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ABSTRACT

Simulation models are integral to modern scientific research, national defense, industry and manufacturing,
and in public policy debates. These models tend to be extremely complex, often with thousands of factors
and many sources of uncertainty. To understand the impact of these factors and their interactions on model
outcomes requires efficient, high-dimensional design of experiments. Unfortunately, all too often, many
large-scale simulation models continue to be explored in ad hoc ways. This suggests that more simulation
researchers and practitioners need to be aware of the power of designed experiments in order to get the most
from their simulation studies. In this tutorial, we demonstrate the basic concepts important for designing
and conducting simulation experiments, and provide references to other resources for those wishing to learn
more. This tutorial (an update of previous WSC tutorials) will prepare you to make your next simulation
study a simulation experiment.

1 INTRODUCTION

In June 2008, a new supercomputer called the “Roadrunner” was unveiled. This bank of machines was
assembled from components originally designed for the video game industry; it cost $133 milion, and is
capable of doing a petaflop (a quadrillion operations per second). The New York Times coverage stated that
“petaflop machines like Roadrunner have the potential to fundamentally alter science and engineering” by
allowing researchers to “ask questions and receive answers virtually interactively” and “perform experiments
that would previously have been impractical” (Markoff 2008). Yet let us take a closer look at the practicality
of a brute-force approach. Suppose a simulation has 100 factors, each factor has two levels (low and high)
of interest, and we decide to look at all combinations of these 100 factors. A single replication of this
experiment would take over 40 million years on the Roadrunner, even if each of the 2100 ≈ 1030 simulation
runs consisted of a single machine instruction! A decade later, the world’s most powerful supercomputer
is the Summit, with an astounding 200 petaflop capacity (Simonite 2018). Nonetheless, even the Summit
would require over 178 millenia to perform 2100 machine instructions – let alone 2100 simulation runs!

Efficient design of experiments can break this curse of dimensionality at a tiny fraction of the cost.
For example, suppose we want to study 100 factors and all their two-way interactions. One screening
design we could use (a resolution 5 fractional factorial, described in Section 3.3) specifies 32768 specific
combinations of the factor levels to evaluate. How quickly can we finish such an experiment? On a desktop
computer with a simulation that takes a full second to run, each replication of this experiment takes under
9.5 hours; even if the simulation takes a more reasonable one minute to run, we can finish this experiment
on an 8-core desktop (under $3000) in 2.85 days. Other designs are even more efficient, and provide more
detailed insights into the simulation model’s behavior.

The field called Design of Experiments (DOE) has been around for a long time. Many of the classic
experiment designs can be used in simulation studies. We discuss a few in this paper to explain the concepts
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and motivate the use of experiment design. However, the settings in which real-world experiments are
performed can be quite different from the simulation environment – therefore, a framework specifically
geared toward simulation experiments is beneficial.

Before undertaking a simulation experiment, it is useful to think about why this experiment is needed.
Simulation analysts and their clients might seek to (i) develop a basic understanding of a particular simulation
model or system, (ii) find robust decisions or policies, or (iii) compare the merits of various decisions or
policies. The goal will influence the way the study should be conducted (Kleijnen et al. 2005).

We focus on setting up single-stage experiments to address the first goal, and touch briefly on the
second. Although the examples in this paper are very simple simulation models, the same types of designs
have been extremely useful for investigating more complex simulation models in a variety of application
areas. For a detailed discussion of the philosophy and tactics of simulation experiments, a more extensive
catalog of potential designs, and a comprehensive list of references, see Kleijnen et al. (2005) or Sanchez
et al. (2012); other useful references are Kleijnen (2017), or Chapter 12 of Law (2014).

The benefits of designed experiments are tremendous. Once you realize how much insight and
information can be obtained in a relatively short amount of time from a well-designed experiment, DOE
should become a regular part of the way you approach your simulation projects.

