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ABSTRACT

Dynamical models of systems across many branches of science and engineering can be mathematically
represented in terms of stochastic processes such as Markov chains, or deterministically through a system
of difference or differential equations. Unfortunately, in all but special cases these models do not enjoy
analytical solutions, hence one is left with computer-based approaches by means of stochastic simulators
and numerical solvers. As a consequence, the computational cost increases with the dimensionality of the
model under consideration, hindering our capability of dealing with complex large-scale models arising
from accurate mechanistic descriptions of real-world systems. This paper offers an advanced tutorial on
an array of recently developed algorithms that seek to tame the complexity of these models by aggregating
their constituting systems of equations, leading to lower-dimensional systems that preserve the original
dynamics in some appropriate, formal sense.

1 INTRODUCTION

In many disciplines including biology, chemistry, computer science, ecology, economics, and physics,
dynamical models are routinely used in order to understand and predict the behavior of various natural as
well as engineered systems. Depending on the required level of abstraction and on the assumptions upon which
the model is based, notable classes of models are deterministic, based on differential or difference equations,
or stochastic, based, for example, on Markov processes. In biology and chemistry, ordinary differential
equations (ODEs) are the underlying mathematical model of chemical reaction networks, describing the
time-course evolution of the concentrations of the components (e.g., chemical species, proteins, or genes) in
a (bio-)chemical system (Murray 2002). In computer science, Markov processes are of paramount relevance
in the quantitative analysis of computing and networked systems including availability, performance, and
reliability (see, e.g., Stewart 2009). The Lotka-Volterra model is one celebrated instance in ecology, where
the dynamics of the interactions in predator-prey systems are represented by a system of two coupled
ordinary differential equations (Volterra 1931). In the simulation community, well-known system dynamics
allows for simulating of aggregate flows by means of difference/differential equations (Forrester 1961).

A major impediment to our capability of reasoning about the behavior of such systems is the well-known
curse of dimensionality, also called the state-space explosion problem. Fundamentally, this is due to the
fact that the size of the mathematical model tends to grow fast with the number of components of the
system under consideration. It is an issue that may manifest itself in different forms depending on the
specific types of considered systems and modeling formalisms. Here we give two instances:

• In models based on a discrete-state representation, such as Markov chains used for the analysis of
population processes (Bortolussi et al. 2013), the number of states grows exponentially with the
size of the population. For example, the number of states in a Markov chain underlying a closed
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queueing network with K users/jobs and M stations is equal to
(K+M−1

M−1

)
, corresponding to the

number of ways in which it is possible to place K objects in M bins.
• In systems biology, protein phosphorylation has a fundamental role in the regulation of cellular

life, as it can substantially affect the function of a protein by modifying its enzymatic activity or
the possibility of binding with partners. A protein with n phosphorylation sites may exist in 2n

possible forms, each describing the (binary) phosphorylated/dephosphorylated state of a specific
site (Whitmarsh and Davis 2016). Thus, kinetic models of multisite phosphorylation, usually based
on ODEs, will need an exponential number of ODE variables for a detailed mechanistic description
(e.g., Salazar and Höfer 2009).

The most important consequence of state-space explosion is the high computational cost of the analysis
for large models, due to the lack of analytical closed-form expressions in general. This cross-disciplinary
problem has spurred a very intense line of investigation on model reduction, with the aim of deriving a
lower-dimensional model whose (hopefully easier) solution can be formally related to the dynamics of
the original one. An overview of the many methods that have been developed in the literature is beyond
the scope of this paper. An exhaustive treatment of reduction techniques originating in control theory is
given by Antoulas (2005); Okino and Mavrovouniotis (1998) review simplification methods for chemical
models; and a review concerning approaches in computational systems biology is provided by Radulescu
et al. (2012).

Here we present a tutorial on recent results on model reduction developed by this paper’s authors and
collaborators. Our techniques are centered on a notion of aggregation whereby each variable in the reduced
model represents a sum of variables of the original one. Focusing on this type of relationship brings about
a number of advantages. One concerns physical intelligibility. This is especially important when the model
is to be used for prediction and validation purposes (Apri et al. 2012). More important, the aggregation
is completely characterized in terms of the set of variables that contribute to each macro-variable in the
reduced model. Here we consider aggregations that are induced by a partitioning of the variables of the
original system: that is, each original variable must contribute to exactly one macro-variable. There are
other possibilities, for instance based on a covering of the original state space, whereby a variable may
appear in more than one macro-variable (Feret et al. 2009).

