
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A.A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

A CONCEPTUAL FRAMEWORK TO CLASSIFY THE EXTENSIONS OF

DEVS FORMALISM AS VARIANTS AND SUBCLASSES

María J. Blas

Silvio M. Gonnet
Horacio P. Leone

Bernard P. Zeigler

Instituto de Diseño y Desarrollo INGAR University of Arizona

UTN - CONICET RTSync Corp.
Avellaneda 3657 12500 Park Potomac Ave.

Santa Fe, 3000, ARGENTINA Potomac, MD, 20854, USA

ABSTRACT

The Discrete Event System Specification (DEVS) is a general modeling formalism with sound semantics
founded on a system theoretic basis. It can be used as a base for the development of specialized modeling
formalisms. Usually, the extensions of DEVS expand the classes of systems models that can be
represented in DEVS. However, with a growing number in new variants of DEVS and an increasing
number of problems to be solved using discrete simulation techniques, it is necessary to define the
relations among different approaches. This paper presents a conceptual modeling perspective applied to

DEVS extensions that structure a framework over the traditional modeling and simulation approach. The
framework provides a multilevel structure to analyze the features required for each extension type. Two
main types of extensions are identified: variants and subclasses. In order to illustrate the proposed
guidelines, the Routed DEVS formalism is presented as example of the subclass type.

1 INTRODUCTION

The Discrete Event System Specification (DEVS) is a general modeling formalism with sound semantics

founded on a system theoretic basis (Zeigler and Vahie 1993). This formalism embodies a set of concepts
related to systems theory and modeling in order to describe discrete event models. It provides a general
methodology for hierarchical construction of reusable models in a modular way.

Wainer and Mosterman (2010) propose that the core of DEVS is composed of: i) a set of basic
concepts defined in terms of the Discrete Event Systems Specification (DEVS), the DEVS Simulation
(performed by a DEVS Simulator that implements an Abstract DEVS Simulator) and the System Entity

Structure (which is a formal structure with a set of axioms that provides valid models; ii) a modeling and
simulation (M&S) framework defined as an ontology of the modeling and simulation domain expressed in
terms of entities and their relationships; iii) a systems-theory basis used to formulate the framework
entities in terms of system specifications, and the framework relations in terms of the morphisms among
system specifications. However, in the past years, advances have been made radiating out from the DEVS
core (Zeigler et al. 2000).

In this context, DEVS can be used as a base for the development of specialized modeling formalisms
for specific domains (Wainer and Mosterman 2010). Several researchers have proposed extensions and
new formalisms derived from DEVS in order to solve different scenarios. As problems' complexity
increase, new mechanisms are required to deal with them. Furthermore, specialized DEVS may be useful
for a plethora of applications (Wainer and Mosterman 2010). Usually, the extensions of the DEVS
formalism expand the classes of systems models that can be represented in DEVS (Zeigler et al. 2000).

This statement is true (at least) for Dynamic Structure DEVS (DSDEVS) (Barros 1997), Symbolic DEVS

560978-1-5386-6572-5/18/$31.00 ©2018 IEEE

Blas, Gonnet, Leone, and Zeigler

(Zeigler and Chi 1992), Real Time DEVS (RT-DEVS) (Hong et al. 1997) and Fuzzy DEVS (Kwon
1996). However, with a growing number in new variants of DEVS and an increasing number of problems
to be solved using discrete simulation techniques, it is necessary to define the relations among different
approaches. Each extension of DEVS suggests a direction in which simulation modeling in general, and
DEVS formalism in particular, can be enhanced. However, in order to ensure this dependency, it is
necessary to analyze the impact of the new extension over the original formalism.

Frequently, the conceptual modeling field is related with the set of mechanisms used to study a
certain domain. From a systemic point of view, conceptual modeling can be defined as “the process of
abstracting a model from a real or proposed system” (Robinson et al. 2010). Then, its main purpose is to
elicit the conceptual schema of a specific system (Olivé 2007). Several authors have used these types of
models in order to illustrate different simulation approaches (Yilmaz and Oren 2004; Robinson 2006;
Furian et al. 2015; Robinson et al. 2015; Abdelmegid et al. 2017). All these approaches deal with the

conceptual modeling field as a problem related to the modeling phase when building a simulation model.
However, from a broad point of view, conceptual modeling can be used to support ontological designs for
several domains. In this context, conceptual modeling is concerned with identifying, analyzing and
describing the essential concepts and constraints of a universe of discourse with the help of a
(diagrammatic) modeling language that is based on a set of basic modeling concepts (Guizzardi and
Halpin 2008).

