www.mathworks.com/products/simulink) developed by The MathWorks, MATLAB(R) system blocks support
two simulation modes (https://www.mathworks.com/help/simulink/ug/simulation-modes.html): either code
generation is used only supporting a subset of features probably resulting in faster simulations; or model
interpretation is used supporting all features. Code generation and model interpretation can also be mixed.
For example, by first interpreting the model and then compiling selected model parts at runtime, the
efficiency gain of compiler optimizations can be exploited while keeping a straightforward, lightweight
interpreter for the model.

In general, code generation as well as interpretation can be implemented in all general purpose-
programming languages and environments. However, to realize runtime code generation, languages running
on virtual machines like Java are advantageous since programs in these languages are also interpreted.
Therefore, program adaptation capabilities at runtime can be realized suitably (McKinley et al. 2004).

3 CODE GENERATION IN JAVA DURING RUNTIME

Java is a general-purpose programming language combining compilation and interpretation principles (Aho
et al. 2006, Chapter 1.1). The common way to execute Java programs takes two basic steps, see Figure 1.
First, the Java source code is compiled into a hardware independent, intermediate representation that is
called bytecode. Second, the bytecode is interpreted and executed on a target machine by the Java Virtual
Machine (JVM). Since Java programs are therefore executed by interpreting compiled bytecode, they can be
adapted and extended during runtime, e.g., exploited by the Just-In-Time compiler to optimize the bytecode
during runtime. Further, model interpreters written in Java can therefore be updated and extended during
runtime to improve the execution efficiency of a simulation run. To manipulate a Java program at runtime,
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one can directly update the bytecode that is executed by the JVM using bytecode manipulation libraries
like ASM (Bruneton 2007, Chapter 1.2), ByteBuddy (Winterhalter 2018), or Javassist (Chiba 2000).

The ASM library is a utility to manipulate the bytecode which is used by the JVM. The name is a
reference to the __asm__ keyword in the C programming language, which is used to execute assembler code
directly (Bruneton 2007, Chapter 1.2). Analogously, the ASM library provides an application programming
interface (API) directly working on bytecode. It is possible to analyze, read, write and transform bytecode,
utilizing the whole spectrum of bytecode features with all its optimization potential. Therefore, using ASM
requires knowledge of the general concept and structure of bytecode. Nevertheless, implementing directly
in bytecode is not really intended and developers are typically not familiar with it.

The code generation and manipulation library ByteBuddy builds on top of the ASM library (Winterhalter
2018). Its goal is to hide the whole bytecode complexity with an easy to use API. The API publishes
functions with which one can search and alter certain class features (e.g., functions, member variables etc.)
inside existing bytecode. This makes ByteBuddy more usable than the ASM library, since no bytecode is
implemented directly. Unfortunately, it also narrows the expressiveness of the library to the features its API
provides. It is not possible to consider arbitrary source code with ByteBuddy.

As with ByteBuddy, Javassist implements a reflective API on top of the ASM library (Chiba 2000).
However, a design goal was to apply adaptations on source code level. Source code in Java syntax can
directly be forwarded as strings to Javassist. The strings are compiled at runtime by a tailored Java compiler,
i.e., the expressiveness of supported modifications is close to the expressiveness of Java source code and
compiler optimizations are applied automatically to generate optimized bytecode. Since arbitrary strings
can be processed by Javassist, neither syntax checks nor type checking can be done during development
time, making it difficult to identify and fix bugs. However, in case of simple and short algorithms generated
with Javassist, this issue should not be of significant importance.

4 COMBINING CODE GENERATION AND INTERPRETATION FOR BIOCHEMICAL
REACTION NETWORKS

When modeling and simulating biochemical reaction networks, DSMLs are an essential tool. Therefore, various
external DSMLs interpreting models for this domain have already been developed, e.g., BioNetGen (Blinov
et al. 2004), Kappa (Danos and Laneve 2004), ML-Space (Bittig and Uhrmacher 2017), or ML-Rules (Helms

et al. 2017). A biochemical reaction network is defined by a state vector X = (xj,x2,...,%,) € N" and a
set of reactions R = {R},R;,...,R,} manipulating this state vector. A reaction R; is defined by a change
vector v € (vi,v2,...,v,) € Z" and a propensity function a; : N* — R™. The change vector defines the effect

when executing one reaction and the propensity function is used to calculate the rate of a reaction. When
simulated deterministically, a reaction network is transformed to a set of ordinary differential equations
and a numerical integration method is used to calculate the trajectory. When simulated stochastically, an
algorithm based on the Stochastic Simulation Algorithm (Gillespie 1977) is typically applied and each
reaction firing is calculated individually. For both simulation approaches, maintaining reaction rates is an
essential part of the computational simulation effort.

