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ABSTRACT 

The Discrete Event System Specification (DEVS) is a general modeling formalism with sound semantics 
founded on a system theoretic basis. It can be used as a base for the development of specialized modeling 
formalisms. Usually, the extensions of DEVS expand the classes of systems models that can be 
represented in DEVS. However, with a growing number in new variants of DEVS and an increasing 
number of problems to be solved using discrete simulation techniques, it is necessary to define the 
relations among different approaches. This paper presents a conceptual modeling perspective applied to 

DEVS extensions that structure a framework over the traditional modeling and simulation approach. The 
framework provides a multilevel structure to analyze the features required for each extension type. Two 
main types of extensions are identified: variants and subclasses. In order to illustrate the proposed 
guidelines, the Routed DEVS formalism is presented as example of the subclass type. 

1 INTRODUCTION 

The Discrete Event System Specification (DEVS) is a general modeling formalism with sound semantics 

founded on a system theoretic basis (Zeigler and Vahie 1993). This formalism embodies a set of concepts 
related to systems theory and modeling in order to describe discrete event models. It provides a general 
methodology for hierarchical construction of reusable models in a modular way. 

Wainer and Mosterman (2010) propose that the core of DEVS is composed of: i) a set of basic 
concepts defined in terms of the Discrete Event Systems Specification (DEVS), the DEVS Simulation 
(performed by a DEVS Simulator that implements an Abstract DEVS Simulator) and the System Entity 

Structure (which is a formal structure with a set of axioms that provides valid models; ii) a modeling and 
simulation (M&S) framework defined as an ontology of the modeling and simulation domain expressed in 
terms of entities and their relationships; iii) a systems-theory basis used to formulate the framework 
entities in terms of system specifications, and the framework relations in terms of the morphisms among 
system specifications. However, in the past years, advances have been made radiating out from the DEVS 
core (Zeigler et al. 2000).  

In this context, DEVS can be used as a base for the development of specialized modeling formalisms 
for specific domains (Wainer and Mosterman 2010). Several researchers have proposed extensions and 
new formalisms derived from DEVS in order to solve different scenarios. As problems' complexity 
increase, new mechanisms are required to deal with them. Furthermore, specialized DEVS may be useful 
for a plethora of applications (Wainer and Mosterman 2010). Usually, the extensions of the DEVS 
formalism expand the classes of systems models that can be represented in DEVS (Zeigler et al. 2000). 

This statement is true (at least) for Dynamic Structure DEVS (DSDEVS) (Barros 1997), Symbolic DEVS 
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(Zeigler and Chi 1992), Real Time DEVS (RT-DEVS) (Hong et al. 1997) and Fuzzy DEVS (Kwon 
1996). However, with a growing number in new variants of DEVS and an increasing number of problems 
to be solved using discrete simulation techniques, it is necessary to define the relations among different 
approaches. Each extension of DEVS suggests a direction in which simulation modeling in general, and 
DEVS formalism in particular, can be enhanced. However, in order to ensure this dependency, it is 
necessary to analyze the impact of the new extension over the original formalism. 

Frequently, the conceptual modeling field is related with the set of mechanisms used to study a 
certain domain. From a systemic point of view, conceptual modeling can be defined as “the process of 
abstracting a model from a real or proposed system” (Robinson et al. 2010). Then, its main purpose is to 
elicit the conceptual schema of a specific system (Olivé 2007). Several authors have used these types of 
models in order to illustrate different simulation approaches (Yilmaz and Oren 2004; Robinson 2006; 
Furian et al. 2015; Robinson et al. 2015; Abdelmegid et al. 2017). All these approaches deal with the 

conceptual modeling field as a problem related to the modeling phase when building a simulation model. 
However, from a broad point of view, conceptual modeling can be used to support ontological designs for 
several domains. In this context, conceptual modeling is concerned with identifying, analyzing and 
describing the essential concepts and constraints of a universe of discourse with the help of a 
(diagrammatic) modeling language that is based on a set of basic modeling concepts (Guizzardi and 
Halpin 2008).  