This paper presents a conceptual modeling perspective applied to the domain of DEVS formalism that
structure a set of entities as a conceptual framework applicable over the M&S framework in order to
illustrate the main features of DEVS extensions. The framework proposed defines the set of main
concepts, relationships and properties required to classify the extensions of DEVS applying two
dimensions: system and problem. Both dimensions are used to characterize different types of DEVS
extensions. In order to illustrate the proposed guidelines, the Routed DEVS formalism (Blas et al. 2017)

is used as case study to represent the DEVS subclass type. The conceptual framework designed also
encourages the DEVS bus approach in which simulators for models expressed in various event-based
formalisms interoperate under the control of a standard DEVS coordinator (Zeigler et al. 2000). The set of
properties defined as part of the framework can be used as a vehicle to guarantee the consistency between
different extensions of DEVS in order to ensure the applicability of the simulators.

The remainder of this paper is structured as follows. Section II describes the foundations used to

design the framework along with the main abstractions identified as part of the DEVS extensions domain.
Section III presents the conceptual framework designed to structure the extensions of DEVS in order to
study the mandatory properties required for each extension type. Section IV shows how a the DEVS
subclass type must be interpreted using Routed DEVS as a case study. Finally, Section V is devoted to
conclusions and future work.

2 FOUNDATIONS

The M&S framework defines a set of entities and their relationships in order to illustrate the M&S
domain (Figure 1). The basic entities identified in the framework are source system, model, simulator and
experimental frame. The source system is the real or virtual environment to be modeled. The model
describes the set of instructions for generating data comparable to the data observable in the real system.
The simulator refers to the computational system that executes the instructions detailed in the model.
Finally, the experimental frame represents the conditions under which the system is observed or

experimented with. Following this abstraction, each component is defined as an individual element in
order to keep the entities independence.

In order to link the entities properly, two main relationships are defined: modeling and simulation.
The modeling relation determines when a model can be said to be a valid representation of a source
system within an experimental frame. The simulation relation specifies what constitutes a correct
simulation of a model by a simulator.

561

Blas, Gonnet, Leone, and Zeigler

Figure 1: M&S framework proposed by Zeigler and Sarjoughian (2003).

Based on this framework, the basic issues and problems encountered in performing M&S activities
can be better understood and coherent solutions developed (Zeigler et al. 2000). Keeping the components

as independent entities provides several benefits, such as: i) the same model can be executed by different
simulators, ii) several experiments can be executed to study different situations, and iii) different models
(or versions of the same model) can be tested under the same experiment using an unique simulator. Also,
the strict separation of models and simulators facilitates the development of alternative algorithms to
dramatically speed up the simulation of the models (Wainer and Mosterman 2010). Furthermore, since the
M&S framework is defined as an ontology of the M&S domain, it can be applied to different areas or

situations. Each application should be considered a M&S framework instance in which all the properties
of the original model should be valid. Commonly, each instantiation is attached to some basic system
formalism.

When the M&S framework is applied to a discrete event system described using DEVS formalism, an
implicit M&S framework instance is specified to solve the problem. This instance is DEVS-specific
because it refers to a DEVS model that must be executed by a DEVS simulator with an experimental

frame compatible with DEVS. Moreover, given that the instance follows the M&S framework definition,
it keeps the independence property defined in the domain entities of the original approach. Then, i), ii)
and iii) are valid statements for the DEVS-specific instance of the M&S framework. However, when the
framework instance becomes DEVS-specific, the statements related to its definition also became DEVS-
specific. For example, a specific DEVS simulator entity can only be replaced by a similar one without
changing the other entities instance. Although the M&S instance was created for a basic system

formalism (that is, DEVS), the same formalism-specific property maintains for DEVS extensions.
Frequently, DEVS extensions are related to specific simulators or are partially incompatible with the

execution of traditional DEVS formalism approaches. Then, a model built with a DEVS extension is not
always replaceable with a DEVS model and, reciprocally, a DEVS model does not always have an
equivalent in a DEVS extension approach. This lack of equivalence is given by the DEVS extension type.
Although these extensions expand the classes of systems models that can be represented in DEVS, the

