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ABSTRACT

Stochastic Gradient Descent (SGD), also known as stochastic approximation, refers to certain simple
iterative structures used for solving stochastic optimization and root finding problems. The identifying
feature of SGD is that, much like in gradient descent for deterministic optimization, each successive iterate
in the recursion is determined by adding an appropriately scaled gradient estimate to the prior iterate.
Owing to several factors, SGD has become the leading method to solve optimization problems arising
within large-scale machine learning and “big data” contexts such as classification and regression. This
tutorial covers the basics of SGD with an emphasis on modern developments. The tutorial starts with
examples where SGD is applicable, and then details important flavors of SGD and reported complexity
calculations.

1 INTRODUCTION AND PRELIMINARIES

This tutorial considers the unconstrained smooth stochastic optimization problem having the form

Problem P : min f (x) = E[F(x)] =
∫

Ξ

F(x,ξ )dP(ξ )

s.t. x ∈ X ⊂ IRn.
(1)

The objective function f is assumed to be bounded from below, that is, infx∈X f (x) > −∞. The tutorial
covers methods for smooth functions f . Recall that a function is said to be L-smooth if f is differentiable
in IRn and for all x,y ∈ IRn,‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖. Unlike deterministic optimization (Nocedal and
Wright 2006), the function f is not directly observable but we have access to a “first-order stochastic oracle”
that can be “called” to obtain unbiased estimates F(x,ξ ) and G(x,ξ ) of f (x) and ∇ f (x), respectively, at
any requested point x ∈ X . We assume that F(x, ·) and G(x, ·) are unbiased estimates of f (x) and ∇ f (x).
The set X is assumed to be a convex subset of IRn.

The problem statement that appears in (1) has recently generated renewed interest due to its direct
applicability in parameter estimation problems arising within modern machine learning settings such as
regression, classification, clustering, and anomaly detection (Hastie et al. 2015). As some observers have
noted (Bottou et al. 2016), deep neural networks as a modeling paradigm, in concert with efficient stochastic
optimization algorithms (mainly stochastic gradient descent to solve Problem P), have recently resulted in
spectacular successes in diverse domains.

Especially because the importance of Problem P has been recorded at length elsewhere, we will not
devote any more space to motivating Problem P. Instead, this tutorial will cover modern solution methods,
particularly variants of stochastic approximation (Kushner and Yin 2003; Borkar 1997) for solving Problem
P. Stochastic approximation, more recently called stochastic gradient descent (SGD), is understood here
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as recursions having the form

Xk+1 = ΠX
(
Xk−αkH−1

k g(Xk,M(Xk))
)
. (2)

The term αk appearing in (2) is traditionally called the step size, the positive definite symmetric matrix
Hk approximates the Hessian matrix of second derivatives H(·) at Xk, and g(Xk,M(Xk)) approximates the
gradient ∇ f (Xk) using sample size M(Xk); also ΠX(x) = infy∈X{‖x− y‖} denotes the projection of the
point x ∈ IRn on the convex set X .

1.1 Some Terminology and Notions

The following terminology and notions will be assumed throughout the tutorial.

1. Solving Problem P. An iterative algorithm will have “solved” (1) if it generates a stochastic
sequence {Xk} that satisfies ‖∇ f (Xk)‖ → 0 as k→ ∞ with probability one (w.p.1.). Of course,
this places no guarantees on the behavior of the sequence {Xk} itself without further structural
assumptions on the function f . Furthermore, the function f may have multiple minima (or none)
and the guarantee ‖∇ f (Xk)‖→ 0 w.p.1 says little about which, if any, of the local minima of f are
attained.

2. Nature of the “stochastic oracle.” The notion of a “stochastic oracle” is deliberately left vague
to subsume a variety of contexts. For the purposes of this tutorial, a “stochastic oracle” is either
a Monte Carlo simulation (Nelson 2013; Asmussen and Glynn 2007; Glasserman 2004) or a large
dataset of collected observations. Accordingly, “calling the stochastic oracle” at the point x ∈ IRn

using the “seed” ξi results in observing F(x,ξi) and G(x,ξi).
3. Algorithm assessment and work complexity. The number of calls to the stochastic oracle is the sole

unit of computational burden. Thus, the work complexity for the purposes of this tutorial relates to
the quality of a solution retuned by an algorithm as a function of the number of calls to the stochastic
oracle. As an example, when we say that an algorithm exhibits O(ε−2) complexity, we mean that
the solution Xk returned after k calls to the stochastic oracle guarantees that E[‖∇ f (Xk)‖2] ≤ ε.
Iteration complexity is not useful as a measure except when the sample size during each iteration
is fixed, in which case the work complexity and the iteration complexity differ only by a constant.

1.2 Scope of the Tutorial

The tutorial is primarily aimed at early researchers and consumers of stochastic optimization. The content
will accordingly be kept at an accessible level. Codes corresponding to best-performing algorithms included
in the oral presentation of this tutorial will be made available upon request.

Since stochastic optimization has recently become so widespread, we find it especially necessary to
list caveats and key topics that this tutorial will not cover. This is a tutorial on the recent variants of
SGD, which for the purposes of this tutorial are understood to have the structure in (2). Numerous other
paradigms such as stochastic trust region methods (Shashaani et al. 2016; Shashaani et al. 2018; Bandeira
et al. 2014; Chen et al. 2016; Chang et al. 2013), sample average approximation (Shapiro et al. 2009),
and retrospective approximation (Pasupathy 2010; Pasupathy and Schmeiser 2009), which have recently
gained prominence, will not be discussed here.