2 BASIC CONCEPTS

2.1 Definitions and Notation

One of the first things an experimenter or tester must do to design a good experiment is identify the
experiment’s factors. In DOE parlance, factors are the input (or independent) variables that are thought
might have some impact on responses (i.e., experimental outputs). In general, an experiment might have
many factors, each of which might assume a variety of values, called levels of the factor in DOE. A primary
goal of many DOEs is to identify which of the factors are really important for which responses, and which
are not and can thus be dropped from further consideration, greatly reducing the experimental effort and
simplifying the task of interpreting the results. Also, of the important factors, we would like to identify the
nature of the impact on the responses (e.g., increasing, linear, quadratic), and whether the levels of some
factors influence the effects that other factors have (called factor interactions).

To identify appropriate designs, it is often useful to classify the factors along several dimensions:

• Quantitative or qualitative. Quantitative factors naturally take on numerical values, while qualitative
factors do not (though they might be assigned numerically coded values).

• Discrete or continuous (quantitative factors only). Discrete factors can have levels only at certain
separated values; an example would be the number of x-ray machines in a hospital, which would
have to be a non-negative integer, presumably with some upper bound. Continuous factors can
assume any real value, perhaps within some range, such as the speed at which a vehicle is operated.

• Binary or not. Binary factors are naturally constrained to just two levels, like the classification of
a part as either defective or non-defective. Non-binary factors could take on more than two values,
but might still be tested at only two levels, typically “low” and “high,” or might be allowed to
assume (many) more than two levels in the experiment.

• Controllable or uncontrollable. In a simulation experiment, all factors are manipulated and controlled,
but in reality factors might be controllable or not. For example, the degree or nature of enemy
jamming of a communications system would be controlled in a simulation, but not in an actual
fight. This can affect how the experimenter interprets the estimates of the effects of factors.

Throughout this paper, simulation model denotes any model that is evaluated using a computer.
Simulation models come in many flavors. There are deterministic simulations (e.g., numerical solutions
of differential equations, where the same set of inputs always produces the same output) and stochastic
simulations (where the same set of simulation inputs may produce different output unless the random-
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number streams are carefully controlled). Simulations that model a process that occurs over time can also
be characterized as terminating or non-terminating, depending on the stopping conditions. For ease of
presentation we assume that terminating simulations are used; the simulation stops after either a pre-specified
amount of simulation time has elapsed, or when a specific event or condition occurs.

Mathematically, let X1, . . . ,Xk denote the k factors in our experiment, and let Y denote a response
of interest. Sometimes, graphical methods are the best way to gain insight about the Y ’s, but often we
are interested in constructing response surface metamodels that approximate the relationships between the
factors and the responses with statistical models. Regression metamodels are one class that is typically
used (see, e.g., Barton 2015; Kleijnen 2017; Law 2014; or Sanchez et al. 2012).

First, suppose that the Xi’s are all quantitative, although they can be discrete or continuous. A main-effects
metamodel means we assume

Y = β0 +
k

∑
i=1

βiXi + ε, (1)

where the ε’s are independent random errors with mean zero. Ordinary least-squares regression assumes
that the ε’s in (1) are also identically distributed, but the regression coefficients are still unbiased estimators
of the βi even if the underlying variance is not constant.

To explore any quadratic effects, we will include terms like X2
1 as potential explanatory variables for Y .

Similarly, two-way interactions are terms like X1X2. A second-order metamodel includes quadratic effects
and two-way interactions, although it is best for numerical stability to fit this after centering the quadratic
and interaction terms, as in (2):

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βi,i(Xi−X i)
2 +

k−1

∑
i=1

k

∑
j=i+1

βi, j(Xi−X i)(X j−X j)+ ε. (2)

Some statistical packages do this centering automatically. It is worth noting that regression can also be
used when some of the X’s are qualitative – in fact, the ANOVA (analysis of variance) technique commonly
used for experiment designs with qualitative X’s is a special case of regression.

A design is a matrix where every column corresponds to a factor, and the entries within the column
are settings for this factor. Each row represents a particular combination of factor levels, and is called
a design point. If the row entries correspond to the actual settings that will be used, these are called
natural levels. Coding the levels in a standardized way is a convenient way to characterize a design.
Different codes are possible, but for quantitative data the low and high levels are often coded as −1 and
+1, respectively, for arithmetic convenience (an example for a particular design is shown later). In this
paper, each repetition of the whole design matrix is called a replication and we generally assume that the
replications are independent. Let nd be the number of design points, and nr be the number of replications.
The total number of experimental units is ntot = ndnr.