perspective from which each approach is developed influences the formalisms equivalence property.
Following the taxonomy presented by Zeigler et al. (2000), a separation of concerns can be depicted

in order to classify DEVS extensions using two different criteria over the original DEVS formalism: types
of systems and types of problems. Moreover, two analysis dimensions can be depicted using these criteria
in order to define a set of desired properties related to the extensions of the formalism. In this context, the
systems dimension refers to the formalism capability to represent new classes of dynamic systems

applying discrete-event models. On the other hand, the problems dimension refers to the formalism
capability to allow building less complex models when solving specific kinds of situations. Figure 2
represents these two dimensions using a quadrangular perspective depicted over two axes. The horizontal
axis represents the problems dimension used to contextualize the specializations of DEVS developed to
solve different types of problems. The subclasses of DEVS are represented over this axis because they
refer to the subset of DEVS extensions in which the alternative formalism improves the solution of the

562

Blas, Gonnet, Leone, and Zeigler

simulation problem applying DEVS models in a meaningful way. Then, these extensions are highly
domain-dependent because improve some domain problem representation. On the other hand, the vertical
axis refers to the systems dimension used to specify the different types of systems models that can be
defined from DEVS formalism. The variants of DEVS are represented over this axis because they refer to
the subset of DEVS extensions in which the alternative formalism models a new type of system that,
previously, could not be modeled with the original formalism. In this case, the extensions of DEVS are

context-exclusive from the system to be modeled using the formalism because they allows representing
some new type of essential system. Finally, the hybrid DEVS section represents a mixed approach
between both dimensions.

For each type of extension identified in Figure 2, an example is included in order to illustrate the
proposed classes. Since Classic DEVS and Parallel DEVS (P-DEVS) are most popular formalisms and
considering that both built the foundations for most extensions, both formalism can be placed at the core

class (that is, DEVS). The Routed DEVS extension is classified as subclass of DEVS (this is formally
presented in Section 4), while the DSDEVS is proposed as variant of DEVS because it allows to model
systems that exhibit dynamic structures. Finally, Cell-DEVS is proposed as example of the hybrid DEVS
class because it provides an extension useful to model a specific type of problems for a specific type of
systems.

Figure 2: Types of DEVS extensions.

This contextualization gives a novel approach to classify the extensions of DEVS. It provides a
mechanism to study each extension type in order to make a comparison between several approaches.
Then, the extensions of DEVS can be interpreted in terms of similarities and dissimilarities by applying
the dimensions proposed with aims to understand their main features.

Furthermore, the dimensions used to define the types of DEVS extensions are directly linked to the
entities identified as part of the M&S framework (Figure 3). The types of systems concept influences the

source system entity because it gives the possibility of modeling new types of sources with discrete event
formalism. Then, a broad set of dynamic systems is available to be used as part of specific instances of
the M&S framework. Likewise, the types of problems concept impacts on the model entity because it
allows solving a common modeling situation with an improved specification. Then, a broad set of models
can be designed for the same source system applying several specifications based on the same formalism.

As Figure 3 shows, each dimension is attached to an entity involved in the modeling relation. This

feature indicates that, in both cases, the dimensions proposed can be understood as modeling factors that
influence the relation. Given that these dimensions are used to characterize the extensions of DEVS, the
types identified as part of the approach can be used as templates to interpret how DEVS extensions
improve the modeling relation (that is basically representing the modeling task). Formally, each type of

563

Blas, Gonnet, Leone, and Zeigler

extension influences some specific component of the relation; that is: i) A subclass of DEVS affects the
model entity because it helps to develop less complex models for specific problems (decreasing the
complexity of the modeling task). ii) A variant of DEVS promotes the possibility to develop simulation

models for new kinds of source systems entities (giving a representation of the modeling relation in new
environments). iii) As hybrid DEVS is a combination of the other extension types, it influences the
modeling relation combining the properties described in i) and ii). Then, each type of extension acts as a

vehicle to set up the modeling relation through its components.

Figure 3: Relations between the M&S framework and the dimensions used to classify the DEVS
extensions.

