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ABSTRACT 

Software-hardware co-design enabled with co-simulation is useful for building embedded computing 

systems. Indispensable to design is developing hardware and software simulation models at appropriate 
abstraction levels. Toward this goal, this paper presents a study of combined Register-Transfer-Level (RTL) 
and software system modeling. Specifically, composition of hardware and software models is proposed and 
a co-simulation environment to simulate the models is developed. The hardware and software parts of a 
prototypical Network on Chip (NoC) system are modeled and simulated. The hardware part is specified at 
RTL level using the DEVS Suite Simulator and the software part defined as a MATLAB script. A 

Functional Mock-up Interface (FMI) is developed for the DEVS-Suite Simulator to support hardware and 
software model coupling and co-simulation. This study details a modular development of hardware and 
software models executing on disparate environments instead of employing a monolithic modeling method 
supported with a monolithic simulation engine. 

1 INTRODUCTION 

Abstraction taxonomies are known to be useful in distinguishing models intended for different, and 

sometime complementary, purposes. A taxonomy provides concepts and definitions to tackle challenges 
inherent in capturing model complexity. Resolutions for time, data, function, and structure are among key 
contributors, for example, to the development of Systems-on-Chips (SoC) and more broadly for Internet of 
Things (IoT). Digital systems, as well as mixed-signal systems, are commonly developed according to the 
Hardware Description Language (HDL) (Shiva 1979). One well-known and successful realization for the 
HDL is the Very Hardware Description Language (VHDL) (Standard 1988). It supports modeling at 

behavioral and RTL abstraction levels (Mano et al. 2015). A behavioral model abstraction can be defined 
as functions and timing using assignment expressions and timed communication signals. A Register 
Transfer Level (RTL) model defines structure and behavior in terms of combinational and sequential logic 
gates under the control of a clock and data signals. These models are intended to be agnostic to a myriad of 
FPGA (Field Programmable Gate Array) implementations. An important factor in the widespread use of 
VHDL is the availability of tools like Quartus (Intel FPGA 2018) that can support transforming behavioral 

to RTL to Logic abstraction levels as well as automation for FPGA code generation.  
As the role of software continues to grow and increase system complexity, it is attractive to use discrete 

event modeling methods. For example, to model Network-on-Chip systems, it is important to have models 
that are accurate in terms of timing for asynchronous events and efficient execution (Ghosh 2001). A 
candidate modeling approach is the Discrete Event System Specification (DEVS) (Zeigler et al. 2000) 
formalism. Together the IO System and Coupled DEVS models can be viewed to be at a similar abstraction 

level as the behavioral VHDL model. 
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Given the system-theoretic foundation of DEVS, it can be specialized at the RTL abstraction level 
(Chen and Sarjoughian 2009). A library of combinatorial and sequential DEVS RTL model elements were 
developed for MIPS32 and implemented in the DEVS Suite Simulator (ACIMS 2018). Use of the DEVS 
modeling framework encourages formal model specifications. Recently, methods and tools are developed 
to bridge the gap from mathematical specification to code with the aid of Unified Modeling Language 
(UML), Statecharts (Fard and Sarjoughian 2015) and UML Activity Diagrams (Sarjoughian et al. 2015). 

These modeling capabilities afford behavioral modeling that are beneficial to DEVS. RTL model can be 
developed more rigorously and systematically based on the formal DEVS specification with the semi-
formal Statecharts and UML Activity methods.   