We remark that the terminology can be slightly different, depending on what source you read or what
software you use. For example, many sources dealing with design experiments in non-simulation settings
refer to a combination of factor settings as a run. We prefer design point, because the term “run” has
a specific meaning to simulators – and a single run can be associated with many (nearly) independent
observations if, e.g., we use batch means to investigate steady-state simulations. Similarly, some designs
allow the number of replications to differ by design point – but they may not count the original observations
as replications! In these situations, a classical statistician might describe a Monte Carlo simulation with 10
runs at each of two parameter settings as a 2-run experiment with 9 replicates, or a 2-run experiment with
10 replicates. Despite differences in wording, the basic concepts remain the same – the design is a matrix,
the design points tell us what factor level combinations to run, and replication provides information about
the response variability at the design points.
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2.2 Pitfalls to Avoid

Two common types of simulation studies are ill-designed experiments. The first can occur if several people
each suggest an “interesting” combination of factor settings, so a handful of design points end up being
explored where many levels change simultaneously. Consider an agent-based simulation model of the
child’s game, where two teams (blue and red) each try to “capture the flag” of the opposition. Suppose that
only two design points are used, corresponding to different settings for the speed (X1) and stealth (X2) of
the blue team, with the results in Figure 1a. (Instead of providing numerical response values, a blue circle
is used to represent a “good” average outcome for the blue team, while a red square represents a “bad”
average outcome.) One person might claim these results show that high stealth is of primary importance,
another that speed is the key to success, and a third that they are equally important. There is no way to
resolve these differences of opinion without collecting more data. In statistical terms, the effects of stealth
and speed are said to be confounded. In practice, simulation models easily have dozens or hundreds of
potential factors. A handful of haphazardly chosen scenarios, or a trial-and-error approach, can use up a
great deal of time without addressing the fundamental questions.

Speed

Low           
High   

  Success?               

No
Yes

 Stealth

Low           
High   

Speed

Low           
High
Low

   

  Success?               

No
No
No

 Stealth

Low           
Low
High

  

(a) (b)

Figure 1: Two poor designs for capture-the-flag: (a) confounded effects, and (b) one-at-a-time sampling.

The second type of study that can be problematic occurs when people start with a “baseline” scenario
and vary one factor at a time. Revisiting the capture-the-flag example, suppose the baseline corresponds to
low stealth and low speed. Varying each factor, in turn, to its high level yields the results of Figure 1b. It
appears that neither factor is important, so someone using the simulation results to decide how to choose
a team would not know how (or if) to proceed. But combining the results of Figure 1a and b, it is clear
that success requires both high speed and high stealth. This means that the factors interact – and if there
are interactions, one-at-a-time sampling will never uncover them!

The pitfalls of using a poor design seem obvious on this toy problem, but the same mistakes are made
far too often in larger studies of more complex models. When only a few variations from a baseline are
conducted, there may be many factors that change but a few that decision makers think are “key.” If they
are mistaken, changes in performance from the baseline scenario may be attributed to the wrong factors.
Similarly, many analysts change one factor at a time from their baseline scenario, but fail to understand that
this approach implicitly assumes that there are no interaction effects. This assumption may be unreasonable
unless the region of exploration is very small.

Another pitfall to avoid is more subtle. The statistical DOE literature focuses, in large part, on comparing
designs in terms of the number of design points or the precision of specific factor effect estimates (e.g., main
effects) based on assumed response behavior. This means there is a tendency to limit the investigation to a
very small number of factors and limit the number of levels for each factor. This mindset is counterproductive
for simulation experiments, particularly given the availability of computing clusters and the relative time
required to create (vs. run) the model. It is better to gather enough data, via larger designs and more than
one replication, to be able to explore the simulation’s performance without resorting to lots of simplifying
assumptions or relying on series of small experiments that may need to be back-tracked.
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2.3 Choosing Factors

Potential factors in simulation experiments include the input parameters or distributional parameters of a
simulation model. For example, a simulation model of a repair facility might have both quantitative factors
(such as the number of mechanics of different types, or the mean time for a particular task) and qualitative
factors (such as priority rules).