3 DEVS CONCEPTUAL FRAMEWORK

The DEVS Conceptual Framework (DEVSCF) is designed as a set of concepts, relationships and
properties that provides a multilevel approach to analyze the mandatory properties required for each type

of DEVS extension. The core of the metamodel is based on the two dimensions proposed in Section II.
The final conceptualization of framework is presented in Figure 4 (using UML as modeling language).
 As the model shows, the DEVSCF includes three abstraction layers designed as a multilevel structure
from some of the concepts included in the M&S Framework: Standard Modeling, Specific Modeling, and
Modeling Specification. The Standard Modeling level uses a subset of components from the M&S
Framework in order to illustrate the modeling task. In the Specific Modeling level, the DEVSCF defines

two concepts called Dynamic System and Discrete Event Model to represent Source System and Model
entities, respectively. It also redefines the modeling relation as DEVS modeling relation in order to denote
specifically the discrete event modeling task that determines when a Discrete Event Model can be said to
be a valid representation of some specific Dynamic System. The cardinality of the relation indicates that a
Dynamic System can be related with several instances of the Discrete Event Model concept but an
instance of Discrete Event Model (that is, a specific model) must always be linked to a single instance of

the Dynamic System (because models are designed to represent a specific system). This constraint ensures
that a model will only be related with one dynamic system and, that a dynamic system will be represented
by at least one model. The Discrete Event Model concept is related to the Discrete Event Specification
concept by mean of the formalize relationship. The participation of Discrete Event Model in relation with
the model role is mandatory because all instances of Discrete Event Model must be related with some type
of Discrete Event Specification in order to be detailed as a formal model. However, the participation of

the Discrete Event Specification concept in the formalize relationship is optional because, theoretically, a
specification can be defined without building any model.
 Finally, at the Modeling Specification level (that is, the core of the DEVSCF), the approach defines a
taxonomy of discrete event specifications. The Discrete Event Specification concept is a generic concept
used to classify the DEVS domain. The generalization set defined from Discrete Event Specification

564

Blas, Gonnet, Leone, and Zeigler

includes two concepts: DEVS and DEVS Extension. The DEVS concept represents the original DEVS
formalism while the DEVS Extension concept is used to abstract the set of approaches developed from
DEVS. This generalization set is: i) disjoint; because non instance of any specific concept may also be an
instance of the other concept (i.e. there is no overlapping between DEVS and its extensions), and ii)
incomplete; because there could be types of discrete event specifications that could not be classified as
any of the specific concepts identified in the generalization set. The DEVS Extension concept is classified

as DEVS Variant and DEVS Subclass in order to represent the different types of extensions. This
generalization set is defined as: i) complete; because every instance of the general concept will be also an
instance of (at least) one of the specific concepts, and ii) overlapping; because the set of specific concepts
could share common instances (i.e. an extension of DEVS could be considered, at the same time, as
DEVS variant and DEVS subclass, structuring the extension type defined as hybrid DEVS).

Figure 4: DEVS conceptual framework.

Besides the taxonomy modeled for the Discrete Event Specification concept, the Modeling
Specification layer includes two relations designed to maintain the features required in each extension

type: adapted from and is equivalent to. The adapted from relationship is mandatory for the DEVS
Extension concept because the original formalism is always used as a foundation in order to get a new
approach focused on DEVS. Therefore, the extensions of DEVS can be seen as adaptations of the original
formalism. Meanwhile, the is equivalent to relationship is used to detail the “class-subclass” dependency.
The DEVS Subclass concept refers to a specific type of DEVS Extension that must be interpreted as a

565

Blas, Gonnet, Leone, and Zeigler

specialization of the original formalism. However, if this association is modeled with a subsumption
relationship, the framework will suggest that all new formalism derived from DEVS that could be
classified as DEVS Subclass, will also have to be classified as DEVS. Given that this approach is
incorrect, the is equivalent to relationship is used to define that all instances of the DEVS Subclass
concept must have, at least, one equivalent design in DEVS.

3.1 Using the Conceptual Framework: Features Required for each Type of DEVS Extension

The DEVSCF presents an abstraction that distinguishes the main types of DEVS extensions by using
features (e.g. attributes and relationships) to link each conceptual type with the original formalism in
several ways. Then, an extension of DEVS can only by classified in terms of the proposed dimensions, if
and only if, it satisfies the set of properties defined for each type.

Following the conceptual framework, the main features required in each case can be summarized as
properties, namely:

 Any extension of DEVS must be developed as an adaptation of the original formalism (according
to the adapted from relationship).

 An extension of DEVS can only be formalized as a variant or subclass (by the complete property
defined in the generalization set).