This paper presents a conceptual modeling perspective applied to the domain of DEVS formalism that 
structure a set of entities as a conceptual framework applicable over the M&S framework in order to 
illustrate the main features of DEVS extensions. The framework proposed defines the set of main 
concepts, relationships and properties required to classify the extensions of DEVS applying two 
dimensions: system and problem. Both dimensions are used to characterize different types of DEVS 
extensions. In order to illustrate the proposed guidelines, the Routed DEVS formalism (Blas et al. 2017) 

is used as case study to represent the DEVS subclass type. The conceptual framework designed also 
encourages the DEVS bus approach in which simulators for models expressed in various event-based 
formalisms interoperate under the control of a standard DEVS coordinator (Zeigler et al. 2000). The set of 
properties defined as part of the framework can be used as a vehicle to guarantee the consistency between 
different extensions of DEVS in order to ensure the applicability of the simulators. 

The remainder of this paper is structured as follows. Section II describes the foundations used to 

design the framework along with the main abstractions identified as part of the DEVS extensions domain. 
Section III presents the conceptual framework designed to structure the extensions of DEVS in order to 
study the mandatory properties required for each extension type. Section IV shows how a the DEVS 
subclass type must be interpreted using Routed DEVS as a case study. Finally, Section V is devoted to 
conclusions and future work. 

2 FOUNDATIONS 

The M&S framework defines a set of entities and their relationships in order to illustrate the M&S 
domain (Figure 1). The basic entities identified in the framework are source system, model, simulator and 
experimental frame. The source system is the real or virtual environment to be modeled. The model 
describes the set of instructions for generating data comparable to the data observable in the real system. 
The simulator refers to the computational system that executes the instructions detailed in the model. 
Finally, the experimental frame represents the conditions under which the system is observed or 

experimented with. Following this abstraction, each component is defined as an individual element in 
order to keep the entities independence. 

In order to link the entities properly, two main relationships are defined: modeling and simulation. 
The modeling relation determines when a model can be said to be a valid representation of a source 
system within an experimental frame. The simulation relation specifies what constitutes a correct 
simulation of a model by a simulator. 
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Figure 1: M&S framework proposed by Zeigler and Sarjoughian (2003). 

Based on this framework, the basic issues and problems encountered in performing M&S activities 
can be better understood and coherent solutions developed (Zeigler et al. 2000). Keeping the components 

as independent entities provides several benefits, such as: i) the same model can be executed by different 
simulators, ii) several experiments can be executed to study different situations, and iii) different models 
(or versions of the same model) can be tested under the same experiment using an unique simulator. Also, 
the strict separation of models and simulators facilitates the development of alternative algorithms to 
dramatically speed up the simulation of the models (Wainer and Mosterman 2010). Furthermore, since the 
M&S framework is defined as an ontology of the M&S domain, it can be applied to different areas or 

situations. Each application should be considered a M&S framework instance in which all the properties 
of the original model should be valid. Commonly, each instantiation is attached to some basic system 
formalism.  

When the M&S framework is applied to a discrete event system described using DEVS formalism, an 
implicit M&S framework instance is specified to solve the problem. This instance is DEVS-specific 
because it refers to a DEVS model that must be executed by a DEVS simulator with an experimental 

frame compatible with DEVS. Moreover, given that the instance follows the M&S framework definition, 
it keeps the independence property defined in the domain entities of the original approach. Then, i), ii) 
and iii) are valid statements for the DEVS-specific instance of the M&S framework. However, when the 
framework instance becomes DEVS-specific, the statements related to its definition also became DEVS-
specific. For example, a specific DEVS simulator entity can only be replaced by a similar one without 
changing the other entities instance. Although the M&S instance was created for a basic system 

formalism (that is, DEVS), the same formalism-specific property maintains for DEVS extensions.  
Frequently, DEVS extensions are related to specific simulators or are partially incompatible with the 

execution of traditional DEVS formalism approaches. Then, a model built with a DEVS extension is not 
always replaceable with a DEVS model and, reciprocally, a DEVS model does not always have an 
equivalent in a DEVS extension approach. This lack of equivalence is given by the DEVS extension type. 
Although these extensions expand the classes of systems models that can be represented in DEVS, the 