Casting the problem of model reduction to that of finding an appropriate partition of variables has a
crucial algorithmic implication: we can leverage efficient partition-refinement algorithms that can compute
the maximal (i.e., the most compact) aggregation (Cardelli et al. 2017b). Partition-refinement algorithms
have been developed for Markov chain aggregation (Valmari and Franceschinis 2010), known in the literature
as lumpability (Kemeny and Snell 1976). Our methods can be seen as a conservative generalization of
lumpability methods to polynomial dynamical systems (PDS)(see Cardelli et al. 2017b), i.e., systems of
nonlinear equations whose “next-state” update law is a polynomial function of the state variables. This
covers Markov chains in the special case of an update law that is the linear map induced by the chain’s
transition matrix (Stewart 1994).

Our approach goes beyond Markov chain lumping in two fundamental ways:

1. It is based on the notion of reaction network (RN), a mathematical object that is a slight extension
of a formal chemical reaction network (CRN). An RN can equivalently represent the PDS under
consideration in terms of a finitary structure. The RN can be interpreted as the graphical counterpart
of the transition matrix of a Markov chain. This allows for extending Markov-chain aggregation
algorithms to deterministic nonlinear systems of equations.

2. A CRN with stochastic mass-action kinetics (Voit 2013) – ubiquitous, e.g., in chemistry, epidemi-
ology, and systems biology – is a special case of an RN. It can be seen as a domain-specific
high-level language for chemical systems that defines the rules with which chemical species interact
with each other, without having to explicitly enumerate the underlying state space of its underlying
Markov chain (which may be exponentially larger than the size of the CRN description, or even
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Figure 1: Graphical representation of the running example in Section 2.2.

infinite) (Gillespie 1977). While traditional lumping techniques do require the availability of the
state space, we can define a notion of aggregation directly on the CRN which implies lumpability
at the underlying Markov chain level (Cardelli et al. 2017c).

In this paper we give a unified account of these results. We provide some background on Markov chain
lumping in Section 2. We review the theory in Sections 3 and 4. In Section 5 we discuss the main features
of ERODE, a software tool that implements the reduction techniques (Cardelli et al. 2017a). Concluding
remarks and a perspective on future work are discussed in Section 6.

2 BACKGROUND

This section provides the necessary background.

2.1 Polynomial Dynamical Systems

The reduction techniques presented in this paper concern PDS. These are systems of equations of the form:

x′1(t) = f1 (x1(t), . . . ,xN(t)) . . . x′N(t) = fN (x1(t), . . . ,xN(t))

where x1, . . . , xN are the state variables, with xi(t) representing the state of the i-th variable at time t,
f1, . . . , fN are the state update functions, assumed to be multivariate polynomials over the state variables,
and the primed variables x′1(t), . . . x′N(t) represent the “next state”, i.e., the state reached upon application
of the update function. This setting covers both discrete-time and continuous-time models. In the former
case, the next state would read xi(t +1), for 1≤ i≤ N, i.e., the update function takes the system from the
current step to the next one; in the latter case, the next state is the derivative with respect to time, hereafter
denoted by the dot symbol, i.e., the time derivative of the i-th variable is denoted by ẋi(t). The model
description is completed by the initial condition x1(0), . . . , xN(0) that defines the initial state of the system.

The forthcoming results apply to either case, but in the following we will stick to examples in continuous
time. In particular, we start with the special, but important case of a Markov chain.

2.2 Running Example: A Markov Chain Reliability Model

In order to fix ideas and relate to previous work on model aggregation, let us consider a toy example of a
(continuous-time) Markov chain model for a simple repair system with N = 3 states. The model is depicted
in Figure 1. State 1 represents the operational state of some device. The transitions exponentially distributed
with parameters λ1 and λ2 denote two different breakdown events (e.g., occurring in two different system
components). Upon firing of either, the device is repaired, returning to state 1 with parameters µ1 and
µ2. The stochastic behavior is completely characterized by the transition matrix Q = (qi j)1≤i, j≤N of the
Markov chain, which in this example reads thus:

Q =

−(λ1 +λ2) λ1 λ2
µ1 −µ1 0
µ2 0 −µ2

 (1)
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Figure 2: Correspondence between models (2) and (3) for λ1 = 1, λ2 = 2, µ1 = µ2 = 3; initial conditions
are x1(0) = 1, x2(0) = x3(0) = 0, hence X1(0) = 1, X2(0) = 0. 2(a) contains the solution of original model
(2); 2(b) contains the same solution summing x1 and x2; 2(c) contains those of the reduced model (3).

where, as usual, the off-diagonal entries qi j give the rate at which the process moves from state i to state
j, and the diagonal elements are such that each row sums to zero.