 A variant of DEVS is considered an extension of DEVS (by the subsumption relationship

modeled between DEVS Variant and DEVS Extension).
 A subclass of DEVS is considered an extension of DEVS (by the subsumption relationship

modeled between DEVS Subclass and DEVS Extension).
 An extension of DEVS can be categorized as variant and subclass at the same time (by the

overlapping property defined in the generalization set).
 Any subclass of DEVS must be reducible to (at least) one equivalent model formalized in DEVS

(according to the is equivalent to relationship).
 Any subclass of DEVS must be more specific than DEVS (because, in conceptual modeling

theory, the subtyping used for represent class-subclass dependence reflects a more detailed
specification level of the concepts) (Parsons and Wand 1997).

This set of properties can be used to identify each extension type. The formal definitions of the types

called DEVS variant and DEVS subclass are presented in Definition 1 and Definition 2, respectively.

Definition 1 A variant of DEVS is an extension of DEVS that maintains the closure under coupling
property in order to represent an adaptation of the original formalism useful to describe a new type of
system model.

Definition 2 A subclass of DEVS is an extension of DEVS designed as an adaptation of the original
formalism that maintains the closure under coupling property but, at the same time, is more specific than

DEVS in some context and can be reduced to (at least) one equivalent DEVS model.

These definitions suggest that the closure under coupling property is used as requirement over the
extension in order to ensure its adaptation to the formalism. Besides, in the case of DEVS variants, the
definition requires that the adaptation deploys a new type of system model. Meanwhile, for DEVS
subclasses, the definition requires two extra features: i) the existence of some equivalence in DEVS and,

ii) the comparison between DEVS and the subclass in order to prove that the extension is more specific
than DEVS. Both features are related. To satisfy i), the modeler must prove that each model proposed as
part of the extension has an equivalent model in DEVS (i.e. an atomic or coupled model that exhibits the
same behavior or structure respectively). Then, to satisfy ii), the modeler must measure several properties
of both models (the subclass and the DEVS equivalent model) in order to compare both approaches. The

566

Blas, Gonnet, Leone, and Zeigler

set of metrics to be used must be defined for each case because, it depends on the type of improvement
implemented in the subclass over the original formalism. Frequently, direct metrics as number of models
and number of couplings should be useful to describe the main characteristics of the models. However,
other static metrics (direct or indirect) can be defined.

4 ROUTED DEVS AS A SUBCLASS OF DEVS

The Routed Discrete Event System Specification (RDEVS) formalism is an extension of DEVS designed

to hide the handling of routing information among DEVS models. It defines three types of models: i) An
essential model that provides the behavior of some component involved in the routing process. ii) A
routing model that defines the basic simulation entity where the routing process takes place. iii) A
network model that describes a routing process with a specific objective that requires send/receive
identified events. Then, each type of model represents an abstraction level used to depict the set of
elements required to define a routing process. The lower level (that is, the RDEVS essential model) was

defined as a DEVS atomic model in order to maintain DEVS formalism as a foundation of RDEVS (or
vice versa, to design RDEVS as an extension of DEVS). A full description of the RDEVS models along
with the closure under coupling prove are detailed in (Blas et al. 2017).
 From a traditional perspective, RDEVS can be considered an extension of DEVS that provides a
scalable solution to arrange the events flow. However, the following sections shows how the RDEVS
formalism satisfy the set of features required to be considered as a subclass of DEVS. Given that the

features were obtained from the conceptualization depicted in the DEVSCF, the example shows how the
framework can be used to study extension types in order to ensure the required properties for each case.
 By analyzing the proposed features, this section shows that RDEVS formalism is an extension of
DEVS that can be classified as subclass and, therefore, it has full compatibility with DEVS models and
simulators. That is, given that a subclass is a specialization of its class, the RDEVS models can be
considered as DEVS models that improve the solution of a simulation model for a specific situation with

a simpler modeling proposal. When the events flow is independent of the components behavior, the
modeler can use RDEVS formalism to design the simulation model applying an appropriated separation
of concerns, given by:

 The use of essential models to represent the behavior of the components involved in the (routing)
process.

 The use of routing and network models to set up the (routing) context in which the components
(modeled as RDEVS essential models) are involved.

Although DEVS formalism can be used to solve this type of problem, the use of a DEVS subclass
improve the final simulation models by allowing to combine DEVS models (i.e. a DEVS atomic model as
RDEVS essential model) with RDEVS models. This allows to use RDEVS formalism as a “layer” above
the DEVS that provides routing functionality.