Designs for simulation and model checking of embedded systems benefit from a methodology where 
software and hardware components at different abstraction levels can be validated and verified (Gholami 
and Sarjoughian 2017). For such systems, it is important to use co-simulation to reduce design complexity 

and thus verification and validation efforts. For co-simulation, tools using their own simulation protocols 
(e.g., solvers) allow combining multiple domains with different time steps. Functional Mock-up interface 
(FMI) (Blochwitz et al. 2011) is a standard framework to couple simulators. In conventional FPGA design 
flow, hardware and software components are designed and validated separately. Using FMI allows to 
having a co-simulation environment where mixed hardware RTL and software models can be simulated 
separately. Co-simulation naturally lends itself to distributed execution since models can be executed as 

black-boxes relative to one another. To demonstrate this co-simulation, we propose - integrating the DEVS-
Suite Simulator with MATLAB using the FMI standard. We have developed a co-simulation environment 
for hardware (RTL) DEVS models and software MATLAB models. As exemplar NoC component, we 
modeled a buffer for the incoming flits. In the presence of virtual channels, one of the most elegant methods 
of buffer design is circular (Ni et al. 1998). We consider a circular buffer with four cells, two virtual 
channels, and an on/off flow control mechanism. We developed this component in DEVS at RTL 

abstraction level. We extended this RTL design with a router modeled as a microprocessor and a firmware 
embedded in it. The firmware is abstracted as a MATLAB script which will be referred to as software 
model in the remainder of this paper. MATLAB is used to demonstrate the developed FMI for the DEVS-
Suite simulator and using it for DEVS and non-DEVS simulations to interoperate. 

The contribution of this paper is as follows. A generic DEVS-FMI interface is developed for the DEVS 
Suite Simulator. Basic NoC models are developed using DEVS and MATLAB. Then, the developed 

interface is used to achieve co-simulation of the RTL and software model. This kind of co-simulation is 
valuable as it allows independently developed software models as part of designing embedded software 
systems. The paper also discusses research on DEVS-based High Level Synthesis (HLS). 

2 BACKGROUND 

This section briefly describes Network-on-Chip (NoC) system, its model development and simulation in 
DEVS, and the Functional Mock-up Interface (FMI).  

2.1 Network-on-Chip (NoC) 

DEVS is grounded in systems theory which provides modeling using a formal specification. DEVS models 
are realized using an object-oriented programming language (Java) in the DEVS-Suite Simulator. DEVS 
employs the foundational concepts of components with I/O ports, modularity, and hierarchy. The I/O ports 
can be designed to have arbitrary values and they can be restricted. The dynamics of an atomic model in 
DEVS are defined in terms of external, internal, output, and time-advance functions. The first two define 

state transitions due to receiving inputs as external events and internal state changes. The latter two define 
generation of output events and time duration for each of the states the model can be in. Two primary state 
variables, phase and sigma, store the phase and timing information of the model. Other state variables 
(referred to as secondary) are needed to specify states of target system being modeled. 
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A Network-on-Chip (NoC) is a communication system (Dally and Towles 2004) proposed to manage 
the interactions between Intellectual Properties in a System-on-a-Chip (SoC). The regular structure, cost-
effectiveness, and high bandwidth are the main reasons NoCs for large SoCs. In a NoC, streams of data are 
packetized and sent over the network. Routers are in charge of directing this packetized data (flits) toward 
their destinations. Flits go through 6 major phases in a router: queueing, routing, virtual channel allocation, 
switch allocation, switch traversal, and transmission. In this paper, we focus on the queueing phase where 

flits are queued in a buffer until they are dequeued under an overflow control mechanism. 

2.2 Functional Mock-up Interface (FMI) 

The Functional Mock-up Interface (FMI) is proposed as an interface for model exchange and co-simulation 
of dynamic models (Blochwitz et al. 2011). This interface is devised to support model exchange and co-
simulation. A component which implements the FMI interface is known as Functional Mock-up Unit 
(FMU). As a package, it contains model functionality as C code and information about the model as XML 

document. For model exchange, one modeling environment exports a model as FMU. The FMU can be 
imported and used by another FMI-compliant modeling environment. With FMI two or more simulation 
environments can be coupled to form a co-simulation environment. One of the simulation environment 
must be master while all others are slaves. The master simulator is responsible for synchronized data 
exchanges and executions of all slave simulators relative to its own execution cycles. An FMI adapter needs 
to be developed for slave simulator to communicate with the master. The adapter is a dedicated simulation 

component responsible for information retrieval from FMU and data exchange between master and slave 
simulators. In this paper, a C++ wrapper library for FMI 1.0 specification is used, which is called FMI++. 
In subsequent sections, FMI and FMI++ are used interchangeably.    