The forward equations of motions, giving the probabilities xi(t) that the Markov chain is found in each
state i at time t, are provided as a PDS which is a system of linear ODEs. In our example, it reads:

ẋ1(t) =−(λ1 +λ2)x1(t)+µ1x2(t)+µ2x3(t)

ẋ2(t) = +λ1x1(t)−µ1x2(t)

ẋ3(t) = +λ2x1(t)−µ2x3(t)

(2)

subject to a non-negative initial probability distribution, such that ∑i xi(0) = 1.

2.3 Markov Chain Lumping

Let us now briefly review some results concerning the aggregation of Markov chains, which will set the
stage for our generalization to PDS. Roughly speaking, lumpability identifies a partition of the states on
whose blocks it is possible to define a Markov chain (the lumped Markov chain) whose behavior can be
related to the original one (Kemeny and Snell 1976; Buchholz 1994).

Ordinary lumpability. With ordinary lumpability, each macro-state in the lumped Markov chain gives
the (exact) sum of the probabilities of original states belonging to that partition block. To see this, let us
assume that µ1 = µ2 ≡ µ in our running example. Then, we claim that the partition of states {{1},{2,3}}
form an ordinary lumpable partition. To see this, the Equations (2) can be rewritten as follows:

ẋ1(t) =−(λ1 +λ2)x1(t)+µ(x2(t)+ x3(t))

ẋ2(t)+ ẋ3(t) = +(λ1 +λ2)x1(t)−µ(x2(t)+ x3(t))

We now apply the change of variables X1 = x1, X2 = x2 + x3 (i.e., we define one variable for each block),
getting the ODE system:

Ẋ1(t) =−(λ1 +λ2)X1(t)+µX2(t) Ẋ2(t) = +(λ1 +λ2)X1(t)−µX2(t) (3)

This system satisfies the property that X1(t) = x1(t) and X2(t) = x2(t)+ x3(t) for all times whenever it is
initialized such that X1(0) = x1(0) and X2(0) = x2(0)+ x3(0). Thus, we have indeed obtained a lower-
dimensional system whose solution can be related to the original one. This correspondence is shown in
Figure 2. The two plots in Figure 2(b)-2(c) are identical. This confirms that the solution of Equations (3)
can be related to that of the original model (2) in terms of the sum of the reduced variables x2 + x3.
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Figure 3: Correspondence between models (5) and (6) for λ = 1, µ = 3, and x1(0) = 1, x2(0) = x3(0) = 0,
and X1(0) = 1, X2(0) = 0. 3(a) and 3(b) contain the solutions of the original and reduced model (6),
respectively.

The reduced ODE system from Equations (3) turns out to be induced by the two-state lumped Markov
chain with the following transition matrix Q̂:

Q̂ =

[
−(λ1 +λ2) λ1 +λ2

µ −µ

]
(4)

An important feature of lumpability is that it is completely characterized by algebraic conditions on
the original transition matrix. Indeed, a partition of blocks X1, . . . , Xn, is ordinary lumpable if and only if
it holds that for any two blocks XI , XJ and any states i, i′ in XI we have that

∑
j∈XJ

qi, j = ∑
j∈XJ

qi′, j.

In words, it must hold that the aggregate rate toward any block is the same for all states in a block. Such
aggregate rate becomes the transition rate in the lumped Markov chain.

Exact lumpability. We observe that ordinary lumpability is exact but lossy, in the sense that from
the lumped Markov chain one cannot recover the probabilities of the individual states in general. Exact
lumpability is a notion which identifies a partition with equiprobable probabilities within each block. As
with the ordinary case, we illustrate this behavior by considering the equations of motions of the Markov
chain. Here we make the additional assumption that λ1 = λ2 ≡ λ . Then, the Equations (2) become:

ẋ1(t) =−2λx1(t)+µx2(t)+µx3(t) ẋ2(t) = +λx1(t)−µx2(t) ẋ3(t) = +λx1(t)−µx3(t) (5)

We now claim that {{1},{2,3}} form an exactly lumpable partition. Indeed, we can observe that if states 2
and 3 start with the same initial probabilities x2(0) = x3(0), then their derivatives are equal at time t = 0;
this implies that the probabilities x2(t) and x3(t) are equal at all time points. Thus, using the same steps
as before, we get the lower-dimensional ODE system:

Ẋ1(t) =−2λX1(t)+µX2(t) Ẋ2(t) = +2λX1(t)−µX2(t) (6)