As has been noted, SGD is the new nomenclature for stochastic approximation, which was first
introduced through a seminal paper by Robbins and Monro (1951). Over the previous six decades, an
enormous literature that includes comprehensive surveys (Lai 2003) on virtually all aspects of stochastic
approximation has been written. Wisely, this tutorial will not undertake to supplant or add to any of these
surveys on stochastic approximation. Instead, the tutorial explains trends in the last two decades appearing
under the topic stochastic gradient descent. Such papers have mainly appeared in the recent literature
on machine learning. While most of these more-recent methods have already appeared in some form in
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the older stochastic approximation literature, they tend to have an increased focus on complexity results
afforded through more-stringent structural assumptions on the function f .

Owing to space restrictions here and time restrictions on the oral presentation, solutions to several
important variations of Problem P will not be considered in the tutorial. For example, the tutorial will
discuss only algorithms that assume access to a first-order oracle, that is, the algorithms have access to
“direct gradient” observations G(x,ξ ). A substantial number of simulation contexts are “derivative free”
implying that even though the gradient ∇ f (x) might exist at the point x ∈ IRn, estimates of ∇ f (x) can
be constructed only using methods such as finite differencing (Asmussen and Glynn 2007). Similarly,
optimization in Problem P is stated to be on finite-dimensional Euclidean spaces, excluding important
stochastic optimization problems on non-Euclidean spaces (Bubeck 2015; Nemirovski et al. 2009).

A substantial fraction of methods that appear under the SGD banner are conditioned on a given dataset.
One of the many important implications of this fact is that any mathematical expectations that appear in a
claimed result on complexity are on the probability space on which the algorithm is defined, and conditional
on the given dataset. Four prominent examples of algorithms in this category are Schmidt et al. (2013),
Shalev-Shwartz and Zhang (2013), Johnson and Zhang (2013), and Defazio et al. (2014). The fact that
algorithmic inference in such contexts is conditional on the given dataset is often missed or ignored, leading
to misinterpretations about the effectiveness of an algorithm. Since our interest is on inference made at
the population level, we have tended to de- emphasize algorithms that are customized to a specific dataset.

The SGD literature contains a substantial fraction of algorithms that apply to the online learning
context. Such problems are very related to stochastic optimization problems (Duchi et al. 2011), but differ
mainly in the way performance is measured. In the online learning setting, for example, algorithms seek
to minimize regret measured as the deviation of the incumbent solution’s quality from the optimal value,
integrated over a specified time horizon. Again, due to space restrictions, online learning algorithms are
not discussed in this tutorial.

2 MOTIVATING EXAMPLES

In what follows, we provide two example contexts where the solution methods we discuss in this tutorial
are relevant. The first example context is typical of machine learning settings involving a large amount
of data that facilitate the construction of the relevant estimators. In the second example, by contrast, the
“data generation” results from using Monte Carlo simulation.

2.1 Example 1: Classification and Regression

Consider the context of classifying (or labeling) an object based on its observed features. An especially apt
example of such an object classification is that of face recognition using a photograph that is represented as
a large number of pixels, each of which has a color value. This task is to be accomplished algorithmically,
by constructing a parametrized model that is trained over a given dataset of photographs to minimize a
chosen loss function.

To abstract this setup, suppose W ∈ W ⊂ IRdw and Y ∈ Y are well-defined random objects in a
probability space that represent the feature and the label in machine learning parlance. Also, let x ∈ IRd

denote the decision variable representing a parameter vector of interest, m(·;x) : W →Y a family of models
parameterized by x, and ` : Y ×Y → [0,∞) a chosen “loss” function.

In the facial recognition scenario, the set Y could be a finite set {1,2, . . . , p} of integers representing
a fixed group of people to be identified, and the set W = {1,2, . . . ,N}×{1,2, . . . ,N}×{0,1,2, . . . ,255}
where a photograph has N×N pixels each taking a color value in the set {0,1,2, . . . ,255}. A popular
choice for the model m(·; ·) is the linear model

m(w;x) = xT w̃, w̃T = (wT ,1).

Popular choices for the loss function `(·, ·) include the logistic loss `(y′,y) = log(1+exp(−yy′)), the hinge
loss `(y′,y) = max(0,1− yy′), and the zero-one loss `(y′,y) = 1{y′ 6=y}.
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The stochastic optimization problem is then to identify the parameters x∈ IRd that minimize the expected
loss, where the expectation is taken with respect to the random objects (W,Y ). Formally, we would like
to solve

min f (x) = E [`(m(W ;x),Y )] =
∫

W ×Y
`(m(w;x),y)P(d(w,y))

s.t. x ∈ IRd .

(3)

Of course, the objective function f cannot be directly observed. Instead, it can be estimated by using
observed data (Wi,Yi), i = 1,2, . . . ,n and an implicit or explicit model for the probability measure P.