3 RELATED WORK 

Development of efficient and reliable embedded systems requires hardware/software co-design and 
co-simulation. Numerous co-simulation environments and frameworks are introduced to tackle design and 

validation complexity of systems. Some of these related works are described in this section. 

3.1 FMI based Co-simulation 

MECSYCO is a middleware developed for co-simulation of cyber physical systems (Camus et al. 2018). 
Co-simulation engine of MECSYCO utilizes DEVS formalism to integrate tools that use different 
formalisms, allowing homogeneous co-simulation of heterogeneous tools. A DEVS wrapping strategy is 
proposed for the FMU component in order to integrate varieties of continuous modeling and simulation 

(M&S) tools in MECSYCO. While MECSYCO integrates simulation tools under the same formalism using 
DEVS wrappers, our approach connects simulation tools differently. We have created a DEVS-FMI 

interface to connect simulation tools with DEVS-Suite Simulator using FMI as middleware. In 
MECSYCO, if an M&S tool uses a formalism that does not comply with DEVS, it cannot be integrated. In 
our approach, compliance with DEVS formalism is not needed. However, an M&S tool must provide an 
FMI adapter to connect.  

 A co-simulation of a distributed application with FMU using SimGrid is proposed (Camus et al. 2016). 
In this work, co-simulation of equation-based FMU with a code-based distributed application is presented 
by embedding FMU generated from one simulation tool (OpenModelica) into another tool (SimGrid) as a 
dedicated model. Unlike our work, the co-simulation is achieved through the exchange of model I/O rather 
than using the concept of interoperability of simulation tools. This represents a weak form of co-simulation. 
In our work, the FMU generated from MATLAB is not embedded into DEVS-Suite Simulator, it is used to 

connect with MATLAB using interoperability with FMI. 
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3.2 Co-simulation involving Hardware Models and Simulators 

A High-Level Architecture (HLA) based co-simulation framework for mixed signal SoC design is proposed 
(Seok et al. 2017). The co-simulation framework provides a formal interface to integrate new simulation 
tools and connect with existing hardware simulators and emulators in the framework. The framework 
utilizes HLA-based interoperability between mixed signal heterogeneous hardware models and tools. The 
simulation tool to be integrated into the framework needs a Signal Event (SE) converter. Compared to this 

work, our models are abstracted at RTL level and we use FMI based interoperability to connect simulation 
tools. The simulation tools use FMI adapter to connect to DEVS-FMI co-simulation environment.  
 SystemC (SystemC 1999) is a C++ library supporting transaction level modeling (TLM) (Maillet-
Contoz and Strassen 2005) as an intermediate abstraction between Register Transfer Level (RTL) and 
architecture-independent abstractions. TLM allows specifying systems by excluding details of 
communication architecture. SystemC is designed to support modeling, simulation, and architectural 

exploration of TLM models. The modeling process is grounded on classes and macros developed in C++. 
One important advantage of SystemC (in relation to Hardware Description Languages) is its support for 
modeling both hardware components and embedded software. This enables designers to explore 
partitioning of system functionality into hardware and software components. SystemC does not have an 
RTL model library. However, tools like Vivado HLS (Vivado Design Suite 2018) provide an automatic 
transformation from SystemC specification to RTL as well as co-simulation of SystemC and RTL. A 

co-simulation of SystemC TLM and RTL is proposed by (Park et al. 2008) for system verification. 
Compared to SystemC, DEVS is not restricted to TLM only. Moreover, DEVS has a library of 
combinational and sequential RTL models (Chen and Sarjoughian 2009). We used these models to design 
circular buffer at RTL level.   
 HDL Verifier tool (MathWorks 2017) of MATLAB & Simulink allows linking HDL simulator with 
MATLAB and Simulink in a client server configuration. This approach is analogous to frontend backend 