Here, in addition to getting that X2(t) = x2(t)+x3(t), we also recover the individual probabilities by dividing
the solution of each macro-variable by the size of its related partition block, i.e., x2(t) = x3(t) = X2(t)/2.
This is visualized in Figure 3. Instead, in all cases in which x2(0) 6= x3(0), we cannot relate the solution
of model (6) to those of the original one (5) even if we set X2(0) = x2(0)+ x3(0). This is exemplified in
Figure 4, where Figure 4(a) plots the solution of model (5) for initial conditions x1(0) = 0.5, x2(0) = 0.3,
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Figure 4: Non correspondence between models (5) and (6) for λ = 1, µ = 3, and x1(0) = 0.5, x2(0) = 0.3,
x3(0) = 0.2, and X1(0) = 0.5, X2(0) = 0.5. 4(a) and 4(b) contain the solution of models (5) and (6),
respectively.

and x3(0) = 0.2. As for Figure 3(b), Figure 4(b) plots the solution of model (6) using coherent initial
conditions, i.e., X1(0) = x1(0) and X2(0) = x2(0)+x3(0). However, differently from Figure 3, we now get
two different trajectories, meaning that we cannot use model (6) to relate to the solution of model (5) for
these initial conditions.

The algebraic criteria on the transition matrix which characterize exact lumpability are dual to those
of ordinary lumpability. Here, a partition of blocks X1, . . . , Xn, is exactly lumpable if and only if it holds
that for any two blocks XI , XJ and any states i, i′ in XI we have that

∑
j∈XJ

q j,i = ∑
j∈XJ

q j,i′ .

That is, the aggregate rate from any block into all states in a block must be equal. Again, this aggregate
rate becomes the transition rate in the lumped Markov chain.

We remark that ordinary lumpability imposes conditions for the outgoing transitions from states in the
same block; exact lumpability has conditions on the incoming transitions. For this reason, these are also
known as forward and backward criteria (Feret et al. 2012), respectively – terminology that will be used
for our aggregation methods for PDS.

Lumping algorithms. The lumpability conditions allow us to check if a given partition induces an
aggregated Markov chain. Efficient algorithms exist for computing the maximal aggregation, i.e., the
coarsest lumpable partition (Valmari and Franceschinis 2010). They are based on partition refinement, a
core approach for the minimization of foundational models in computer science (Paige and Tarjan 1987).
Formally, they compute the coarsest partition that is a refinement of a given input partition, by iteratively
splitting the blocks of the input partition until a fixed point. Importantly, these algorithms give freedom in
choosing the input partition. This is important for two main reasons:

• In the case of ordinary lumpability, it allows for isolating states whose probability the modeler
wishes to observe. This can be done by initializing the algorithm with a singleton block for each
such observable state, which cannot be further split in subsequent iterations.

• In the case of exact lumpability, it allows for a pre-partitioning of the state space by placing
equiprobable states within the same block of the initial partition; this is indeed a precondition for
having equiprobable state probabilities at all time points.

An important feature of these algorithms is that they are not based on the analysis on the underlying
ODEs of the Markov chain – the iterative splitting is of structural nature, based on the algebraic lumpability
conditions. While it is in principle possible to restate such conditions on ODE properties, this will involve
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reasoning over uncountable state spaces, which is decidable using symbolic SAT-based methods, but
computationally hard (Cardelli et al. 2016b). Instead using structural conditions on the transition matrix
enables a very efficient algorithm which runs in O(m logn) time, where n is the number of states and m is
the number of transitions of the original Markov chain (Valmari and Franceschinis 2010).

3 AGGREGATION OF POLYNOMIAL DYNAMICAL SYSTEMS

The forthcoming paragraphs of this section are devoted to the generalization of the principles of Markov
chain aggregation to PDS. In order to do so, we need the following ingredients:

1. Definition of the PDS structural counterpart to the transition matrix of a Markov chain.
2. Generalization of ordinary and exact lumpability to PDS.
3. Definition of an aggregated PDS.
4. Development of an algorithm for computing the maximal aggregation.