Generating a list of the potential inputs to a simulation model is one way of coming up with an initial
factor list. However, factors need not correspond directly to simulation inputs. For example, suppose two
inputs are the mean times µ1 and µ2 required for a specific agent to process messages from class 1 and
class 2, respectively, where message class 2 is considered more complex than message class 1. Varying
µ1 and µ2 independently may either result in unrealistic situations where µ1 > µ2, or require the analyst
to select narrow factor ranges. Instead, we could use µ1 as one factor to represent the capabilities of the
agent, and vary the ratio µ2/µ1 over a range of interesting values (say, 1.1 to 2.0) to represent the relative
difference in message complexity. Of course, the factor values have to be changed to come up with the
inputs to our simulation, but this is a straightforward task. This idea may, in fact, represent factors more
intuitively. For the standard M/M/1 queueing example, characterizing queue behavior as a function of
arrival rate and traffic intensity may be more informative than as a function of arrival rate and service rate
– because we know that the queue is non-stationary when the traffic intensity ρ ≥ 1.

2.4 Sample-Size Issues

In live experiments, where data are extremely expensive, the total sample size is often very small. This
affects the choice of an experiment design as well as the number of replications.

In simulation experiments, where a major portion of the effort often occurs in model development, the
total sampling budget may not be so constrained. This increases the set of potential designs that can be
used, and it may be possible to generate a great deal of information (even hundreds of thousands of runs)
in a relatively short time. We discuss this further in Section 3.

2.5 Non-terminating Simulations

Different types of simulation studies involve different types of experimental units. For a static Monte
Carlo simulation, where no aspect of time is involved, the experimental unit is a single observation. For
time-stepped or discrete-event stochastic simulation studies, it more often is a run or a batch, yielding
an averaged or aggregated output value. When runs form the experimental units for non-terminating
simulations, and steady-state performance measures are of interest, care must be taken to delete data during
the simulation’s warm-up period before performing the averaging or aggregation. Details may be found in
any simulation textbook, such as Law (2014) or Kelton et al. (2011).

3 POTENTIAL EXPERIMENT DESIGNS

Many designs are available in the literature. We focus on a few basic types that we have found particularly
useful for simulation experiments. Factorial or gridded designs are straightforward to construct and readily
explainable – even to those without statistical backgrounds. Coarse grids (2k factorials) are most efficient
if we can assume that the simulation response is well-fit by a model with only linear main effects and
interactions, while fine grids (more than two levels for factors) provide greater detail about the response and
greater flexibility for constructing metamodels of the responses. When the number of factors is large, then
more efficient designs are required. We have found Latin hypercubes to be good general-purpose designs
for exploring complex simulation models when little is known about the response surfaces. Two-level
designs called resolution 5 fractional factorials (R5-FFs) allow us to investigate the linear main effects and
interactions of many factors simultaneously; they are potential choices either when factors have only two
qualitative settings, or when practical considerations dictate that only a few levels be used for quantitative
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input factors. Expanding these R5-FFs to central composite designs provides some information about
nonlinear behavior in simulation response surfaces.

Factorials (or gridded designs) are perhaps the easiest to discuss: they examine all possible combinations
of the factor levels for each of the Xi’s. A shorthand notation for the design is mk, which means k factors
are investigated, at m levels for each factor, in a total of mk design points. Crossed designs, where different
sets of factors are investigated at different numbers of levels are written as, e.g., mk1

1 ×mk2
2 , where k1 factors

are evaluated at m1 levels each, and another k2 factors are evaluated at m2 levels each.

3.1 2k Factorial Designs (Coarse Grids)

The simplest factorial design is a 2k because it requires only two levels for each factor. These can be
low and high, often denoted −1 and +1 (or − and +). 2k designs are very easy to construct. Start by
calculating the number of design points N = 2k. The first column alternates −1 and +1, the second column
alternates −1 and +1 in groups of 2, the third column alternates in groups of 4, and so forth by powers of
2. Conceptually, 2k factorial designs sample at the corners of a hypercube defined by the factors’ low and
high settings. The left of Figure 2 shows an example for a 23 design. Envisioning a 24 or larger design is
left to the hyperimaginative reader.
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Figure 2: 23 factorial design, graphically and in matrix form, with numbered design points.