approach used for simulation tool coupling (Widl and Müller 2017). MATLAB and Simulink provide 
co-simulation function and blocks which can be used by behavioral HDL model in an HDL Simulator. 
However, co-simulation of RTL level models with MATLAB and Simulink is not supported in this tool. 
 Ahmed et al. (2017) addresses incompatibility between simulation tools and model composability as 
future challenges in High Performance Computing (HPC) modeling and simulation. One of the solutions 
they suggested was to agree on a communication API for different simulation components. Also, they 

emphasized on creating and maintaining comprehensive model libraries of hardware and software 
components. In our work, we use DEVS-FMI interface as communication API between simulation 
components. We have added new models to the existing library of MIPS models. Our co-simulation 
approach and the DEVS-Suite simulator can be used to tackle the software and hardware co-design at 
multiple levels of abstraction using different modeling methods with co-simulation support. 

4 MODELING CIRCULAR BUFFER 

Buffers are an integral part of NoC design. In a System on Chip (SoC), packets sent from one IP to another 
are kept temporarily in a buffer when there is traffic in the network. In this section, we consider a circular 
buffer (also known as a ring buffer) model as an example. The buffer operates in First-In-First-Out (FIFO) 
manner and it has four memory locations for storing data packets. Separate read and write pointers keep 
track of the memory locations to be sequentially read from and written one at a time. When the last slot in 
buffer is read or written, the corresponding pointer points to the first slot again. The relative position of the 

pointers is used to determine the empty or full state of the buffer. 

4.1 DEVS Modeling 

A library of previously developed RTL models (Chen and Sarjoughian 2009) are used to create a RTL 
circular buffer model. For modeling the Circular Buffer, other models including adder, read and write 
pointer multiplexers, comparator, and, or, and bit converter supporting pointers are introduced to the 
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DEVS-RTL  model library implemented in the DEVS-Suite Simulator. Figure 1 shows a partial list of 
components added to the DEVS-RTL model library (see also the package named Other in Figure 2). In 
Section 4.2, this design is extended by adding a Router atomic model. As DEVS allows hierarchical design, 
some of the models are blackboxed into two coupled models ReadWriteLogic and BufferMemory-4. 
ReadWriteLogic model is created using basic gates (AND, OR, NOT) which provide the necessary logics 
to read and write the buffer. BufferMemory-4 model is created using registers and multiplexers and it 

represents the four memory slots of the circular buffer. A coarse grain model (i.e., without gate-level 
abstractions) for the circular buffer is also developed.  

Component  Instances  Functionality 

Register 

With 

Enable) 

memory0,1,2,3 Four slots for the circular buffer; each slot can hold 4 bits of 

data 

Readptr stores the current pointer to the memory location to be read 

Writeptr stores the current pointer to the memory location to be written 

data_out stores output data while reading 

Decoder Decoder Each output of decoder works as a selector for memorymux block  

Adder add0 increments write pointer 

add1 increments read pointer 

Comparator Equal0, Equal1 Compares its two inputs to see if they are equal  

Converter Conv2to3_rdptr In RTL created from VHDL, a new wire is added or existing wire 

is grounded to support different bit sizes; models implement 

same functionality for DEVS-RTL; models convert two bit binary 

to three bit or three bit binary to two bit 

 Conv2to3_wrtptr 

 Conv3to2_wrtptr 

Figure 1: Partial list of Components added to MIPS library in DEVS-Suite Simulator. 

Figure 2 shows the NoC source library added to the RTL package developed for the DEVS-Suite 
Simulator. CircularBufferRTL.java and RouterBufferComposed.java correspond to the coupled models 
shown in Figure 3 and Figure 4 respectively. Figure 2 also shows additional model libraries (Other 
directory) developed and used for DEVS-RTL design. This RTL circular buffer is implemented and 
simulated in the DEVS-Suite simulator 4.0.0 (ACIMS 2018).  