The difficulty of solving the optimization problem in (3) depends on the choices made for the model m
and the loss `. Specifically, it depends on whether these choices result in a convex optimization problem, and
whether direct gradients or sub-gradients are easily available. For example, the use of a hinge loss ` results
in a convex objective function f , but the use of a zero-one loss results in a non-convex objective. Similarly,
deep neural networks, as noted by Bottou et al. (2016), are essentially highly non-linear and non-convex
models m that lend themselves to the easy construction of direct gradients through back propagation.

The stochastic optimization problem formulated in (3) using a parametrized model and a loss function
subsumes a large number of other contexts including regression, compressed sensing, and matrix completion
in numerous real-world scenarios (see Bubeck 2011 for more on this issue).

2.2 Example 2: Portfolio Optimization

The classical Markowitz portfolio optimization problem (Markowitz et al. 2000) in finance seeks proportions
x = (x1,x2, . . . ,xd) of a given budget to be allocated across d assets in a given financial portfolio to maximize
a combination of the expected return and variance over a given time horizon [0,T ]. The asset price movement
over the time interval [0, t] is assumed to be governed by a probability model, e.g., geometric Brownian
motion (Glasserman 2004).

Formally, suppose Zt ∈ IRd , t ∈ [0,T ] represents the asset price process for d assets in a portfolio, and
suppose η > 0 is a risk aversion parameter for a user. Then, the Markowitz portfolio stochastic optimization
problem can be written as

min f (x) = µ
T x−η xT

Σx,

s.t.
d

∑
i=1

xi = 1,xi ≥ 0.

where µ = E[ZT ] and Σ = Var(ZT ) are the mean and covariance of ZT .
Since the returns Zt are usually the result of detailed models of evolution of an asset over time (e.g.,

see Chapter 3 in Glasserman 2004), the quantities µ and Σ are not known in closed form but estimators µ̂n,
Σ̂n of µ and Σ, respectively, can be constructed using Monte Carlo simulation. In fact, since the function
f is quadratic and concave, estimators for its first derivative µ − 2ηΣx and second derivative 2ηΣ, are
readily available.

The portfolio optimization problem exemplifies numerous contexts where the underlying objective
function is very well behaved and lends itself to the easy construction of unbiased derivative estimators that
are of immense value within algorithms for stochastic optimization. This is in contrast to many simulation
settings where such derivative estimators are not available directly.

3 SGD AND VARIANTS FOR SMOOTH STOCHASTIC OPTIMIZATION

In what follows, we present modern variants of SGD that are effective at solving Problem P when the
function f is smooth. Effectiveness of an algorithm is understood here in the sense of finite-time performance
and in the sense of enjoying good complexity rates. For historical importance and perspective, we start
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with basic SGD and its more recent variant mini-batch SGD. This is followed by dynamic and adaptive
sampling SGD methods, arguably the most popular implementations.

3.1 Basic SGD

The basic SGD algorithm (Robbins and Monro 1951) proceeds by taking a step of size αk ≥ 0 along
the negative gradient estimate −g(Xk,1). As the notation makes explicit, the gradient estimate g(Xk,1) is
obtained using a unit sample size. A formal listing of basic SGD appears in Figure 1.

1: Initialize X0
2: Obtain stochastic gradient g(Xk,1)
3: Set Xk+1←ΠX (Xk−αkg(Xk,1))
4: Set k← k+1
5: Go to Step 1

Figure 1: Basic SGD algorithm (Algorithm 1).

The following result characterizes the convergence of the iterates generated by the basic SGD algorithm
of Figure 1 under the assumption that the function F(·,ξ ) is convex.
Theorem 1 In Problem P, let the set X be convex and closed, let the optimal set X∗ of Problem P be
non-empty, and let the function F(·,ξ ) be convex on IRn for each ξ . Also, let the function f be L-smooth,
that is, f is differentiable with gradient ∇ f (·) satisfying ‖∇ f (x)−∇ f (y)‖ ≤ L‖x−y‖ for all x,y ∈ IRn. Let
αk denote the step size at step k. Furthermore, let the following additional assumptions hold.

αk ≥ 0 ∀k,
∞

∑
k=1

αk = ∞,
∞

∑
k=1

α
2
k < ∞, (4)

and
∑
k

α
2
k E[‖g(xk,1)−∇ f (xk)‖2|Fk]< ∞. (5)

Then, limk infx∈X∗{‖xk− x‖}= 0 w.p.1.
Theorem 1 appears in Yousefian et al. (2012); a proof of Theorem 1 follows using simple arguments

that are standard in the analysis of optimization algorithms for convex smooth functions.
The above theorem guarantees convergence to the unique optimum x∗ when, for instance, the step size

is chosen as αk = c/k, c > 0 and the sampling of the gradient is performed in such a way that there is not
too much accumulation of bias across iterations. The latter stipulation is encoded in the third assumption
of the theorem.

Basic SGD is important for having laid down a simple algorithmic framework. However, it was quickly
realized that, depending on the extent of “noise,” even the optimal step size choice αk = c/k might result
in steps that are “too short.” Perhaps more importantly, it was realized that SGD simply did not have a
recipe for choosing an appropriate value of c.