As typical for the simulation of biochemical reaction networks, the calculation of reaction propensities
often produces a significant computational effort of a simulation. Since rate expressions typically refer
to arithmetic expressions, generating code to calculate rates is straightforward. A common data structure
constructed by parsers is an abstract syntax tree (AST) representing the semantic model (Wiirthinger et al.
2012). When using ASTs, rate expressions are also represented by tree structures. Each node of such a
tree structure represents an operation or a value; in our implementation all node classes extend the same
class Node, see for example Figure 2, enabling the description of complex arithmetic expressions. Each
Node class implements a method calc (env), which is used to calculate the value of a node based on
a given environment. The environment contains all values of constants or values of local variables. For
example, calling calc (env) of an Identifier node returns the value of the given name stored in the
environment. The value of a node representing a complex expression can simply be calculated recursively
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Node<V>

calc(env: Environment): V

T

ValueNode<V> Identifier<v> IfThenElseNode<V> MultNode<V>
value: V name: String condition: Node left: Node
calc(env: Environment): V calc(env: Environment): V then: Node right: Node
else: Node calc(env: Environment): V
calc(env: Environment): V

Figure 2: Class diagram of the node architecture used to represent expressions, e.g., see Figure 3.
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Figure 3: Tree structure representing the expression 1f x > y then x - 3 else y - 5 using existing node
classes.

by calculating the values of its sub nodes. However, since each value and each operation is represented by
an object, multiple method calls are needed to calculate the value of a complex expression resulting in a
computational overhead. For example, calculating the value of the tree representing the expression if x
>y then x - 3 else y - 5 shown in Figure 3 needs seven calc (env) calls (if either the then part
or the else part are evaluated based on the result of the condition). By executing Java source code
directly representing this expression as one tailored node, see Figure 4, this overhead can be reduced.
Such tailored nodes can be generated automatically during runtime using code generation. Therefore,
after generating the semantic model, an additional post-processing is executed firstly checking whether
nodes of rate expressions can be converted to code and secondly conducting AST rewriting (Wiirthinger et al.
2012) to apply newly compiled tailored nodes, see Figure 5. The idea is to iterate over all rate expressions
and to try to generate new tailored node classes with Javassist during runtime representing rate expressions
in the calc method. Initially, a whitelist of supported expression node classes for code generation has
to be defined. In our implementation, the following arithmetic and logical expressions are supported:
AddNode, SubNode, MultNode, DivNode, IsSmallerNode, IsGreaterNode, IsEqualNode,
AndNode, OrNode, IfThenElseNode. Based on the whitelist, the code for a tailored node is produced
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public class DN_XYZ extends DynamicNode {

public Double calc (Environment env) {
double x = env.getValue ("x");
double y = env.getValue("y");
if (x > y) A
return x * 3;
} else {
return y * 5;

Figure 4: An exemplary tailored node representing the calculation of the expression if x > y then x - 3
else y - 5. Calculating the value of this node should be more efficient than calculating the value of the
corresponding node tree shown in Figure 3.

/ Operating System \
/ Java Virtual Machine (JVM) \

Code Generation

Tool (Javassist)

analyzes & updates

DSML Code reads Parser creates—¥ Semantic Model [—executes Interpreter

= S )

Figure 5: A parser, which is interpreted by the JVM, reads a DSML model and creates the semantic model.
The semantic model is manipulated by the code generation tool using Javassist. The interpreter executes
the updated semantic model.

by recursively generating code representing the calculation of a value of a node. Consequently, for each
node class that shall be supported by the code generation, a transformation method has to be implemented.
If a rate expression contains a node that is not contained in the whitelist, the process is stopped and no
tailored node is created for this rate expression. Consequently, our approach currently does not support the
creation of tailored nodes for parts of a rate expression. Based on the generated code, a new class for a
tailored node can be created, compiled and linked to the JVM by Javassist methods. Thereby, the compiler
automatically applies standard optimization features, e.g., to replace an expression with a constant result
directly with this result.

Class names of generated classes are made unique using a universally unique identifier (UUID) to
avoid class name conflicts when generating multiple node classes. To easily identify objects of generated
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classes in existing code, all generated node classes extend the abstract class DynamicNode that is only
extended by these classes. After generating a new node class for a rate expression, an object of this class is
instantiated and the original node object is simply replaced by the new node object. Thereby, this adaptation
is transparent for the rest of the software, i.e., to calculate the value of a newly generated node object, still
only the calc method has to be called. All in all, the effort to implement a code generator for the rate
nodes has been acceptable since arithmetic nodes like the MultNode or the IfThenElseNode map
nicely to concepts and structures of Java.