Factorial designs have several nice properties. They let us examine more than one factor at a time, so
they can be used to identify important interaction effects. They are also orthogonal designs: the pairwise
correlation between any two columns (factors) is equal to zero. This simplifies the analysis of the output (Y ’s)
we get from running our experiment, because estimates of the factors’ effects (β̂i’s) and their contribution
to the explanatory power (R2) of the regression metamodel will not depend on what other explanatory
terms are present in the regression metamodel. From Figure 2, the design itself is specified by the first
three columns, but there are seven different terms (three main effects, three two-way interactions, and one
three-way interaction) that we could consider estimating from a 23 factorial experiment. The columns for
the interactions are calculated by simply multiplying the appropriate factor columns. However, since we
also want to estimate the intercept (overall mean), that means there are eight things we could try to estimate
from eight data points. That will not work – we will always need at least one degree of freedom (d.f.) for
estimating error (and preferably, a few more) to estimate the metamodel for a model of the form:

Y = β0 +β1X1 +β2X2 +β3X3 +β12X1X2 +β13X1X3 +β23X2X3 +β123X1X2X3 + ε. (3)

A similar relationship holds as we increase the number of factors k.
So, what do people do with a factorial design? One possibility is to replicate the design to get more

d.f. for error. Estimating eight effects from eight observations (experimental units) is not possible, but
estimating eight effects from 16 observations is simple. Replication also makes it easier to detect smaller
effects by reducing the underlying standard errors associated with the estimates of the β ’s. In simulation
experiments replication is quite important for another reason: the response variability can differ dramatically
across design points, and understanding the behavior of the response variability may be as important (or
more important) than understanding the behavior of the response mean.
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Another option is to make simplifying assumptions. The most common approach is to assume that
some higher-order interactions do not exist. In the 23 factorial of Figure 2, one d.f. would be available
for estimating error if the three-way interaction could safely be ignored. We could then fit a second-order
regression model to the results. Similarly, if we have data for a single replication of a 24 factorial design
but can assume there is no four-way interaction we have one d.f. for error; if we can assume there are no
three-way or four-way interactions, we have five d.f. for error estimation. Making simplifying assumptions
sounds dangerous, but it can be a good approach. Over the years, statisticians conducting field experiments
have found that often, if there are interactions present, the main effects also show up unless you “just
happen” to set the low and high levels so the effects cancel. There is also a rule of thumb stating that
the magnitudes of two-way interactions are at most about 1/3 the size of main effects, and the magnitudes
of three-way interactions are at most about 1/3 the size of the two-way interactions, etc. Whether or not
this holds for experiments on simulations of complex systems is not yet certain – we may expect to find
stronger interactions in a simulation of a supply chain or humanitarian assistance operations than when
growing potatoes. Consequently, we advocate checking (at a minimum) for second-order interactions.

3.2 mk Factorial Designs (Finer Grids)

Examining each of the factors at only two levels (the low and high values of interest) means we have no
idea how the simulation behaves for factor combinations in the interior of the experimental region. Finer
grids can reveal complexities in the landscape. When each factor has three levels, the convention is to
use -1, 0 and 1 (or −, 0, and +) for the coded levels. Consider the capture-the-flag example once more.
Figure 3 shows the (notional) results of two experiments: a 22 factorial (on the left) and an 112 factorial
(on the right). For the 22 factorial, all that can be said is that when speed and stealth are both high, the
agent is successful. Much more information is conveyed by the 112 factorial: here we see that if the agent
can achieve a minimal level of stealth, then speed is more important. In both subgraphs the blue circles
– including the upper right-hand corner – represent good results, the tan triangles in the middle represent
mixed results, and the red squares on the left-hand side and bottom represent poor results.

SpeedSpeed

St
ea
lth

St
ea
lth

Figure 3: 22 and 112 factorial designs for capture-the-flag.