Three aspects of the result in Theorem 1 are noteworthy. First, in order for the iterates generated
by Algorithm 1 to converge, the step size αk has to diminish to zero, and slow enough, as encoded in
the assumption appearing in (4). This is a clear departure from the deterministic context where under
similar conditions on f , the gradient algorithm will fixed step converge to the optimal set X∗ if the step
size is small enough. Second, as noted in Yousefian et al. (2012), the assumption appearing in (5) is
satisfied if, for example, the error ‖g(xk,1)−∇ f (xk)‖ is uniformly bounded by a constant. However, a
uniform bound on ‖g(xk,1)−∇ f (xk)‖ is often violated since the error ‖g(xk,1)−∇ f (xk)‖ is frequently
proportional to ‖∇ f (xk)‖. To cover such cases, a generalization of Theorem 1 using an assumption on the
“spatial growth” of the error ‖g(xk,1)−∇ f (xk)‖ is obtainable using the method outlined in Polyak (1987).
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Third, we emphasize that Theorem 1 assumes that the sample-path functions F(·,ξ ) are convex for each ξ .
Numerous variations that do not assume the convexity of F(·,ξ ) are available through standard references
on stochastic approximation, e.g., Kushner and Yin (2003).

We next provide a result that provides a path to proving the convergence rate of SGD methods. We
list this result assuming that the function f is λ -strongly convex.
Theorem 2 In Problem P, let the set X be convex and closed, and let the function F(·,ξ ) be convex on IRn

for each ξ . Also, let the function f be L-smooth and λ -strongly convex with a unique minimum attained at
x∗ ∈ X . Let αk denote the step size at step k. Furthermore, let the following additional assumptions hold.

αk ≥ 0 ∀k,
∞

∑
k=1

αk = ∞,
∞

∑
k=1

α
2
k < ∞;

and
E[‖g(xk,1)−∇ f (xk)‖2|Fk]< ν

2 ∀k.

Then, limkE
[
‖xk− x∗‖2

]
= 0, and for every ε > 0,

P(‖x j− x∗‖ ≤ ε for all j ≥ k)≤ 1− 1
ε

(
E
[
‖xk− x∗‖2]+ν

2
∞

∑
i=k

α
2
i

)
. (6)

The condition ∑
∞
k=1 αk = ∞, ∑

∞
k=1 α2

k < ∞ on the step sizes that appears in Theorem 1 and Theorem 2
is satisfied by the choice αk = c/k,c > 0. In fact, it can be shown using (6) that the choice αk = c/k,c > 0
attains the fastest possible convergence rate to within a constant factor, as long as 2cλ > 1. Basic SGD
is important for having laid down a simple algorithmic framework. However, it was quickly realized that,
depending on the extent of “noise,” even the optimal step size choice αk = c/k might result in steps that
are “too short.” Perhaps more importantly, it was realized that SGD simply did not have a recipe for
choosing an appropriate value of c. Implementers thus executed SGD with a fixed step size αk = α, and
not so surprisingly, such an algorithm does not converge to a stationary point. Instead, the typical behavior
involved a rapid descent to some vicinity of a first-order stationary point of f , followed a random walk
around the first-order critical point. The following theorem, described and proved by Bottou et al. (2016),
characterizes the expected behavior of SGD with fixed step size.
Theorem 3 Suppose the objective function f : Rd → R is L-smooth and λ -strongly convex with unique
minimum x∗ ∈ IRp. Also, let E[‖g(xk,1)‖2] ≤ M +Mg‖∇ f (xk)‖2 and E[g(xk,1)T ∇ f (xk)] ≥ µ‖∇ f (xk)‖2

for some M,Mg,µ > 0. If SGD is executed with the fixed step size αk = α satisfying 0 < α ≤ λ/LMg,
then SGD has the iteration complexity

E [ f (xk)− f (x∗)]≤ αLM
2λ µ

+(1−αλ µ)k−1
(

f (x1)− f (x∗)− αLM
2λ µ

)
.

Notice that Theorem 3 implies that the iterates approach x∗ exponentially fast (in k) but do not make
any further progress. This makes intuitive sense, as a large step size makes it impossible to approach the
point x∗ beyond a fixed distance in any systematic manner. The analogue of Theorem 3 for diminishing
step sizes αk is stated as follows. A “process convergence” version of the above theorems characterizes
convergence to an Ornstein-Uhlenbeck process (Asmussen and Glynn 2007) under certain scaling.
Theorem 4 Suppose the objective function f : Rd → R is L-smooth and λ -strongly convex with unique
minimum x∗ ∈ IRp. Also, let E[‖g(xk,1)‖2]≤M+Mg‖∇ f (xk)‖2 and E[g(xk,1)T ∇ f (xk)]≥ µ‖∇ f (xk)‖2 for
some M,Mg,µ > 0. Then, SGD executed with the step size αk = β/(γ +k) where β λ µ > 1, α1 LMg ≤ µ ,
and γ > 0 has the iteration complexity

E [ f (xk)− f (x∗)]≤
max

{
β 2LM

2(βλ µ−1) ,(γ +1)( f (x0)− f (x∗))
}

γ + k
.
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As noted earlier, the complexity O(1/k) reported by Theorem 4 is optimal “to within a constant”
(see Section 3.5). Unfortunately, however, such optimality does not guarantee good practical performance
especially since its choice in basic SGD takes no cognizance of the initial optimality gap f (x0)− f (x∗). In
other words, a poor starting point x0 demands a large β while a good starting point will probably benefit
more from a small β . Also notice from Theorem 4 that the ratio L/λ , called the condition number of the
function f , decides the complexity in a crucial way, echoing the deterministic gradient method (Nesterov
2004). Large L/λ values imply poor conditioning and, therefore, more opportunity for SGD to take steps
that are not productive in the sense of decreasing the objective function value.