perspective from which each approach is developed influences the formalisms equivalence property. 
Following the taxonomy presented by Zeigler et al. (2000), a separation of concerns can be depicted 

in order to classify DEVS extensions using two different criteria over the original DEVS formalism: types 
of systems and types of problems. Moreover, two analysis dimensions can be depicted using these criteria 
in order to define a set of desired properties related to the extensions of the formalism. In this context, the 
systems dimension refers to the formalism capability to represent new classes of dynamic systems 

applying discrete-event models. On the other hand, the problems dimension refers to the formalism 
capability to allow building less complex models when solving specific kinds of situations. Figure 2 
represents these two dimensions using a quadrangular perspective depicted over two axes. The horizontal 
axis represents the problems dimension used to contextualize the specializations of DEVS developed to 
solve different types of problems. The subclasses of DEVS are represented over this axis because they 
refer to the subset of DEVS extensions in which the alternative formalism improves the solution of the 
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simulation problem applying DEVS models in a meaningful way. Then, these extensions are highly 
domain-dependent because improve some domain problem representation. On the other hand, the vertical 
axis refers to the systems dimension used to specify the different types of systems models that can be 
defined from DEVS formalism. The variants of DEVS are represented over this axis because they refer to 
the subset of DEVS extensions in which the alternative formalism models a new type of system that, 
previously, could not be modeled with the original formalism. In this case, the extensions of DEVS are 

context-exclusive from the system to be modeled using the formalism because they allows representing 
some new type of essential system. Finally, the hybrid DEVS section represents a mixed approach 
between both dimensions.  

For each type of extension identified in Figure 2, an example is included in order to illustrate the 
proposed classes. Since Classic DEVS and Parallel DEVS (P-DEVS) are most popular formalisms and 
considering that both built the foundations for most extensions, both formalism can be placed at the core 

class (that is, DEVS). The Routed DEVS extension is classified as subclass of DEVS (this is formally 
presented in Section 4), while the DSDEVS is proposed as variant of DEVS because it allows to model 
systems that exhibit dynamic structures. Finally, Cell-DEVS is proposed as example of the hybrid DEVS 
class because it provides an extension useful to model a specific type of problems for a specific type of 
systems.  

 

Figure 2: Types of DEVS extensions. 

This contextualization gives a novel approach to classify the extensions of DEVS. It provides a 
mechanism to study each extension type in order to make a comparison between several approaches. 
Then, the extensions of DEVS can be interpreted in terms of similarities and dissimilarities by applying 
the dimensions proposed with aims to understand their main features. 

Furthermore, the dimensions used to define the types of DEVS extensions are directly linked to the 
entities identified as part of the M&S framework (Figure 3). The types of systems concept influences the 

source system entity because it gives the possibility of modeling new types of sources with discrete event 
formalism. Then, a broad set of dynamic systems is available to be used as part of specific instances of 
the M&S framework. Likewise, the types of problems concept impacts on the model entity because it 
allows solving a common modeling situation with an improved specification. Then, a broad set of models 
can be designed for the same source system applying several specifications based on the same formalism. 

As Figure 3 shows, each dimension is attached to an entity involved in the modeling relation. This 

feature indicates that, in both cases, the dimensions proposed can be understood as modeling factors that 
influence the relation. Given that these dimensions are used to characterize the extensions of DEVS, the 
types identified as part of the approach can be used as templates to interpret how DEVS extensions 
improve the modeling relation (that is basically representing the modeling task). Formally, each type of 
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extension influences some specific component of the relation; that is: i) A subclass of DEVS affects the 
model entity because it helps to develop less complex models for specific problems (decreasing the 
complexity of the modeling task). ii) A variant of DEVS promotes the possibility to develop simulation 

models for new kinds of source systems entities (giving a representation of the modeling relation in new 
environments). iii) As hybrid DEVS is a combination of the other extension types, it influences the 
modeling relation combining the properties described in i) and ii). Then, each type of extension acts as a 

vehicle to set up the modeling relation through its components. 