3.1 Reaction Networks

Reaction networks (RNs) are the PDS structural analogue of a Markov chain transition matrix. An RN
is represented by a finite set of species and a set of reactions (The terminology adopted is aligned with
chemistry because they represent a slight generalization of CRNs). Denoting by S1, . . . , SN the species
(with the intuition that each species corresponds to an ODE variable), a reaction r is in the form

r : ρ1S1 + . . .+ρNSN
α−→ π1S1 + . . .πNSN

where the coefficients ρi and πi are nonnegative integers (the stoichiometry), for i = 1, . . . ,N, and α is a
real number (the “rate”). Species appearing on the left-hand side of a reaction (before −→), are referred
as reagents, while those appearing on the right-hand side are referred as products. Essentially, a formal
chemical reaction requires that all rates be greater than zero, indicating the kinetic parameter of the reaction.
Without such restriction, with an RN it is possible to represent any PDS (Cardelli et al. 2017b), essentially
by encoding any monomial appearing in the derivatives of the PDS as a distinct reaction. We stress,
however, that models of systems of various nature (e.g., biological, chemical, ecological, etc.) are usually
provided directly in terms of a (chemical) RN (Goutsias and Jenkinson 2013).

For example, the Markov chain of (1) can be shown to correspond to the RN:

S1
λ1−→ S2 S1

λ2−→ S3 S2
µ1−→ S1 S3

µ2−→ S1 (7)

The following, instead, is a simple variant that gives rise to a nonlinear ODE system:

S4 +S1
λ1−→ S2 S4 +S1

λ2−→ S3 S2
µ1−→ S1 S3

µ2−→ S1 (8)

The ODE is derived by applying the rule based on the law of mass action (Voit 2013). We let xi denote
the variable associated with species Si, obtaining:

ẋ1(t) =−(λ1 +λ2)x1(t)x4(t)+µ1x2(t)+µ2x3(t)

ẋ2(t) = +λ1x1(t)x4(t)−µ1x2(t)

ẋ3(t) = +λ2x1(t)x4(t)−µ2x3(t)

ẋ4(t) =−(λ1 +λ2)x1(t)x4(t)

(9)

We remark that, differently from Markov chains, here the solutions are not restricted to represent
probability distributions. For example, when using an RN to represent a biological system, the variables
represent species concentrations.
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Figure 5: Comparison of original PDS (9) and its FE reduction (10), for λ1 = 1, λ2 = 2, µ = µ1 = µ2 = 3.
5(a) contains the solution of the original model (9); 5(b) contains the same solution summing x1 and x2;
5(c) contains the solution of the reduced model (10).

3.2 Forward and Backward Equivalence

Forward equivalence (FE) is the PDS analogue of ordinary lumpability in Markov chains. Indeed, once
again assuming µ1 = µ2 ≡ µ , the reduced ODE system

Ẋ1(t) =−(λ1 +λ2)X2(t)X3(t)+µX2(t)

Ẋ2(t) = +λ1X1(t)X3(t)−µX2(t)

Ẋ3(t) =−(λ1 +λ2)X2(t)X3(t)

(10)

yields that X1(t) = x1(t), X2(t) = x2(t)+ x3(t), X3(t) = x4(t) for all time points t; that is, the partition of
state variables {{x1},{x2,x3},{x4}} is a forward equivalence.

This is exemplified in Figure 5. As for the case of ordinary lumpability of Markov chains exemplified
in Figure 2, the two plots in Figure 5(b)-5(c) are identical. This confirms that the solution of (10) can be
related to that of the original PDS in Equations (9) in terms of the sum of the reduced variables x2 + x3.

In a similar fashion, additionally assuming that λ1 = λ2 ≡ λ yields that x2(t) = x3(t) whenever these
variables are initialized equally. That is, the partition of state variables {{x1},{x2,x3},{x4}} is a backward
equivalence (BE), meaning that it identifies variables with equal trajectories whenever variables in the same
block are initialized with the same initial conditions. Thus, using the same steps as before, we get the
lower-dimensional PDS:

Ẋ1(t) =−2λX2(t)X3(t)+µX2(t) Ẋ2(t) = +λX1(t)X3(t)−µX2(t) Ẋ3(t) =−2λX2(t)X3(t) (11)

This is exemplified in Figure 6. Similarly to what we discussed for exact lumpability of Markov chains
(cf. Figure 4), the solution of a BE reduced model can be related to those of the original one if and
only if all variables in the same equivalence class have the same initial condition. In Figure 6 we used
x2(0) = x3(0) = 0, and hence X2(0) = x2(0)+x3(0) = 0. Instead, Figure 7 shows the case for x2(0) = 0.3,
and x3(0) = 0.2.

We remark that, in the cases so far, FE and BE are related to the same partition of variables; in general,
these two notions are not comparable (Cardelli et al. 2015; Cardelli et al. 2016a).