3.2 Mini-batch SGD

Recall that the context of Problem P is such that we have access only to “noisy” gradients. This implies
then, roughly speaking, that more noise in the observations should lead to more unproductive steps by
SGD, leading one to wonder if there are benefits to using larger samples at each iteration. In other words,
instead of just using g(Xk,1), we could employ a mini-batch SGD, where at each iteration we use a sample
average of m noisy gradients. Specifically, mini-batch SGD is the basic SGD iteration that uses the gradient
approximation g(Xk;m). A basic version of the mini-batch algorithm appears as Algorithm ??.

1: Initialize x0
2: Choose batch size m ∈ N
3: Generate ξi, i = 1,2, . . . ,m independently and construct g(Xk,m)
4: Set Xk+1←ΠX (Xk−αkg(Xk,m))
5: Go to Step 3

Figure 2: Mini-Batch SGD algorithm (Algorithm 2).

Given Theorem 4, the complexity of the mini-batch algorithm, easy to guess, is

εk ≤
max

{
β 2LM

2m(βcµ−1) ,(γ +1)( f (x0)− f (x∗))
}

γ + k
.

It should be noted that while the mini-batch SGD is used widely, it is of little value over and above
basic SGD when the mini-batch size m is not chosen based on any available information on the constant M.
Practical implementations will usually involve a pilot run intended to obtain a rough sense of M, followed
by an appropriate choice of m. In fact, most practical implementations of mini-batch SGD involve some
sort of manual updating of the mini-batch size m. As noted by Bottou et al. (2016), the real advantages of
mini-batch SGD are in a distributed or parallel computing context, where the massive parallelism of the
mini-batch average computation can be exploited.

3.3 SGD with Dynamic and Adaptive Sampling

A key issue that governs efficiency of SGD is the extent of sampling to obtain gradient estimates. The
rudimentary SGD, outlined in Section 3.2, leans on one extreme, where a gradient estimate is obtained
using exactly one observation during each iteration. That is, the sample size during each iteration of SGD
is set to unity. The mini-batch SGD, also outlined in Section 3.2, is an attempt to correct inefficiencies in
SGD due to the choice of the sample size, sets the sample size during each iteration to m > 0, where m is
some fixed positive integer that needs to be chosen.

A natural question to ask in response to the strategy adopted in mini-batch SGD pertains to dynamic
and adaptive sampling. Specifically, why should the sample size be fixed across iterations? Why not choose
sample sizes in response to the proximity to a critical point? Dynamic sampling methods implicitly ask
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Require: Initial iterate w0, initial sample S0, and constant θ ∈ (0,1).
set k = 0
repeat

compute dk = ∇JSk(wk)
set steplength αk (using line search or as a fixed step)
set k = k+1
choose Sk such that |Sk|= |Sk−1|
compute sample variance

until a convergence condition is satisfied.

Figure 3: Dynamic Sampling Gradient Algorithm (Algorithm 3).

these questions and use a pre-specified sequence of sample sizes {mk} across SGD iterations. The sample
sizes generally diverge, that is, mk→ ∞ as k→ ∞, to reflect the need for better estimation as the iterates
tend closer to a critical point.
Remark 1 The phrases adaptive sampling (Hashemi et al. 2018; Hashemi et al. 2014; Bollapragada et al.
2018), dynamic sampling (Byrd et al. 2012), variable sample size (Deng and Ferris 2009; Homem-de-
Mello 2003), and retrospective approximation (Chen and Schmeiser 2001; Pasupathy 2010; Pasupathy and
Schmeiser 2009) have all been used in the literature to reflect similar if not identical ideas. In this paper,
we have been careful to use only the two phrases dynamic sampling and adaptive sampling. The former
phrase is used to describe a sampling strategy in SGD iterations that uses a fixed sequence of sample sizes
that is a function of the iteration number. Adaptive sample sizes, by contrast, do not use a pre-determined
sequence; the sample sizes are instead determined “on the fly” and are a function of the observed algorithm
trajectory. Adaptive sample sizes are thus random while dynamic samples sizes are fixed.

Discounting the ideas of retrospective approximation (Pasupathy 2010; Kim et al. 2015) and variable
sample sizing (Deng and Ferris 2009; Homem-de-Mello 2003; Bayraksan and Morton 2009) that have
been detailed in other contexts, the earliest mention of dynamic sampling appears to be in Bertsekas and
Tsitsiklis (1996). This idea is developed to a fuller extent in Byrd et al. (2012) and Friedlander and Schmidt
(2012). In Byrd et al. (2012), for instance, the Dynamic Sampling Gradient Algorithm (see Figure 3) is
presented where the sample size mk during the kth iteration of the SGD iteration is obtained as the smallest
sample size such that the estimated standard error of the estimated gradient is no more than the product
of a constant θ and the norm of the estimated gradient. This sample sizing rule is formally stated as

mk = arg inf

|S | :
√
‖V̂ar(∇̂`(wk))‖1√

|S |
≤ θ‖∇JS ‖2

 , (7)

where S is the set of (gradient) observations sampled, the constant θ ∈ (0,1), and V̂ar(∇̂`(wk)) is the
sample variance of the gradient estimate ∇̂`(wk) constructed from the set S of gradient samples. The
variance estimate V̂ar(∇̂`(wk)) will differ depending on whether sampling is iid and whether the underlying
population is assumed to be finite; hence, we have deliberately chosen to not provide an explicit expression
for V̂ar(∇̂`(wk)). To reiterate, the salient feature of Algorithm 3 is the sample sizing rule (7) devised
explicitly to keep the sampling error in the gradient estimate and a measure of proximity to a critical point
in a fixed proportion.