5 EVALUATION WITH ML-RULES

We evaluate the benefit of runtime code generation of arithmetic rate expressions for biochemical reaction
network simulation on the DSML ML-Rules (Helms et al. 2017), which is an internal DSML focusing
on dynamically nested reaction networks, i.e., models with a dynamic state vector and a dynamic set of
reactions. Nested and attributed entities are supported, rule schemes (patterns for reactions) can be defined
supporting nested reactants. Further, propensity functions can be described by complex expressions, for
example considering attributes of entities, content of entities or local properties of the model state. The
grammar of ML-Rules is defined and implemented in ANTLR 4 (Parr 2013) and the ML-Rules parser is
generated in Java. The semantic model calculated by the ML-Rules parser, which represents the meaning
of the simulation model, consists of 1) an environment containing a map of all defined constants, functions,
and entity types, 2) the initial state of the system, and 3) the set of rule schemes. After generating a semantic
model of an ML-Rules model, an interpreter implemented in Java is applied calculating the simulation run
with the semantic model.

To evaluate the benefit of code generation for arithmetic expressions during runtime for ML-Rules,
we executed microbenchmarks and macrobenchmarks (Oaks 2014, Chapter 2). In Section 5.1, the results
of microbenchmarks focusing on the benefit of code generation for isolated arithmetic expressions are
shown. Section 5.2 presents the results of macrobenchmarks executing simulation runs with complex
ML-Rules models. We use the benchmark framework Java Microbenchmark Harness (JMH,
http://openjdk.java.net/projects/code-tools/jmh/) for the performance measurement. To consider best
practices (Horky et al. 2015), warm up iterations are always executed. To avoid performance biases based
on parallelism, all iterations of the experiments are executed sequentially. However, we explicitly do not
disable the JIT compiler, since we want to consider whether the JIT compiler might equalize the benefit of
the manually implemented code generation. All experiments are executed on a Lenovo Thinkpad T460
with Intel® Core™ i7-6600U CPU @ 2.60GHz, 16GB RAM, deactivated frequency scaling, Windows 7
Professional (64-bit), and Java 8 (Version 1.8.0_161).

5.1 Microbenchmarks

Microbenchmarks are executed to test an isolated small part of a software, e.g., the execution of a method
call. Therefore, the performance results are only influenced by the software components which should
explicitly be considered. Here, we measure the effort required to calculate the result of expressions once
represented by node trees and once represented by DynamicNodes created by code generation. We use
the following four expressions for these microbenchmarks:

1. 1 + 2: An expression with a constant result. This expression should automatically be optimized by
the compiler directly representing the result (3) to avoid repetitive calculation of the same result.

2. x + y: A simple expression calculating the sum of two variables x and vy, i.e., an optimization
analog to the first expression 1 + 2 is not possible.

3. if x> 5 then 1 else 2: A simple conditional expression. Generated Java code executing such
a condition should be much faster compared to the execution of the corresponding node tree.

4. (x1+x2) - ((x3/ x4) +x2 + x4): A complex expression resulting in a node tree consisting
of eleven nodes.
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For the variables, we use the following values: x=15,y=3, x1 =1, x2 =2, x3 = 3, x4 = 4. The performance
results to calculate the values of these expressions base on 500 iterations (100 warm up iterations) and
are shown in Table 1. The results show that significant runtime savings are possible when applying code
generation for the expressions. Referring to the optimization of the expression 1+2, the compiler is
optimizing this expression as expected and generates optimized bytecode directly using the result 3. Clearly,
such simple optimizations could also be implemented manually, but we argue that using existing established
compiler capable of complex and sophisticated optimization methods are preferable to self-implemented
solutions. For all other expressions, the runtime could be reduced by more than 80%. This demonstrates
the overhead of interpreting nodes caused by additional method calls, object handling etc.

Table 1: Microbenchmark average runtime results in microseconds (standard deviation in brackets).

Expression Node Tree | DynamicNode | Savings
1+2 0.081 (0.010) | 0.001 (0.001) 99%
X+y 0.118 (0.035) | 0.020 (0.006) 83%
if x> 5thenlelse? 0.094 (0.008) | 0.012 (0.003) 87%
(x1 + x2) — ((x3 / x4) +x2 + x4) | 0414 (0.041) 0.072 (0.020) 82%

5.2 Macrobenchmarks

Macrobenchmarks are useful to evaluate the benefit of an optimization when executing a software as a
whole. Therefore, we execute whole simulation runs including model compilation, code generation and
all simulation step executions for the macrobenchmarks and the following runtime results consequently
also consider the overhead of the runtime code generation. We use the following three models for these
macrobenchmarks:

1. Wnt/B-catenin pathway model (Mazemondet et al. 2012): Represents the Wnt/B-catenin pathway
including the production, degradation and phosphorilation of Axin proteins and the shuttling of
B-catenin proteins between the cytosol of a cell and its nucleus. Cells and nuclei in this model do
not change.