  

 
Figure 2: NoC Library added to DEVS-Suite Simulator. 

4.2 Model Extension with Router 

The DEVS RTL model developed in section 4.1 is extended with a router model (Figure 4) and co simulated 
with a software model. A MATLAB script running in MATLAB execution environment represents the 

software system. The hierarchical coupled model shown in Figure 4 has components at two different 
abstraction levels. Router and HeadTailExtractor are modeled as hardware Intellectual Property (IP). Other 
models are at the RTL abstraction level. The circular buffer model in Figure 3 is shown as a blackbox. The 
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router is an atomic model which represents a microprocessor with a firmware. The function of the router 
model is to decide route for incoming data packets. The firmware is a software permanently programmed 
into a flash memory inside the microprocessor. The firmware is modeled as a MATLAB script 
(RouterFirmware.m). Details of the firmware model are discussed in Section 4.3. 

 

 

Figure 3: Hierarchical DEVS model of circular buffer. 

The R, H, T, HeadTailExtractor, and Demux atomic models are added in the extended model. We 
designate these as supporting models for the circular buffer and the router. The R, H, and T models are 
status registers that store Head, Tail and destination route of a packet, respectively. HeadTailExtractor 
model receives a packet from circular buffer and provides head flit to the router. The Head flit contains 
destination address which is used for packet route calculation. The Demux model sends packets to correct 

output ports using the decision from the router model. 
An experimental frame model consisting of three atomic models: clock, generator and logic generator 

is developed. The clock model provides 0 and 1 values to the clk input of the circular buffer denoting high 
and low state of clock pulse. The logic generator model provides the logic to enable the circular buffer in 
read or write mode. The generator creates data packets and sends them to the data_in input port of the 
circular buffer. Each packet is represented with 14 bits of data. The first 6 bits denotes head flit which has 

destination address. The following 4 bits are data bits and last 4 bits denote tail flit. For example, in a packet 
represented by 01100111110000, 011001 is the head flit, 1111 is 4 bit data, and 0000 is the tail. 

4.3 Model Development in MATLAB 

The router modeled in DEVS is abstracted as a microprocessor which has a firmware embedded in it. We 
have modeled the firmware using a MATLAB script. The script has a function which takes destination 
information from head flit and calculates route using adaptive x-y routing. Unlike DEVS atomic model, the 

script is untimed; it has no clock or time advanced function in it. It executes and returns route value when 
requested. In tool coupling co-simulation, an FMI adapter is required for slave tool to connect with FMI. 
Existing adapter is developed for MATLAB (Widl and Müller 2017) on top of FMI++ library (MATLAB-
FMIPP). A new derived class is developed (RouterFMIAdapter.m file shown in Figure 5) from this base 
adapter so that firmware script can communicate and perform data exchange with FMI during co-
simulation. This RouterFMIAdapter has functions to initialize firmware I/O and perform simulation steps. 

RouterFMIAdapter and its base adapter uses MEX (Matlab Executable) functions to communicate with 
C++ backend functions. Firmware model and FMI adapter are packaged into an FMU 
(RouteCalculator.fmu) using scripts developed in MATLAB and Python as part of MATLAB-FMIPP 
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project. These scripts also create modelDesription.xml file for FMU. Figure 5 shows list of files when 
RouteCalculator.fmu is unpacked.  

 

Figure 4: Circular buffer model extended with Router and supporting atomic models. 

5 CO-SIMULATION OF HARDWARE AND SOFTWARE MODELS 

The extended DEVS-RTL model of section 4.2 and scripts developed in MATLAB are coupled in a 
co-simulation environment. FMI++ (Widl et al. 2013) is used as a middleware to achieve interoperability 
of DEVS-Suite Simulator and MATLAB during co-simulation. We discuss the development of the 
interface, execution and timing aspects of the co-simulation in this section. 