The convergence and work complexity results in Byrd et al. (2012) correspond to an idealized version
of Algorithm 3 that uses the simplified sampling rule

mk = dake for some a > 1. (8)
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instead of the adaptive sampling rule in (7). The main convergence and complexity result in Byrd et al.
(2012) is as follows.
Theorem 5 Suppose the function f is L-smooth and λ -strongly convex, and attains its minimum w∗ =
arg infx∈Rd . Then, the sequence {wk} generated by Algorithm 3 implemented with the sample size rule in
(8) satisfies the following.

E[ f (wk)− f (w∗)]≤Cρ
kfor all k ≥ 1,

where ρ = max{1−λ/4L,a−1}< 1 and C = max{ f (w0)− f (w∗),2σ
2/λ}.

(9)

Also, the total number of gradient evaluations needed to obtain an ε-optimal solution, that is, a solution
wk satisfying f (wk)− f (w∗)≤ ε , is O

( L
λε

max{ f (w0)− f (w∗),2σ2/λ}
)
.

Three aspects of Theorem 5 are important. First, the theorem is proved for smooth and strongly convex
functions. As we shall see, the corresponding complexity will be higher without the guaranteed presence
of strong convexity. Second, afforded by structural conditions on f , the result holds for all k ≥ 1 unlike
typical results that one tends to see in the literature on stochastic approximation (Kushner and Yin 2003).
Third, Theorem 5 assumes that a fixed sample-size sequence mk = dake for some a > 1 is in effect.

As noted earlier, Theorem 5 pertains to an idealized version of Algorithm 3 that uses a fixed sample-size
sequence. For effective implementation, Byrd et al. (2012) suggest using Algorithm 3 with the adaptive
sampling rule in (7) but with the direction-finding Step 3 of Algorithm 3 augmented with a Hessian through
the Newton-CG method, and the steplength αk in Step 4 of Algorithm 3 obtained using a line search that
satisfies the Wolfe conditions (Nocedal and Wright 2006). Two issues are noted as especially important
when incorporating the Hessian into the direction finding step of Algorithm 3. First, to avoid excessive
sampling, the sample size used for constructing the Hessian is such that it is retained at a constant factor
R of the sample size obtained from the sampling rule in (7). Second, the Hessian should not be computed
explicitly; instead, using what is called the Hessian-free conjugate gradient method (Nocedal and Wright
2006), a Hessian vector product is formed and incorporated directly. The “implementable” version of
Algorithm 3 is listed as Algorithm 5.2 and Algorithm 5.1 in Byrd et al. (2012).

Along the same lines as the idealized variant of Algorithm 3, Friedlander and Schmidt (2012) propose
what is called an incremental gradient method. There, the growth condition on the sample sizes mk is
specified indirectly, through an appropriate condition on the expected rate at which the error in the gradient
estimate decays to zero. For example, Friedlander and Schmidt (2012) prove the result on the behavior of
SGD’s iterates presented in the following theorem.
Theorem 6 Suppose the objective function f in Problem (P) is L-smooth and λ -strongly convex. Let

xk+1 = xk−αk g(xk,mk), k = 0,1,2, . . . (10)

where mk is such that Bk := E[‖g(xk,mk)−∇ f (xk)‖2] satisfies

lim
k→∞

Bk+1

Bk
≤ 1.

Then, for any ε > 0,

E[ f (xk)− f (x∗)]≤ (1−λ/L)k [ f (x0)− f (x∗)]+O(Ck), (11)

where Ck = max{Bk,(1−λ/L+ ε)k}.
A particular construction of the sequence {Bk} (albeit one that depends on a few unknown constants)

is also presented in Friedlander and Schmidt (2012) to ensure that the upper bound in (11) converges at a
linear rate. An implementable version of the recursion in (10) that incorporates a Hessian approximation
via limited-memory BFGS (Nocedal and Wright 2006), and a step-length obtained on the basis on a line
search with the Armijo condition (Nocedal and Wright 2006) is recommended in Friedlander and Schmidt
(2012).
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3.4 Iterate-Averaging Methods

To motivate iterate-averaging as a general idea, as was noted in Section 3.2, the basic SGD is optimal
for L-smooth, c-strongly convex functions f with the step size choice αk = θ/k, whenever θ > (2c)−1.
Hence, as lucidly illustrated by Nemirovski et al. (2009), if we execute SGD on the L-smooth, c-strongly
convex function f (x) = x2/10 with αk = θ/k and θ > (2c)−1 = 2.5, the resulting iterations will exhibit
the optimal complexity rate O(k−1). However, if θ = 1, it can be shown using simple algebra that the
resulting complexity rate deteriorates to O(k−0.2). In other words, shorter steps αk = k−1 resulting from
any mis-estimation of the strong convexity constant c causes significant degradation in performance, as
compared to the optimal complexity O(k−1). Such degradation can become even more pronounced when
the underlying function is not strongly convex, as demonstrated through another example by Nemirovski
et al. (2009).