The equivalences can be checked via structural RN-based conditions. The intuition behind how one can
generalize the respective lumping notions can be provided by comparing (7) and (8). In the linear case (7),
one needs to relate variables just in terms of the transitions toward a block, since each variable performs
“reactions” on its own (i.e., there is only one species in the left-hand sides of the reaction). In the nonlinear
case, instead, the presence of multiple species in the left-hand side is interpreted as an “environment”
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Figure 6: Solutions of PDS (9) and its BE reduction (11), for λ = λ1 = λ2 = 1, µ = µ1 = µ2 = 3, and
x1(0) = 1, x2(0) = x3(0) = 0, x4(0) = 2 and X1(0) = 1, X2(0) = 0, X3(0) = 2. 6(a) contains the solution of
original model (9), while 6(b) contains the solution of the reduced model (11).
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Figure 7: Solutions of model (9) and its BE reduction (11), for λ1 = λ2 = 1, µ1 = µ2 = 3, and x1(0) = 0.5,
x2(0) = 0.3, x3(0) = 0.2, x4(0) = 2, and X1(0) = 0.5, X2(0) = 0.5, and x4(0) = 0.5. 7(a) contains the
solution of (9), while 7(b) contains the solution of the reduced model (11).

(formally, a multiset of species) which mutually regulates the possibility of an involved species in reacting.
Thus, the structural conditions for forward and backward equivalence are stated in the following form:

Given an RN over species S1, . . . , SN , a partition of species is an equivalence for its
underlying PDS if and only if, for any two blocks HI,HJ and any species Si,S′i in block HI

r(Si,η ,HJ) = r(Si′ ,η ,HJ) for all environments η . (12)

Depending on the considered equivalence, r is a specific function that maps an RN into a real number,
which can be computed by inspection of the set of reactions (Cardelli et al. 2017b). We observe that the
structural conditions for forward and backward equivalence are conceptually analogous to the lumpability
condition in that they compare two species/states with respect to blocks. Here, there is an additional
dependence on the environment; this is analogous to the dependence on action labels for computational
models based on probabilistic automata (Larsen and Skou 1991). When these notions are computed for
a linear ODE system induced by a Markov chain, e.g. model (7), then they collapse to the structural
conditions of lumpability (in particular, the environment is always an empty multiset).
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3.3 Aggregated PDS

For a given forward or backward equivalence, it is possible to compute the aggregated PDS by simple
manipulations of the RN that encodes the original PDS. The operations essentially amount to renaming
the species with a fixed representative species for each block of variables, scaling rate parameters by the
multiplicities of the blocks containing the species in the left-hand sides, and merging reactions that, as
a result of this, have equal left- and right-hand sides. For example, let us consider the case of forward
equivalence in Equations (8) when µ1 = µ2 ≡ µ . Let us take S2 as the representative of the block containing
species S2 and S3. Then, the RN can be rewritten as follows:

S4 +S1
λ1−→ S2 S4 +S1

λ2−→ S2 S2
µ/2−−→ S1 S2

µ/2−−→ S1

where the parameters of the last two reactions are scaled by 2. Then, we can merge the first two and the
last two reactions by summing up the rates, leading to the reduced RN:

S4 +S1
λ1+λ2−−−→ S2 S2

µ−→ S1 (13)

Then, it can be seen that this reduced RN corresponds to the reduced ODEs (10).

3.4 Maximal Aggregation of PDS

Similarly to Markov chain lumpability, the structural conditions of forward and backward equivalence
are based on a given candidate partition of variables. The first partition-refinement algorithm based on
this notion was published by Cardelli et al. (2016a), covering PDS whose derivatives are polynomials of
degree at most two; it has been subsequently extended to the general case of polynomials with arbitrary
degree (Cardelli et al. 2017b). The algorithm computes the coarsest partition that refines a given input
partition of species of an RN. It runs in polynomial time and space complexity, enabling the reduction of
PDS with a few million variables in under 5 minutes on an ordinary laptop (Cardelli et al. 2017a).

4 SYNTACTIC MARKOVIAN BISIMULATION

RNs having all rates positive can be actually considered as CRNs with mass-action kinetics (Voit 2013).
Other than the deterministic semantics based on ODEs considered so far in this text, CRNs also have
a stochastic semantics based on population-based continuous time Markov chains (Gillespie 1977). The
initial state of such Markov chain is given by a multi-set of species, where multiplicities denote the
initial population (or count) of each species. The rest of the Markov chain can be generated by applying
exhaustively all reactions to all states, starting from the initial one. The application of a reaction r on a
state σ generates a new state σ ′ where all reagents of r are consumed (i.e., removed), and all products of
r are produced (i.e., added). Following combinatorial arguments, the transition rate between the states σ

and σ ′ is the kinetic constant of r multiplied by the number of possible ways in which the reagents of r
can be matched with σ , corresponding to the number of possible interactions driven by r in σ .