 

Figure 3: Relations between the M&S framework and the dimensions used to classify the DEVS 
extensions. 

3 DEVS CONCEPTUAL FRAMEWORK 

The DEVS Conceptual Framework (DEVSCF) is designed as a set of concepts, relationships and 
properties that provides a multilevel approach to analyze the mandatory properties required for each type 

of DEVS extension. The core of the metamodel is based on the two dimensions proposed in Section II. 
The final conceptualization of framework is presented in Figure 4 (using UML as modeling language). 
 As the model shows, the DEVSCF includes three abstraction layers designed as a multilevel structure 
from some of the concepts included in the M&S Framework: Standard Modeling, Specific Modeling, and 
Modeling Specification. The Standard Modeling level uses a subset of components from the M&S 
Framework in order to illustrate the modeling task. In the Specific Modeling level, the DEVSCF defines 

two concepts called Dynamic System and Discrete Event Model to represent Source System and Model 
entities, respectively. It also redefines the modeling relation as DEVS modeling relation in order to denote 
specifically the discrete event modeling task that determines when a Discrete Event Model can be said to 
be a valid representation of some specific Dynamic System. The cardinality of the relation indicates that a 
Dynamic System can be related with several instances of the Discrete Event Model concept but an 
instance of Discrete Event Model (that is, a specific model) must always be linked to a single instance of 

the Dynamic System (because models are designed to represent a specific system). This constraint ensures 
that a model will only be related with one dynamic system and, that a dynamic system will be represented 
by at least one model. The Discrete Event Model concept is related to the Discrete Event Specification 
concept by mean of the formalize relationship. The participation of Discrete Event Model in relation with 
the model role is mandatory because all instances of Discrete Event Model must be related with some type 
of Discrete Event Specification in order to be detailed as a formal model. However, the participation of 

the Discrete Event Specification concept in the formalize relationship is optional because, theoretically, a 
specification can be defined without building any model. 
 Finally, at the Modeling Specification level (that is, the core of the DEVSCF), the approach defines a 
taxonomy of discrete event specifications. The Discrete Event Specification concept is a generic concept 
used to classify the DEVS domain. The generalization set defined from Discrete Event Specification 
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includes two concepts: DEVS and DEVS Extension. The DEVS concept represents the original DEVS 
formalism while the DEVS Extension concept is used to abstract the set of approaches developed from 
DEVS. This generalization set is: i) disjoint; because non instance of any specific concept may also be an 
instance of the other concept (i.e. there is no overlapping between DEVS and its extensions), and ii) 
incomplete; because there could be types of discrete event specifications that could not be classified as 
any of the specific concepts identified in the generalization set. The DEVS Extension concept is classified 

as DEVS Variant and DEVS Subclass in order to represent the different types of extensions. This 
generalization set is defined as: i) complete; because every instance of the general concept will be also an 
instance of (at least) one of the specific concepts, and ii) overlapping; because the set of specific concepts 
could share common instances (i.e. an extension of DEVS could be considered, at the same time, as 
DEVS variant and DEVS subclass, structuring the extension type defined as hybrid DEVS). 

 

Figure 4: DEVS conceptual framework. 

Besides the taxonomy modeled for the Discrete Event Specification concept, the Modeling 
Specification layer includes two relations designed to maintain the features required in each extension 

type: adapted from and is equivalent to. The adapted from relationship is mandatory for the DEVS 
Extension concept because the original formalism is always used as a foundation in order to get a new 
approach focused on DEVS. Therefore, the extensions of DEVS can be seen as adaptations of the original 
formalism. Meanwhile, the is equivalent to relationship is used to detail the “class-subclass” dependency. 
The DEVS Subclass concept refers to a specific type of DEVS Extension that must be interpreted as a 
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specialization of the original formalism. However, if this association is modeled with a subsumption 
relationship, the framework will suggest that all new formalism derived from DEVS that could be 
classified as DEVS Subclass, will also have to be classified as DEVS. Given that this approach is 
incorrect, the is equivalent to relationship is used to define that all instances of the DEVS Subclass 
concept must have, at least, one equivalent design in DEVS. 