Our illustration of the behavior of basic SGD on the function f (x) = x2/10 is meant to convey the idea
that step sizes cannot be chosen “too short” if the optimal complexity is to be guaranteed. However, “long
steps” have been known to make SGD’s trajectory “more noisy” (Nemirovski et al. 2009). Iterate-averaging
is a technique that is intended as a balance between these extremes. Loosely speaking, iterate-averaging
allows for using long steps within the basic SGD iteration, but then averages the resulting iterates offline,
to account for the increased “noise” in the iterates. The general structure for such iterate-averaged SGD
(for first-order oracles) is

xk+1 = xk−αkg(xk,1);

x̃k+1 =
1

k+1

k+1

∑
i=1

xi k = 0,1,2, . . . . (12)

Iterate-averaging as an idea first seems to have appeared in Nemirovski and Yudin (1983) for a
setting more general than Euclidean spaces, but was developed further by Polyak and Juditsky (1992) and
by Nemirovski et al. (2009). A precise complexity rate result for the iterates resulting from (12) is given
by Polyak and Juditsky (1992), and is stated here in a slightly modified form.
Theorem 7 (Polyak and Juditsky, 1992) Let the function f be L-smooth, twice differentiable, and c-strongly
convex with a unique minimum attained at x∗. Let B(x) denote the p× p matrix of second derivatives of f at
x∈D . Let the noise process εk = G(xk)−∇ f (xk) satisfy E[εk|Fk−1] = 0 and E[‖εk‖2|Fk−1]+‖∇ f (xk)‖2 ≤
K2(1+‖xk−1‖2) almost surely for some K2 > 0. Also, let E[εkεT

k |Fk−1]
p→S, where S is a positive definite

matrix. Let the step size sequence αk = αk−β , where 1/2 < β < 1. Then, x̃k+1→ x∗ almost surely, and√
k(xk− x∗) d→N(0,V ), where V = B(x∗)−1S(B(x∗)−1)T .

The crucial point to note about Polyak and Juditsky’s iterate-averaging is that the convergence rate
characterized in Theorem 7 is the best possible in an information-theoretic sense (see Section 3.5). And,
this best rate, crucially dependent on the second derivative of the function f at the point x∗, is attained with
no explicit estimation of the second-derivative (Hessian) matrix. Iterate-averaging and dynamic adaptive
sampling methods are intimately connected and essentially do the same thing, but in different ways. The
question of when to start averaging in iterate-averaging methods is a question of great practical importance
about which little is currently known.

As noted earlier, a popular and general SGD technique that averages iterates akin to (12) is what has
been called mirror descent (Nemirovski and Yudin 1983; Nemirovski et al. 2009). Apparently, mirror
descent was introduced as a generalization of the gradient descent iteration for non-Euclidean spaces,
where the xk iterate and the gradient ∇ f (xk) may not be in the same space, thus rendering an iteration such
as xk− γ∇ f (xk) meaningless. To understand mirror descent, let’s restrict our brief discussion here to a
compact convex set X ⊂ IRd equipped with an arbitrary norm ‖ ·‖, even though mirror descent is designed
for non-Euclidean spaces. The idea of mirror descent is simple in principle. Since an iteration such as
xk− γ∇ f (xk) is meaningless, mirror descent performs the SGD iteration on the dual space, inverts back
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to the primal space, and then projects to the original space X to ensure feasibility. To make this operation
precise, mirror descent defines a mirror map Φ : D → IR that is strictly convex and differentiable, has the
gradient taking all possible values in IRd and diverging on the boundary of D , that is, limx→∂D ‖∇Φ(x)‖=∞.
The domain D of the mirror map is such that the original set X is a subset of its closure. Several example
mirror maps have been presented; see for example Section 4.3 in (Bubeck 2015). Also, the Bregman
divergence

DΦ(x,y) = Φ(y)−Φ(x)−∇Φ(x)T (y− x)

is used to accomplish the projection

Π
Φ
X (y) := argminDΦ(x,y)

in the primal space X . Given an iterate xk, mirror descent first obtains the image Φ(xk) of xk through the
mirror map Φ(·), then performs the gradient step Φ(xk)−αk∇g(xk,m) to obtain the image ∇Φ(yk+1) in
the dual space, and inverts ∇Φ(yk+1) to obtain yk+1, which is finally projected back into the primal space.
Formally, the iteration is written as

∇Φ(yk+1) = ∇Φ(xk)−αkg(xk,m)

xk+1 ∈Π
Φ
X (yk+1).

The “returned solution” x̃k
i after k steps, obtained by “non-uniform averaging” of the iterates xi,xi+1, . . . ,xk,

is given as

x̃k
i =

∑
k
t=i γtxt

∑
k
t=i γt

;

γt =
θDΦ,X

√
α

M∗
√

t
, t = 1,2, . . . ,k

where θ > 0 is a chosen constant, the diameter

DΦ,X =
√

2 sup
x∈Xo,z∈X

(
Φ(z)−Φ(x)−∇Φ(z)T (x−Z)

)1/2
,

the constant α is the strong-convexity parameter of the function Φ, and M∗ ≥ supx∈X E
[
‖g(x,m)‖2

∗
]
.