Let us consider the RN from (8), with λ1 = 1, λ2 = 2, and µ1 = µ2 = 3. This is actually a CRN. The
population-based continuous time Markov chain of this CRN for initial population S1 + 2S4 is given in
Figure 8(a). For example, we have a transition from the Markov chain state (S1 +2S4) to state (S2 +S4)

due to reaction S4 +S1
λ1−→ S2. The rate of the transition (2) is obtained by multiplying the rate λ1 = 1 of

the reaction by 2: the instance of S1 in the starting state (S1 +2S4) can interact with either instances of S4.
It can be shown that the following is an ordinary lumpable partition of such Markov chain:{

{(S1 +2S4)},{(S2 +S4),(S3 +S4)},{(S1 +S4)},{(S2),(S3)},{(S1)}
}

(14)

This means that we can rewrite Figure 8(a) in the lumped Markov chain depicted in Figure 8(b) having
one state per equivalence class in (14). We note that, despite the partition (14) is defined for the states of
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S2 +S4
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S3 +S4
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{S2 +S4 , S3 +S4}

S1 +S4
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1+2

3

3

(b)

S1 +2S4
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S2

S1

6

3

3

3

(c)

Figure 8: The Markov chain (a) underlying the CRN (8) can be lumped into (b). This corresponds to (c),
the Markov chain underlying the CRN (13), which is an SMB reduction of (8).

the Markov chain in Figure 8(a), it actually tells us that we can analyze the CRN in terms of cumulative
information on the species S2 and S3. Indeed, the only two non-singleton blocks in Equations (14) are
invariant up to renaming of S2 and S3. For example, the state of Figure 8(b) corresponding to block
{S2 +S4 , S3 +S4} can be used to study the cumulative probability of being in a state with one instance
of S4, and one of either S2 or S3. We discover exactly this relation by means of a structural reduction
technique, syntactic Markovian bisimulation (SMB) (Cardelli et al. 2017c), defined over the species and
reactions of a CRN. SMB reduces a CRN to a smaller one that preserves its stochastic semantics precisely
in terms of ordinary lumpability, but without having to analyze the full Markov chain.

SMB is defined in terms of syntactic checks similar to those of FE in Equations (12), and its relation
with FE has been studied by Cardelli et al. (2017c). Using an SMB-reduced CRN it is possible to
derive directly a population-based Markov chain that corresponds to an ordinary lumpable reduction of
the one of the original CRN. In particular, similarly to what was done manually in Figure 8(b), all states
of the Markov chain underlying the original CRN that are invariant up-to SMB-equivalent species are
automatically collapsed into a single state in the Markov chain underlying the SMB-reduced CRN.

It can be shown that the partition of species {{S1},{S2,S3},{S4}} is an SMB of the CRN from
Equations (8) (with λ1 = 1, λ2 = 2, and µ1 = µ2 = 3). By applying the same RN-to-RN transformation
in Section 3, the CRN from Equations (13) can also be interpreted as a reduced CRN which is equal
up to ordinary lumpability, that is, the species S2 in such reduced CRN represents the entire equivalence
class {S2,S3} of the source CRN. Figure 8(c) depicts the population-based Markov chain that would be
directly generated starting from such reduced CRN, which stands in a one-to-one correspondence with that
of Figure 8(b).

The use of SMB has a number of advantages:

1. The population-based Markov chain underlying a CRN is typically very large or even infinite.
Hence, it is often unfeasible to build the original Markov chain. Using SMB, we avoid to build
the original Markov chain, and we build instead directly a lumped one.
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2. As for forward equivalence, the reduction induced by SMB is physically intelligible: the obtained
reduced CRNs (and corresponding lumped Markov chains) are coarser versions of the original ones
where we do not distinguish anymore between certain species.

3. Once we have computed an SMB-reduced CRN, we can use it for any initial condition.
4. When considering the stochastic semantics of a CRN, it is rarely the case that population Markov

chains are built. Rather, the CRN is analyzed by means of stochastic simulations using, e.g.,
Gillespie’s stochastic simulation algorithm (Gillespie 1977). Given that SMB preserves the stochastic
semantics of CRNs, rather than the original CRN, one can simulate its SMB reduction, which may
have fewer species and reactions, hence leading to less expensive simulations.

5 TOOL SUPPORT

All analyses and reductions presented in this paper have been performed using ERODE, a mature tool for the
evaluation and reduction of ordinary differential equations, and continuous time Markov chains. ERODE is
a multi-platform application for Windows, Mac OS, and Linux. It does not require any installation process,
and it is available, together with a manual and sample models, at http://sysma.imtlucca.it/tools/erode.