4.1 Feature #1: Closure Under Coupling

A system formalism is closed under coupling if the resultant of any network of systems specified in the
formalism is itself a system in the formalism (Zeigler et al. 2000). This property ensures the hierarchical
composition of the models because it allows to build models recursively with any arbitrary levels of
hierarchy in a modular way.
 Blas et al. (2017) prove that RDEVS formalism is closed under coupling. However, although the

RDEVS network model is a well-defined DEVS coupled model, it is not necessarily equivalent to a
RDEVS routing model. Then, closure under coupling shows how to define an equivalent RDEVS routing
model for any RDEVS network model by building a model behaviorally equivalent to it. So, RDEVS
models can be built hierarchically because: i) an equivalent routing model can be obtained from the
network model and, ii) an equivalent essential model can be obtained from the routing model.

567

Blas, Gonnet, Leone, and Zeigler

4.2 Feature #2: DEVS Equivalence

In order to ensure the DEVS equivalence, it is necessary to define a set of DEVS models that exhibit the
same behavior or structure that RDEVS models (Table 1). Hence, each type of model defined as part of
the RDEVS formalism needs to be represented by some DEVS model (atomic or coupled).

Table 1: DEVS equivalent models used to represent RDEVS models.

Type of Model RDEVS Model DEVS Equivalent Model

Essential model

Routing model

Network model

 However, the set of models proposed to ensure the equivalence property should keep the
dependencies designed among RDEVS models. That is, each type of RDEVS model was designed as a
component that abstracts some element used in the composition of other routing process elements. From
this point of view, the dependencies among RDEVS models can be summarized as:

 The RDEVS network model is composed by a set of RDEVS routing models (i.e. the definition of
a network model involves detailing the set of routing models used as components of the network -
composition relationship-).

 The RDEVS routing model embeds a RDEVS essential model (i.e. the definition of a routing
model requires attaching an essential model used as behavioral description of the routing

component -composition relationship-).

Then, the set of DEVS equivalence models must keep the composition relationships in the same way
that RDEVS models.

DEVS Atomic
Model

RDEVS
Essential

Model

RDEVS
Routing
Model

RDEVS
Essential

Model

<uses>

RDEVS Network Model

Routing
Model

Essential
Model

<uses>

Routing
Model

Essential
Model

<uses>

Routing
Model

Essential
Model

<uses>

All-to-All coupling

568

Blas, Gonnet, Leone, and Zeigler

Table 1 shows a set of DEVS models proposed by Zeigler (2018) as substitutes of RDEVS models.
Given that the RDEVS essential model is defined as a DEVS atomic model, there is no need to define a
new representation for this model. Moreover, both routing and network models are designed as DEVS
coupled models in order to keep the composition relationships. In the routing model equivalence, the
handlers take care of the routing information in the incoming message and pass on the operative content
to the essential model for processing. From this perspective, the essential model is explicitly used in the

routing model instead of be embedded in it.
The models proposed in Table 1 are just one possible representation of the RDEVS models using

DEVS formalism. Although other representations can be designed, the set of proposed models reflects the
type of components commonly used to model routing processes. The translation between RDEVS models
and DEVS equivalent models is not shown in this paper for space reasons.

4.3 Feature #3: Comparison between RDEVS vs DEVS

The two approaches proposed in Table 1 are useful to model routing processes. However, if both
approaches are useful, there should be some benefits of using RDEVS instead of DEVS. Several metrics
can be used to analyze such benefits. However, in order to illustrate a comparison set, this paper analyze
the models detailed in both formalisms applying two universal metrics: number of models and number of
couplings. Table 2 shows the measures obtained for each type of model (highlighting the lower values).

Table 2: Metrics applied to RDEVS and DEVS models.

Model RDEVS Model DEVS Equivalent Model

Essential model
of models 1 # of models 1

of couplings 0 # of couplings 0

Routing model
of models 2 # of models 4

of couplings 0 # of couplings 5

Network model
(where n is the number of

routing models that compose it)

of models (2×n)+1 # of models (4×n)+1

of couplings n×(n-1) # of couplings n×(n-1)+(5×n)

At least from the modeling perspective, the RDEVS models seems to be less complex than DEVS

models. As the table shows, the RDEVS formalism improves the description of each type of model by
reducing the number of models and couplings involved for each case. The impact of using RDEVS
instead of DEVS in larger simulation models will be a lower number of components with less couplings
among them (which gives a simpler simulation model composition). Less models and couplings implicitly
reduce the processing required to execute the simulation. Then, RDEVS simplifies the simulation model
required to solve a routing problem.