As is noted by Nemirovski et al. (2009), mirror descent results in a convergence rate that is robust
with respect to mis-estimation of the strong convexity parameter of the function f . The main complexity
result for mirror descent given by them is

E
[

f (x̃k
i )− f (x∗)

]
≤ DΦ,X M∗√

αk

[
2
θ

k
k− i+1

+
θ

2

√
k
i

]
. (13)

It can be observed that the convergence rate as implied by (13) is not optimal for smooth functions, but
the rate implied by (13) is optimal for non-smooth functions.

3.5 Optimal SGD Methods

By optimal methods we mean SGD variants that achieve the fastest achievable convergence rate. More
precisely, it was shown by Tsybakov and Polyak (1990) that when Problem P has a unique solution x∗,
any linear recursive estimation procedure used on Problem P satisfies

E
[
(Xk− x∗)(Xk− x∗)T ]≥V k−1 +o(k−1), (14)

376



Newton, Pasupathy, and Yousefian

where V = B(x∗)−1S(B(x∗)−1)T and B(x∗) is the matrix of second derivatives (Hessian) at x∗ and where
for two p× p matrices A and B, A≥ B means A−B is positive definite. Hence, any procedure that attains
the bound in (14) has been deemed optimal. For example, the iterate-averaging procedures (Polyak and
Juditsky 1992) outlined in Section 3.3, and some of their precursors (Venter 1967; Fabian 1968), attain the
bound in (14) and are, hence, thought to be optimal. Of course, the bound in (14) is a lower bound and
not always attainable, as happens when the underlying function f is non-smooth.

For optimizing non-smooth (expectation) functions over the compact convex set X ⊂ IRp, the bound
analogous to (14), given by Nemirovski and Yudin (1983), is stated as follows. Suppose f is a convex and
Lipschitz-continuous function satisfying | f (x)− f (y)| ≤M‖x−y‖, ∀x,y∈ X , and denote f ∗ := infx∈X f (x).
Then, for p≥O(1)k where O(1) is a universal constant,

E [ f (Xk)− f ∗]≥ O(1)M k−1/2. (15)

The mirror descent iterate-averaging method (Nemirovski et al. 2009), outlined in Section 3.3, attains the
bound in (15).

Another interpretation of optimality comes from statistics. The famous Cramér-Rao bound implies that
a lower bound for any unbiased estimator T (Y1,Y2, . . . ,Yn) of θ ∗ ∈ IRp constructed using random copies
Y1,Y2, . . . ,Yn (not necessarily independent) of a random vector Y having density g(·;θ ∗) satisfies, under
certain simple regularity conditions (Casella and Berger 2002, pp. 335) on g, that

Var(T (Y1,Y2, . . . ,Yn))≥ I(θ ∗)−1; I(θ ∗) =−

(
E

[
∂

∂θ 2

n

∑
i=1

logg(Yi;θ)

])
, (16)

where the matrix I(θ) is called the Fisher information matrix at θ .
To interpret (16) in the context of the current tutorial, suppose the objective function f is strongly convex

and twice-differentiable. Then, any unbiased estimator of x∗ that is constructed from k iid observations
of the zero gradient at x∗ necessarily has variance that exceeds the right-hand side of (16), which in
turn can be shown to coincide with V k−1 appearing in (14). It is in this sense that the iterate-averaging
procedures (Polyak and Juditsky 1992) outlined in Section 3.3, and some earlier methods (Venter 1967;
Fabian 1968) placing additional stringency are said to be efficient. Of course, the question of whether there
exist biased estimators having mean squared errors lower than the right-hand side of (16) can be answered
to be negative except in pathological conditions on the dependence structure of the sample-paths. We are
aware of no analogues to (16) in the non-smooth and non-strongly convex contexts.

In Table 1, we list optimal algorithms for different contexts. The algorithm by Polyak and Juditsky
and the mirror-descent algorithm are iterate-averaging algorithms discussed in Section 3.3. The RSAG
algorithm of Ghadimi and Lan (2013) is an accelerated gradient descent algorithm that is not discussed
in this tutorial; neither are methods for non-convex stochastic optimization. The optimal bound for the
smooth non-convex context is not known.

Table 1: Optimal algorithms for various contexts.

Non-Convex Convex Strongly Convex
Smooth ? RSAG Polyak and Juditsky
Non-Smooth 7 Mirror-Descent Mirror-Descent

4 CONCLUDING REMARKS

Solutions to the stochastic optimization problem as posed in Problem P lie at the heart of many machine
learning and big data settings. Modern variants of SGD form the principal solutions to Problem P, and over
the last two decades, impressive progress has been made in gaining a deeper understanding of the behavior of
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these algorithms, especially in terms of their complexity rates and their practical performance. Perhaps more
importantly, there has been a proliferation of (sometimes dramatic) examples where difficult classification
and image processing problems modeled using deep learning have been solved quite satisfactorily using
one of the variants outlined in this tutorial. As of this writing, a search is on for an effective way to use
second-order information within these variants.
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