5.1 Development of DEVS-FMI Interface 

A DEVS-FMI interface is developed for DEVS-Suite Simulator. This interface is intended for 
communication between simulator classes of DEVS-Suite with FMI++ functions. Figure 5 illustrates 
different packages created in DEVS-Suite Simulator. DEVS-FMI interface and the classes using that 
interface is added to simulation package of DEVS-Suite. Frontend.java class contains Java native functions 
required to access C++ functions of FMI++ frontend. Java Native functions along with the C++ 
implementation of the functions in FMI++ are compiled into a library named jni-frontend.dll (Figure 5) 

which is used by class Frontend. CoSimIO.java class implements DEVS-FMI interface and extends 
Frontend class to provide necessary functions for co-simulation. 

In DEVS-Suite Simulator, modeling and execution layer are separated from each other as shown in 
Figure 5. Development of this interface benefits from this separation. Each atomic model is simulated by a 
dedicated atomic simulator and each coupled model is simulated by its dedicated coordinator. The simulator 
classes interact with FMI functions using the interface and perform necessary data exchange with modeling 

layer. This ensures flexibility to use different models in co-simulation without changing the DEVS-FMI 
interface or simulator.    

5.2 Using FMI++ as Middleware for Tool-coupling 

FMI++ (Widl et al. 2013) is basically the FMI 1.0 implementation wrapped with C++. There are two main 
utility packages in FMI++ library: Export and Import. These packages are compiled into library files 
fmippex.dll and fmippim.dll respectively (Figure 5). Import utility package provides functionality to import 

FMU and use it as a model in a simulation tool. The export utility allows existing simulator tools to export 
their model as FMU as well as connect to other simulator tools. In section 4.3, MATLAB models are 
packaged into FMU using a wrapper of the export package of FMI++. In this way, FMI supports modular 
development, allowing creating FMU as a model entity. When FMU is used in a standalone co-simulation 
or tool-coupling co-simulation, FMI basically provides the capability of distributed execution of the model 
embedded in FMU. 

Export utility package has three key components: Frontend, Backend and Data Manager. Frontend 
component provides the interface for external simulation tool to connect and implement functionality as 
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FMI component. Backend component is the counterpart of frontend which can be used by the slave tool to 
connect and exchange data with the Frontend. The in-between data manager ensures proper synchronization 
and data handling using shared memory. Data manager uses semaphores to ensure safe access to variables. 
Shared variables in data manager are not read or written unless blocking functions waitForMaster and 
waitForSlave returns. Also, signalToMaster and signalToSlave functions are used to notify simulators after 
data is read or written. These three components are used to connect DEVS-Suite simulator and MATLAB 

during execution of co-simulation as shown in Figure 5. 
 

 

Figure 5: Illustration of co-simulation of DEVS-Suite and MATLAB using FMI++. 

 
RTL-DEVS models in the DEVS-Suite simulator are written in Java and the software model is written 

in the MATLAB script language. As the DEVS-Suite simulator does not support FMI++, the DEVS FMI 
interface is developed. The DEVS-Suite simulator and MATLAB use C++ functions via Java Native 
Interface (JNI) and MEX (MATLAB executable) functions, respectively.  

5.3 Execution of Co-simulation 

The circular buffer can be operated in two different modes: read mode and write mode. If write mode is 
enabled (wen=1, ren=0) and the buffer is not full, packets received in data_in port are saved into the buffer 
memory. In read mode (wen=0, ren=1), data is read sequentially and available at the data_out port of 
circular buffer. The circular buffer is constrained to read or write only one packet at a time. When each 
packet is read, the Router atomic model in Figure 4 needs to provide destination route to Demux model. 

Demux model then sends the packet to one of the four output ports based on the route. Destination route is 
calculated by the firmware model during co-simulation. Therefore, in the read mode, DEVS-Suite 
Simulator needs to initiate co-simulation every time a packet is read. 