5 CONCLUSIONS AND FUTURE WORK

With a growing number in new extensions of DEVS and an increasing number of problems to be solved
using discrete simulation techniques, the connections among different approaches has become fuzzy.
Despite various existing classifications of DEVS, this paper presents a strategy that considers the context
as a factor for developing a typology of DEVS formalism and its extensions.
 This work discusses a conceptual framework designed to represent the domain of DEVS extensions in

order to allow studying the features required for each extension type. Two types of extensions are
identified: variants and subclasses. While DEVS variants refer to the extensions of DEVS formalism
created to represent new types of systems, the subclasses of DEVS are alternative formalisms that
improve the solution of the simulation problem applying DEVS models in a meaningful way. By using

569

Blas, Gonnet, Leone, and Zeigler

the proposed framework, a set of features can be depicted in order to analyze both types of DEVS
extensions. To illustrate the proposed guidelines, the RDEVS formalism is studied from the subclass
perspective. The main achievement related with this classification is that only the models developed using
a subclass of DEVS can be combined with DEVS to improve the final simulation model (because DEVS
subclasses refer to DEVS specializations while variants of DEVS are designed as new formalizations).
Then, this type of extensions allows executing its models using a DEVS simulator.

Future research can take advantage of the fact that a mathematical characterization of Dynamic
Systems exists (Wymore 1967) and has been formalized in (Zeigler 1976). The cases where DEVS has
been combined with other formalisms requires a deeper analysis prior to be included in the framework.

The DEVSCF can be used as a vehicle to study DEVS domain in order to analyze other types of
properties. To get a more detailed classification, the framework can be extended by adding new
dimensions or levels for each factor. Moreover, the classification scheme proposed using the problem and

system dimensions defines a background in which both aspects can be measured in order to get an
appropriate comparison of several extensions. That is: ¿when an extension of DEVS is highly domain
dependent? ¿when it is context exclusive?. These questions can only be addressed if metrics and
indicators are defined in order to evaluate the proposed dimensions over each class of extension. Then,
the framework gives a structure useful to develop evaluation mechanisms for DEVS extensions.

REFERENCES

Abdelmegid, M. A., V. A. González, A. M. Naraghi, M. O'Sullivan, C. G. Walker, and M. Poshdar. 2017.
“Towards a Conceptual Modeling Framework for Construction Simulation”. In Proceedings of the
2017 Winter Simulation Conference, edited by W. K. V. Chan et al., 2372-2383. Piscataway, New
Jersey: IEEE.

Barros, F. J. 1997. “Modeling Formalisms for Dynamic Structure Systems”. ACM Transactions on
Modeling and Computer Simulation 7(4):501-515.

Blas, M. J., S. Gonnet, and H. Leone. 2017. “Routing Structure over Discrete Event System Specification:
A DEVS Adaptation to Develop Smart Routing in Simulation Models”. In Proceedings of the 2017
Winter Simulation Conference, edited by W. K. V. Chan et al., 774-785. Piscataway, New Jersey:
IEEE.

Furian, N., M. O’Sullivan, C. Walker, S. Vössner, and D. Neubacher. 2015. “A Conceptual Modeling
Framework for Discrete Event Simulation using Hierarchical Control Structures”. Simulation

Modelling Practice and Theory, 56(1):82-96.
Guizzardi, G., and T. Halpin. 2008. “Ontological Foundations for Conceptual Modelling”. Applied

Ontology, 3(1):1-12.
Hong, J., H. Song, T. Kim, and K. Park. 1997. “A Real-Time Discrete Event System Specification

Formalism for Seamless Real-Time Software Development”. Discrete Event Dynamic Systems
7(4):355-375.

Kwon, Y., H. Park, S. Jung, and T. Kim. 1996. “Fuzzy-DEVS Formalism: Concepts, Realization and
Applications”. International Conference on Artificial Intelligence, Simulation and Planning in High
Autonomy Systems, March 23-37 1996, San Diego, CA, USA, 227-234.

Olivé, A. 2007. Conceptual Modeling of Information Systems. Heidelberg: Springer-Verlag Berlin
Heidelberg.