3.1 Using the Conceptual Framework: Features Required for each Type of DEVS Extension 

The DEVSCF presents an abstraction that distinguishes the main types of DEVS extensions by using 
features (e.g. attributes and relationships) to link each conceptual type with the original formalism in 
several ways. Then, an extension of DEVS can only by classified in terms of the proposed dimensions, if 
and only if, it satisfies the set of properties defined for each type. 

Following the conceptual framework, the main features required in each case can be summarized as 
properties, namely: 

 

 Any extension of DEVS must be developed as an adaptation of the original formalism (according 
to the adapted from relationship). 

 An extension of DEVS can only be formalized as a variant or subclass (by the complete property 
defined in the generalization set). 

 A variant of DEVS is considered an extension of DEVS (by the subsumption relationship 

modeled between DEVS Variant and DEVS Extension). 
 A subclass of DEVS is considered an extension of DEVS (by the subsumption relationship 

modeled between DEVS Subclass and DEVS Extension). 
 An extension of DEVS can be categorized as variant and subclass at the same time (by the 

overlapping property defined in the generalization set). 
 Any subclass of DEVS must be reducible to (at least) one equivalent model formalized in DEVS 

(according to the is equivalent to relationship). 
 Any subclass of DEVS must be more specific than DEVS (because, in conceptual modeling 

theory, the subtyping used for represent class-subclass dependence reflects a more detailed 
specification level of the concepts) (Parsons and Wand 1997). 

 

This set of properties can be used to identify each extension type. The formal definitions of the types 

called DEVS variant and DEVS subclass are presented in Definition 1 and Definition 2, respectively. 
 

Definition 1 A variant of DEVS is an extension of DEVS that maintains the closure under coupling 
property in order to represent an adaptation of the original formalism useful to describe a new type of 
system model. 

 

Definition 2 A subclass of DEVS is an extension of DEVS designed as an adaptation of the original 
formalism that maintains the closure under coupling property but, at the same time, is more specific than 

DEVS in some context and can be reduced to (at least) one equivalent DEVS model. 

 

These definitions suggest that the closure under coupling property is used as requirement over the 
extension in order to ensure its adaptation to the formalism. Besides, in the case of DEVS variants, the 
definition requires that the adaptation deploys a new type of system model. Meanwhile, for DEVS 
subclasses, the definition requires two extra features: i) the existence of some equivalence in DEVS and, 

ii) the comparison between DEVS and the subclass in order to prove that the extension is more specific 
than DEVS. Both features are related. To satisfy i), the modeler must prove that each model proposed as 
part of the extension has an equivalent model in DEVS (i.e. an atomic or coupled model that exhibits the 
same behavior or structure respectively). Then, to satisfy ii), the modeler must measure several properties 
of both models (the subclass and the DEVS equivalent model) in order to compare both approaches. The 
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set of metrics to be used must be defined for each case because, it depends on the type of improvement 
implemented in the subclass over the original formalism. Frequently, direct metrics as number of models 
and number of couplings should be useful to describe the main characteristics of the models. However, 
other static metrics (direct or indirect) can be defined. 

4 ROUTED DEVS AS A SUBCLASS OF DEVS 

The Routed Discrete Event System Specification (RDEVS) formalism is an extension of DEVS designed 

to hide the handling of routing information among DEVS models. It defines three types of models: i) An 
essential model that provides the behavior of some component involved in the routing process. ii) A 
routing model that defines the basic simulation entity where the routing process takes place. iii) A 
network model that describes a routing process with a specific objective that requires send/receive 
identified events. Then, each type of model represents an abstraction level used to depict the set of 
elements required to define a routing process. The lower level (that is, the RDEVS essential model) was 

defined as a DEVS atomic model in order to maintain DEVS formalism as a foundation of RDEVS (or 
vice versa, to design RDEVS as an extension of DEVS). A full description of the RDEVS models along 
with the closure under coupling prove are detailed in (Blas et al. 2017). 
 From a traditional perspective, RDEVS can be considered an extension of DEVS that provides a 
scalable solution to arrange the events flow. However, the following sections shows how the RDEVS 
formalism satisfy the set of features required to be considered as a subclass of DEVS. Given that the 