When we study more than two factors, a scatterplot matrix of the design points is a useful graph for
visualizing the design – it shows the projections of the full design onto each pair of factors. Consider the
left-most graph in Figure 4 for a 24 factorial. This graph contains cells of subplots of the design points
for pairs of factors at a time. For instance, the third cell over in the top row plots the (X3,X1) factor
combinations; the third cell down in the left column is just its transpose, plotting the pairs (X1,X3), so
carries the same information. The second graph in Figure 4 contains the scatterplot matrix for a 44 factorial.
Note that all subgraphs in Figure 4 just show dots corresponding to the factor settings; they do not show
any color-coding for the responses.

The larger the value of m for an mk factorial design, the better its space-filling properties. Yet despite
the greater detail provided, and the ease of interpreting the results, fine grids are not suitable for more than
a handful of factors because of their massive data requirements. A 220 requires nd over one million, a 510

requires nd > 9.7 million, and a 1010 factorial requires 10 billion design points.
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Figure 4: Scatterplot matrices for selected factorial and nearly orthogonal Latin hypercube (NOLH) designs:
(a) 24 factorial with 16 design points, (b) 44 factorial with 256 design points, (c) NOLH with 17 design
points, and (d) NOLH with 257 design points.

Considering the number of high-order interactions we could fit but may not believe are important
(relative to main effects and two-way or possibly three-way interactions), this seems like a lot of wasted
effort. It means we need smarter, more efficient types of experimental designs if we are interested in
exploring many factors.

3.3 2k−p Resolution 5 Fractional Factorial and Central Composite Designs

Sometimes, many factors take on only a few levels. In these cases, we can consider variations of gridded
designs. If we are willing to assume that some high-order interactions are not important, we can cut down
(perhaps dramatically) the number of runs required to examine a fixed number of factors using a fractional
factorial design.

Graphically, these sample at a carefully-chosen fraction of the corner points on the hypercube. The
left-most cube in Figure 5 shows the sampling for a 23−1 factorial design, i.e., investigating three factors,
each at two levels, in only 23−1 = 4 runs. There are two points on each of the left and right faces of the
cube, and each of these faces has one instance of X2 at each level and one instance of X3 at each level, so
we can isolate the effect for factor X1. Similarly, averaging the results for the top and bottom faces allows
us to estimate the effect for factor X2, and averaging the results for the front and back faces allows us to
estimate the effect for factor X3.

X
2

X
1

X
3

Factorial or Fractional
Factorial

Central Composite
Design

Star  Points+ =

}
Fractional Factorial or Factorial               +       Star Points   =   Central Composite Design. 

Figure 5: Examples of fractional factorial and central composite designs.

Saturated or nearly-saturated fractional factorials are often called screening designs because they can
be useful for eliminating factors that are unimportant (though they will not do a good job of revealing the
underlying structure of the response surface if there truly are strong interactions but we ignore them when
setting up the experiment.) They are very efficient (relative to full factorial designs) when there are many
factors. For example, 64 runs could be used for a single replication of a design involving 63 factors, or
two replications of a design involving 32 factors. Screening designs that enable estimates of only main
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effects are called resolution 3 fractional factorials (R3-FFs); designs that provide valid estimates of main
effects in the presence of two-way interactions (without allowing the analyst to estimate the interaction
effects) are called resolution 4 fractional factorials (R4-FFs). More recently, Xing et al. (2013) propose
analysis-method-directed supersaturated designs for high-dimensional screening experiments.

Resolution 5 fractional factorials (R5-FFs) allow all main effects and two-way interactions to be fit,
and may be more useful for simulation analysts than saturated or nearly-saturated designs. Sanchez and
Sanchez (2005) developed a method, based on discrete-valued Walsh functions, for rapidly constructing
very large R5-FFs – a short program generates designs up to a 2120−105 in under a minute. The gains in
efficiency (as compared to full factorials) are dramatic enough to be worth mentioning again: running a
2100 full factorial would require over 40 million years on the world’s fastest supercomputer in 2009, while
a R5-FF requires only 2100−85 = 32768 design points.