ERODE comes as a fully featured integrated development environment containing:

• A fully-featured text editor based on the XTEXT framework which supports syntax highlighting,
content assist, error detection, and fix suggestions;

• A number of views, including a project explorer to navigate among different ERODE files; an
outline to navigate the parts of the currently open ERODE file; a plot view to display ODE solutions
and Markov chain simulations; and a console view to display diagnostic information like warnings
and model reduction statistics.

The core layer of ERODE implements a number of minimization algorithms, including those for forward
and backward equivalence. Finally, this layer provides support for numerical ODE solvers, using the Apache
Commons Maths library (http://commons.apache.org/proper/commons-math/) or SUNDIALS (Hindmarsh
et al. 2005). When the input is a CRN, it can also be interpreted as a continuous time Markov chain,
following an established approach (Gillespie 1977). Using the FERN library (Erhard et al. 2008), ERODE
features continuous time Markov chain simulation.

6 CONCLUSION

In this paper, we have reviewed our recent work on techniques for the aggregation of polynomial dynamical
systems (PDS) using efficient partition-refinement algorithms. An important feature of these techniques is
the possibility of preserving variables of interest to the modeler, thus restricting the aggregation to variables
that, whilst contributing to the overall dynamics, are not necessarily of direct concern to stakeholders.

Our methods are domain-agnostic. Thus, they are in principle applicable in several contexts. For
example, aggregations can be used as a general-purpose preprocessing step in simulation studies based on
the system dynamics approach, which is inherently based on systems of difference/differential equations.
The preservation of modeler-defined observables makes the aggregation transparent to hybrid simulation
techniques (Mustafee et al. 2017), mixing, for instance, discrete-event simulation and system dynam-
ics (Caudill and Lawson 2013), by keeping untouched the input/output variables of the dynamical system.
We note that our focus on polynomial derivatives is not particularly restrictive. Indeed, it is possible
to algorithmically transform systems with other nonlinearities (i.e., rational expressions, exponentials,
trigonometric functions) into PDS by appropriately introducing auxiliary variables (Liu et al. 2015).

Our lumping-based aggregation techniques are orthogonal to other reduction methods for dynamical
systems, for instance those based on quasi-equilibrium or quasi-steady state assumptions (Segel and Slemrod
1989). Thus, a combined application may achieve further reductions. Clearly, they are also independent
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from the underlying algorithms for the numerical solution. Thus, they can be used to further speed up the
parallel simulations (e.g., Lakshmiranganatha and Muknahallipatna 2017).

Our syntactic Markovian bisimulation is similar in spirit to forward and backward equivalence for
PDS, but it applies to chemical reaction networks (CRN) that are interpreted as Markov chains. Here, the
main benefit is that the aggregation analysis is made at the CRN level, which is typically (exponentially)
more compact than the underlying Markov chain, enabling a significantly more-efficient aggregation than
traditional lumping approaches.

CRNs with stochastic dynamics are at the basis of several population-based models (Goutsias and
Jenkinson 2013); their relationship with agent-based models has been recently investigated (Warnke et al.
2016). These models typically make the implicit assumption of relatively few classes (e.g., susceptible,
infected, and recovered) of homogenous, statistically indistinguishable individual agents, each class being
represented with a single variable that counts their population levels. Even under this assumption, which
may not be always realistic (Reinhardt and Uhrmacher 2017), our methods can prove advantageous. For
instance, in such population models evolving over a network (Goutsias and Jenkinson 2013), symmetries
in the network topology can induce aggregations (Vandin and Tribastone 2016).

Systems enriched with algebraic constraints might give rise to differential algebraic equations, on
which we have recently extended our reduction framework. We refer the interested reader to Tognazzi
et al. (2018).

The techniques reviewed in this paper fundamentally hinge on the assumption of exact aggregation.
It is natural to investigate aggregation techniques that can deal with heterogenous populations, aiming to
collapse the behavior of nearly-similar states/variables into a single macro-variable (Iacobelli and Tribastone
2013). Some recent work has considered this issue by framing the problem into a mathematical framework
for dealing with uncertain dynamical systems (Bortolussi and Gast 2016), or by computing lower and upper
bounds on the homogeneization error by means of differential inequalities (Tschaikowski and Tribastone
2016). We refer the interested reader to the paper (Cardelli et al. 2018) for details on our own recent approach
to this problem, which is developed as conservative extension of the equivalence relations presented here.
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