features were obtained from the conceptualization depicted in the DEVSCF, the example shows how the 
framework can be used to study extension types in order to ensure the required properties for each case.  
 By analyzing the proposed features, this section shows that RDEVS formalism is an extension of 
DEVS that can be classified as subclass and, therefore, it has full compatibility with DEVS models and 
simulators. That is, given that a subclass is a specialization of its class, the RDEVS models can be 
considered as DEVS models that improve the solution of a simulation model for a specific situation with 

a simpler modeling proposal. When the events flow is independent of the components behavior, the 
modeler can use RDEVS formalism to design the simulation model applying an appropriated separation 
of concerns, given by:  

 

 The use of essential models to represent the behavior of the components involved in the (routing) 
process. 

 The use of routing and network models to set up the (routing) context in which the components 
(modeled as RDEVS essential models) are involved. 

 

Although DEVS formalism can be used to solve this type of problem, the use of a DEVS subclass 
improve the final simulation models by allowing to combine DEVS models (i.e. a DEVS atomic model as 
RDEVS essential model) with RDEVS models. This allows to use RDEVS formalism as a “layer” above 
the DEVS that provides routing functionality. 

4.1 Feature #1: Closure Under Coupling 

A system formalism is closed under coupling if the resultant of any network of systems specified in the 
formalism is itself a system in the formalism (Zeigler et al. 2000). This property ensures the hierarchical 
composition of the models because it allows to build models recursively with any arbitrary levels of 
hierarchy in a modular way.  
 Blas et al. (2017) prove that RDEVS formalism is closed under coupling. However, although the 

RDEVS network model is a well-defined DEVS coupled model, it is not necessarily equivalent to a 
RDEVS routing model. Then, closure under coupling shows how to define an equivalent RDEVS routing 
model for any RDEVS network model by building a model behaviorally equivalent to it. So, RDEVS 
models can be built hierarchically because: i) an equivalent routing model can be obtained from the 
network model and, ii) an equivalent essential model can be obtained from the routing model. 
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4.2 Feature #2: DEVS Equivalence 

In order to ensure the DEVS equivalence, it is necessary to define a set of DEVS models that exhibit the 
same behavior or structure that RDEVS models (Table 1). Hence, each type of model defined as part of 
the RDEVS formalism needs to be represented by some DEVS model (atomic or coupled).  

Table 1: DEVS equivalent models used to represent RDEVS models. 

Type of Model RDEVS Model DEVS Equivalent Model 

Essential model 
 

 
 
 
 

Routing model 

 
 

Network model 

 
 

 
 However, the set of models proposed to ensure the equivalence property should keep the 
dependencies designed among RDEVS models. That is, each type of RDEVS model was designed as a 
component that abstracts some element used in the composition of other routing process elements. From 
this point of view, the dependencies among RDEVS models can be summarized as: 

 

 The RDEVS network model is composed by a set of RDEVS routing models (i.e. the definition of 
a network model involves detailing the set of routing models used as components of the network -
composition relationship-). 

 The RDEVS routing model embeds a RDEVS essential model (i.e. the definition of a routing 
model requires attaching an essential model used as behavioral description of the routing 

component -composition relationship-). 
 

Then, the set of DEVS equivalence models must keep the composition relationships in the same way 
that RDEVS models. 

DEVS Atomic 
Model 

RDEVS 
Essential 

Model 

RDEVS 
Routing 
Model 

RDEVS 
Essential 

Model 

<uses> 

RDEVS Network Model 

Routing 
Model 

Essential 
Model 

<uses> 

Routing 
Model 

Essential 
Model 

<uses> 

Routing 
Model 

Essential 
Model 

<uses> 

All-to-All coupling 
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Table 1 shows a set of DEVS models proposed by Zeigler (2018) as substitutes of RDEVS models. 
Given that the RDEVS essential model is defined as a DEVS atomic model, there is no need to define a 
new representation for this model. Moreover, both routing and network models are designed as DEVS 
coupled models in order to keep the composition relationships. In the routing model equivalence, the 
handlers take care of the routing information in the incoming message and pass on the operative content 
to the essential model for processing. From this perspective, the essential model is explicitly used in the 

routing model instead of be embedded in it. 
The models proposed in Table 1 are just one possible representation of the RDEVS models using 

DEVS formalism. Although other representations can be designed, the set of proposed models reflects the 
type of components commonly used to model routing processes. The translation between RDEVS models 
and DEVS equivalent models is not shown in this paper for space reasons. 