Parsons, J., and Y. Wand. 1997. “Choosing Classes in Conceptual Modeling”. Communications of the

ACM 40(6):63-69.
Robinson, S. 2006. “Conceptual Modeling for Simulation: Issues and Research Requirements”. In

Proceedings of the 2006 Winter Simulation Conference, edited by L. F. Perrone et al., 792-800.
Piscataway, New Jersey: IEEE.

Robinson, S., R. Brooks, K. Kotiadis, and D. J. Van Der Zee. 2010. Conceptual Modeling for Discrete-
Event Simulation. Florida: CRC Press Inc.

570

Blas, Gonnet, Leone, and Zeigler

Robinson, S., G. Arbez, L. G. Birta, A. Tolk, and G. Wagner. 2015. “Conceptual Modeling: Definition,
Purpose and Benefits”. In Proceedings of the 2015 Winter Simulation Conference, edited by L.
Yilmaz et al., 2812-2826. Piscataway, New Jersey: IEEE.

Wainer, G. A., and P. J. Mosterman. 2010. Discrete-Event Modeling and Simulation: Theory and
Applications. Florida: CRC Press Inc.

Wymore, A. W. 1967. A Mathematical Theory of Systems Engineering: The Elements. New York: John

Wiley & Sons.
Yilmaz, L., and T. I. Ören. 2004. “A Conceptual Model for Reusable Simulations within a Model-

Simulator-Context Framework”. Conference on Conceptual Modelling and Simulation, October 28-
31 2004, Genoa, Italy, 235-241.

Zeigler, B. P. 1976. Theory of Modeling and Simulation. 1st ed. New York: Wiley Interscience.
Zeigler, B. P. 2018. “Closure Under Coupling: Concept, Proofs, DEVS Recent Examples”. Spring

Simulation Multi-conference - Theory of Modeling and Simulation Symposium, April 15-18 2018,
Baltimore, MD, USA.

Zeigler, B. P., and S. Chi. 1992. “Symbolic Discrete Event System Specification”. IEEE Transactions on
Systems, Man, and Cybernetics 22(6):1428–1443.

Zeigler, B. P., and S. Vahie. 1993. “DEVS Formalism and Methodology: Unity of Conception/Diversity
of Application”. In Proceedings of the 1993 Winter Simulation Conference, edited by G. W. Evans et

al., 573–579. Piscataway, New Jersey: IEEE.
Zeigler, B. P., and H. S. Sarjoughian. 2003. “Introduction to DEVS Modeling and Simulation with Java:

Developing Component-based Simulation Models”. Technical Document, Arizona Center for
Integrative Modeling and Simulation, University of Arizona.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systems. 2nd ed. London: Academic Press.

AUTHOR BIOGRAPHIES

MARÍA J. BLAS received her Information Systems Engineering degree from Universidad Tecnológica

Nacional (UTN) in 2014. She has a PhD Research Fellowship from Consejo Nacional de Investigaciones

Científicas y Técnicas (CONICET) and works at Instituto de Desarrollo y Diseño INGAR. Her thesis is

focused on discrete-event simulation in software architectures. Her e-mail address is

mariajuliablas@santafe-conicet.gov.ar.

SILVIO M. GONNET received his PhD degree in Engineering from UNL in 2003. He currently holds a

Researcher position at CONICET and works at INGAR. Also, he works as an Assistant Professor at UTN.

His research interests are models to support design processes and conceptual modeling. His e-mail

address is sgonnet@santafe-conicet.gov.ar.

HORACIO P. LEONE is a Full Professor at UTN. He also holds a Researcher position at the

CONICET, working at INGAR. He obtained his PhD degree in Chemical Engineering from UNL in 1986

and was a Postdoctoral Fellow at the Massachusetts Institute of Technology. His current research

activities focus on software architectures, models for supporting the design process, and enterprise

modelling. His email address is hleone@santafe-conicet.gov.ar.

BERNARD P. ZEIGLER is Chief Scientist at RTSync Corp., Professor Emeritus of Electrical and

Computer Engineering at the University of Arizona, Tucson and co-Director of the Arizona Center for

Integrative Modeling and Simulation. He is internationally known for his contributions in modeling and

simulation theory. He develop the Discrete Event System Specification (DEVS) formalism in 1976. He

has published several books including “Theory of Modeling and Simulation” and “Guide to Modeling and

Simulation of Systems of Systems”. His email address is zeigler@rtsync.com.

571