2. Dictyostelium discoideum model (Beccuti et al. 2015): A spatial model of Dictyostelium discoideum
amoebas illustrating the aggregation process of those amoebas in space with multi-scale dynamics,
i.e., amoeba internal dynamics are much faster than amoeba movements.

3. Eastern Baltic cod model (Pierce et al. 2017): An individual-based model of eastern Baltic cod in
the Bornholm Basin including its metabolism and its behavior in dynamic, stratified water volumes.

In addition to different models, we also use different ML-Rules simulation algorithms (Helms et al. 2017)
for the macrobenchmark experiments. Since the compartments (cells and nuclei) of the Wnt/-catenin
pathway model are fixed, the reaction network in this model does not change and therefore, a tailored
simulation algorithm (StaticSim) for static reaction networks can be applied. Most of the computational
effort in this model is needed by the reaction selection mechanism and rate updates. Due to the multi-scale
dynamics of the Dictyostelium discoideum model, we select a hybrid simulator (HybridSim) combining
deterministic and stochastic concepts to improve runtime efficiency (Helms et al. 2018). For this model,
the numerical integration method calculating the deterministic part of the model producing most of the
computational effort of a simulation run again mostly caused by rate updates. Finally, for the cod model, we
use the default ML-Rules simulator (StandardSim). Rate updates do not dominate this model, however,
the code generation is also applicable. Generally speaking, since in ML-Rules a semantic model is created
by the parser and the code generation acts on the semantic model, the benefit of code generation can be
exploited by all existing ML-Rules simulation algorithms — supporting the concept of a clear separation of
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models and simulation algorithms. The simulation end times for the simulations are model-dependent and
have been chosen based on executed simulation studies.

Table 2 shows the performance results of the simulation runs based on 20 iterations (5 warm up
iterations). Since updating rate expressions is an essential part of the simulation runs for the Wnt/[3-catenin
pathway model and the Dictyostelium discoideum model, the needed runtime for the simulation runs could
be reduced significantly by code generation for arithmetic expressions. Nevertheless, as expected, the
benefit for the Eastern Baltic Cod model is not significant — most of the computational effort is produced
by the maintenance of the reaction set and reaction rate updates are not central in this model. Besides, the
overhead of the code generation and compilation at the beginning of a simulation run has been around
200 ms for all three models, so that it could worsen the runtime when executing simulation runs with lower
runtimes. However, this issue could be solved at least for the execution of multiple simulation runs of the
same model by reusing generated node classes.

Table 2: Macrobenchmark average runtime results in seconds (standard deviation in brackets). The last
column shows the number of created DynamicNode classes per replication.

Model Simulator Node Tree | DynamicNode | Savings | #DN
Whnt/-catenin pathway StaticSim 2.17 (0.16) 1.72 (0.08) 21% 12
Dictyostelium discoideum | HybridSim 30.11 (2.18) 17.26 (1.55) 43% 24
Eastern Baltic cod StandardSim | 11.11 (1.17) 10.52 (0.79) 5% 8

6 CONCLUSION

In this paper, we demonstrate the potential benefit of runtime code generation for interpreted DSMLs
illustrated on ML-Rules— a DSML for dynamically nested biochemical reaction networks. Domain-specific
modeling languages enable modelers to efficiently develop succinct implementations of complex models.
Models implemented in an external DSML are executed by either using code generation or by applying
an interpreter. Code generation is considered to produce code that is more efficient to be executed than
interpreting models. However, implementing interpreters can be more suitable in case of abstract and
declarative language concepts. To combine the effectiveness of code generation for suitable parts of an
interpreted DSML, both approaches can be coupled, e.g., by using reflective concepts typically provided by
interpreted programming languages like Java running on a virtual machine. We show the benefit of this
combination by introducing code generation at runtime for arithmetic rate expressions in ML-Rules. To
deal with arithmetic expressions in DSML interpreters, they are typically translated into node trees, thereby
introducing a calculation overhead caused by additional method calls, object handling etc. Code generation
at runtime can be used to mitigate this overhead by replacing a complex node tree with one semantically
equivalent tailored node. This can be easily realized for arithmetic expressions, since they map nicely to
language concepts and structures of general purpose languages, such as Java. The performance evaluation
demonstrates the potential of code generation at runtime. The runtime of simulation runs of complex models
used in simulation studies could be reduced by up to 40%. Clearly, the effectiveness of code generation at
runtime depends on the model. However, since the concept can be applied straightforwardly and with little
effort to interpreted DSMLs, it appears worthwhile to analyze and exploit its potential, possibly beyond
arithmetic expressions for interpreted DSML.

The runtime code generation will be part of one of the next ML-Rules releases. Further, an artifact
containing the source code and applications to reproduce the performance results is available at https:
//doi.org/10.18453/rosdok_1d00000109.
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