4.3 Feature #3: Comparison between RDEVS vs DEVS 

The two approaches proposed in Table 1 are useful to model routing processes. However, if both 
approaches are useful, there should be some benefits of using RDEVS instead of DEVS. Several metrics 
can be used to analyze such benefits. However, in order to illustrate a comparison set, this paper analyze 
the models detailed in both formalisms applying two universal metrics: number of models and number of 
couplings. Table 2 shows the measures obtained for each type of model (highlighting the lower values). 

Table 2: Metrics applied to RDEVS and DEVS models. 

Model RDEVS Model DEVS Equivalent Model 

Essential model 
# of models 1 # of models 1 

# of couplings 0 # of couplings 0 

Routing model 
# of models 2 # of models 4 

# of couplings 0 # of couplings 5 

Network model 
(where n is the number of 

routing models that compose it) 

# of models (2×n)+1 # of models (4×n)+1 

# of couplings n×(n-1) # of couplings n×(n-1)+(5×n) 

 
At least from the modeling perspective, the RDEVS models seems to be less complex than DEVS 

models. As the table shows, the RDEVS formalism improves the description of each type of model by 
reducing the number of models and couplings involved for each case. The impact of using RDEVS 
instead of DEVS in larger simulation models will be a lower number of components with less couplings 
among them (which gives a simpler simulation model composition). Less models and couplings implicitly 
reduce the processing required to execute the simulation. Then, RDEVS simplifies the simulation model 
required to solve a routing problem.  

5 CONCLUSIONS AND FUTURE WORK 

With a growing number in new extensions of DEVS and an increasing number of problems to be solved 
using discrete simulation techniques, the connections among different approaches has become fuzzy. 
Despite various existing classifications of DEVS, this paper presents a strategy that considers the context 
as a factor for developing a typology of DEVS formalism and its extensions. 
 This work discusses a conceptual framework designed to represent the domain of DEVS extensions in 

order to allow studying the features required for each extension type. Two types of extensions are 
identified: variants and subclasses. While DEVS variants refer to the extensions of DEVS formalism 
created to represent new types of systems, the subclasses of DEVS are alternative formalisms that 
improve the solution of the simulation problem applying DEVS models in a meaningful way. By using 
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the proposed framework, a set of features can be depicted in order to analyze both types of DEVS 
extensions. To illustrate the proposed guidelines, the RDEVS formalism is studied from the subclass 
perspective. The main achievement related with this classification is that only the models developed using 
a subclass of DEVS can be combined with DEVS to improve the final simulation model (because DEVS 
subclasses refer to DEVS specializations while variants of DEVS are designed as new formalizations). 
Then, this type of extensions allows executing its models using a DEVS simulator. 

Future research can take advantage of the fact that a mathematical characterization of Dynamic 
Systems exists (Wymore 1967) and has been formalized in (Zeigler 1976). The cases where DEVS has 
been combined with other formalisms requires a deeper analysis prior to be included in the framework. 

The DEVSCF can be used as a vehicle to study DEVS domain in order to analyze other types of 
properties. To get a more detailed classification, the framework can be extended by adding new 
dimensions or levels for each factor. Moreover, the classification scheme proposed using the problem and 

system dimensions defines a background in which both aspects can be measured in order to get an 
appropriate comparison of several extensions. That is: ¿when an extension of DEVS is highly domain 
dependent? ¿when it is context exclusive?. These questions can only be addressed if metrics and 
indicators are defined in order to evaluate the proposed dimensions over each class of extension. Then, 
the framework gives a structure useful to develop evaluation mechanisms for DEVS extensions.  
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