The DEVS-Suite simulator has a hierarchical simulator architecture for its hierarchical model (Figure 
5). Each atomic model is simulated by a simulator and each coupled model is simulated by a coordinator. 
There is a root coordinator which coordinates all the simulators and coordinators. At the beginning of the 

simulation, the coordinator for the outer coupled model, let’s call it out-coord, unpacks the FMU and parses 
information about slave simulator tool and shared variable from modelDescription XML file. Two shared 
variables of type Integer are specified in the modelDescription file: Head and Route. Head is an input 
variable and Route is output variable. Root coordinator also has the information which atomic model takes 
part in data exchange during co-simulation. In the extended model we developed (Figure 4), Router atomic 
model takes part in data exchange in co-simulation. The atomic simulator for Router model uses DEVS-

FMI interface to perform this data exchange (Figure 5).  
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Table 2 provides a list of key functions used by master simulator during co-simulation in order of their 
execution. When a packet is read, the HeadTailExtractor model sends the head to Router model. As soon 
as the head is received, Router model decodes destination x and y coordinate from the head. Out-coord uses 
DEVS-FMI interface to notify FMI++ Frontend to instantiate slave and initialize. The atomic simulator for 
Router writes the shared variable Head using setInteger function and calls the doStep function. At this point, 
MATLAB executable simulates the firmware model and updates Route variable through FMI-Adapter. 

Atomic simulator reads the updated Route and out-coord sends it Router. Router model produces the route 
value as output and it is sent to Demux model. Demux sends the packet to the output port. 

5.4 Time Synchronization 

In a co-simulation, subsystems are simulated independently in their respective simulators and data exchange 
takes place during simulation. The simulators are responsible for maintaining their own simulation time. 
When the simulators have different notion of time, synchronization of their timing is required.  

 Each DEVS atomic model has its own timing denoted with variable sigma and maintained by simulator 
using time advance function as discussed in Section 2.1. As hardware models are executed using clock 
steps, a separate clock model is used for fixed step execution. Models that create combinational circuit (i.e. 
logic gates) have a sigma of zero. Additional timing parameters, like latency and propagation delay or setup 
time and hold time of registers can be modeled using time advance function in DEVS. During monolithic 
simulation, DEVS simulator clock advances its clock according to the sigma of different models.  

 Slave simulator executes specified steps within a time window defined by a start and a stop time. FMI 
adapter of the slave is aware of a communication point when data exchange takes places during runtime. 
Data manager takes care of synchronization of data exchange as discussed in section 5.2. In our simple 
example, the firmware model developed in MATLAB has no notion of time, it is an untimed script. The 
script executes only once to produce route value. After running, it writes to the shared variable immediately. 
Therefore, the concept of start time, end time, step size and communication point is not needed for execution 

of the example. The execution of the script can take arbitrary time, depending on the machine that runs the 
simulation. Even though FMI provides means for synchronized data exchange, FMI is untimed like the 
MATLAB scripts. Like C++ program, execution of frontend, backend and data manager is sequential.  
 A sample execution for the router is shown in Figure 6. Here, trajectories show that the Router receives 
the head input from HeadTailExtractor on its FlitIn port at time t=300. When an input on FlitIn input port 
is received, its atomic simulator sends it to MATLAB via the DEVS-FMI interface. The calculated route is 

collected by out-coord and sent back to the router through RouteIn port. Upon receiving input RouteIn input 
port, the phase is changed to SendRoute and the route is sent to Demux via the RouteOut port at t = 320. 

6 RESULT AND PERFORMANCE ANALYSIS 

DEVS models are developed using Java in Eclipse (Eclipse Foundation 2001) and simulated in DEVS Suite 
Simulator version 3.0.0. Router adapter and firmware models were developed using MATLAB R2013a. 
FMI++ library functions have compile-time and run-time dependency on Boost libraries (Dawes et al. 

1998). Boost version 1.58.0 is used. The co-simulation is performed on a Windows 7 machine with Intel 
Core2Duo 2.93 GHz CPU and 8 GB of RAM. 
 Using the above environment, the actual time recorded for executing the circular buffer using the 
DEVS-Suite Simulator and FMU is tabulated in Table 3. Hierarchy 1 refers to an RTL model is a coupled 
model that has only atomic models. In Hierarchy 2, selected atomic models of are represented as 
hierarchical models. Simulation time is recorded for monolithic simulation of circular buffer model and 

also for co-simulation with MATLAB. As expected, hierarchical models require more time to execute due 
to additional I/O couplings and message passing. Also, we observe that co-simulation takes more time than 
monolithic simulation. The model developed for co-simulation has a router and other supporting models 
added to the circular buffer model. Execution time of these additional models add to the simulation time. 
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Moreover, in co-simulation, time to instantiate slave, run steps in slave simulator and data exchange in FMI 
requires more computational resources and thus require additional time to execute.  

Table 2: List of key functions used in FMI for co-simulation in order of execution. 

FMI Function Purpose 

instantiateSlave Master invokes slave simulator to initiate co-simulation 

initializeSlave Initialize slave with timing information (start time, stop time) 

setInteger Set the value of shared input Integer variable 

doStep When master calls doStep function, slave performs simulation steps specified by start time, 

stop time and number of steps.  

getInteger Get updated value of shared output variable after simulation 

 

Table 3: Simulation times for monolithic simulation and co-simulation of the circular buffer model. 

Simulation 

Type 

Model Simulation Time (seconds) 
100 Steps 1,000 Steps 5,000 Steps 10,000 Steps 

Monolithic (DEVS-Suite) Hierarchy1  0.54 3.35 28.74 116.35 

Hierarchy2  0.49 3.35 29.04 118.94 

Co-simulation (DEVS-Suite, 

FMU) 

Hierarchy1  0.87 5.43 46.51 160.55 

Hierarchy2  0.86 5.60 47.63 165.59 

Figure 6: Superdense TimeView trajectories showing I/O communication of Router. 

7 OBSERVATION 

In this paper, we have demonstrated a co-simulation of hardware RTL DEVS model with a software system 
using FMI. In DEVS Suite Simulator, we modeled circular buffer at RTL level and a router abstracted as a 

hardware IP having a firmware counterpart. The firmware is abstracted as MATLAB script and our software 
system is represented by MATLAB script running in MATLAB execution engine. We coupled DEVS-Suite 
Simulator with MATLAB and thus support co-simulation of RTL and software system. Existing HDL 
simulators support co-simulation with software system at behavioral abstraction level. 
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 MATLAB is primarily developed for matrix algebra and vector calculation using scripts. DEVS, 
however, is a time and event-driven modeling method. The firmware model developed in MATLAB is 
untimed. If we want to co-simulate with the software system that has a different mechanism of keeping 
time, it adds complexity to the design and execution. Coupling DEVS-Suite Simulator with MATLAB can 
be viewed as a first exemplar step to show co-simulation of RTL and Software System. This work can be 
extended to support coupling with tools that provide formal modeling and timing specifications.  

 As mentioned in Section 4.1, the RTL model in DEVS is developed using the MIPS library and some 
newly developed RTL models. For large-scale designs, automatic support for generation of RTL for FPGA 
from RTL DEVS models is key and remains as future work. 

8 CONCLUSION 

This paper presents DEVS modeling at System and RTL abstraction levels and co-simulation of RTL model 
with the software system. This is useful for co-simulating NoC system that include software. The developed 

proposed approach introduces FMI to support hybrid DEVS Suite Simulator and FMUs. The prototype 
DEVS-FMI interface developed for DEVS-Suite demonstrates lightweight interoperability with other tools. 
We observe that the model in MATLAB is a simple untimed script and coupling it with the DEVS-Suite 
presents hybrid FMI-based models and co-simulation. Ongoing research includes development of 
automation support for DEVS RTL from system level DEVS abstractions as well as enabling mapping from 
DEVS RTL to VHDL RTL and thus FPGA. Such model transformation supported with FMI is likely to 

help avoid some barriers associated with simulation-based design for NoC, SoC, and Internet of Things. 
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