For quantitative factors, an R5-FF can be extended to a central composite design (CCD) that lets
the analyst estimate all full second-order models (i.e., main effects, two-way interactions, and quadratic
effects). Start with a 2k factorial or R5 2k−p fractional factorial design. Add a center point and two “star
points” for each of the factors. In the coded designs, if −1 and +1 are the low and high levels, respectively,
then the center point occurs at (0,0, ...,0), the first pair of star points are (−c,0, ...,0) and (c,0, ...,0); the
second pair of star points are (0,−c,0, ...,0) and (0,+c,0, ...,0), and so on. If c = 1 the star points fall on
the face of the cube, but other values of c can be used. A graphical depiction of a CCD for k = 3 appears
in Figure 5. Using the efficient R5-FFs of Sanchez and Sanchez (2005) as the base designs, a CCD for 10
factors requires 152 design points, while a 310 factorial requires over 59000 design points. Once again,
it is clear that a brute force (full factorial) approach is impossible when k is even moderately large, but
efficient designs make experimentation both practical and informative.

3.4 Space-filling Designs

Latin hypercube (LH) designs are quite flexible and efficient for quantitative factors. They have some of the
space-filling properties of factorial designs with fine grids, but require orders of magnitude less sampling.
Once again, let k denote the number of factors, and let nd ≥ k denote the number of design points. Every
column of the LH design is a permutation of the nd equally-spaced factor levels. Figure 6 lists a random
LH with k = 2 and m = 11, and provides a picture of results that might arise by using this experiment
design for our capture-the-flag simulation. Compare this design to those of Figure 3. Unlike the 22 factorial
design, the LH design provides some information about what happens in the center of the experimental
region, but requires far less effort than the 112 factorial design.
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Figure 6: Random Latin hypercube for capture-the-flag.

Random LH’s may not work well unless nd >> k, but other LH designs are available. Minimax or
maximin LH’s have good space-filling properties, and algorithms or packages for constructing them can be
found in most statistical software packages. Cioppa and Lucas (2007) construct nearly orthogonal Latin
hypercube (NOLH) designs that have good space-filling and orthogonality properties for small or moderate
k (k ≤ 29). Portions of two of their designs are shown in Figure 4c and d: an NOLH design with 17
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design points, and an NOLH design with 257 design points. The two-dimensional space-filling behavior
of the NOLH compares favorably with that of the 44 factorial for roughly 1/15 the computational effort,
so experimenters concerned about the level of computational effort might prefer the latter. Alternatively,
experimenters considering the use of the 44 factorial (and thus willing to run 256 design points) might
prefer the NOLH with 257 design points (just one more) – and gain the ability to examine a much denser
set of factor-level combinations, as well as explore up to 25 additional factors using the same design! The
benefits of LH sampling are greatest for large k. Assuming that a single design point takes one second to
run, each replication of a 29-factor experiment would take under five minutes using an NOLH design, but
over 17 years using a 229 factorial design. More recently, Hernandez et al. (2012) use a mixed integer
programming approach to generate sets of Latin hypercubes that are saturated or nearly-saturated. These
extend Latin hypercube designs for simulation studies with larger numbers of factors. MacCalman et al.
(2018) develop NOLH designs that permit the estimation of full second-order response models when the
number of factors is relatively small.

Replicating the design allows us to determine whether or not a constant error variance is a reasonable
characterization of the simulation’s performance, and is highly recommended. If we have the time and
budget for even more sampling, then two or more different Latin hypercubes or NOLHs can be stacked to
obtain a larger design with better space-filling properties. Stacking two designs means running both sets
of design points; one way to obtain two different designs from the same NOLH matrix is to reassign the
factors to different columns of the experiment design matrix.

When discrete-valued factors with limited numbers of levels are present, then rounded NOLH designs
may no longer retain their near-orthogonal properties. The nearly orthogonal-and-balanced (abbreviated
NOB or NOAB) mixed designs of Vieira et al. (2013) are suitable in these situations. One general-purpose
design with nd = 512 allows for simultaneously investigating up to 300 factors: 20 each with discrete
numbers of levels m (m = 2,3, . . . ,11) and 100 continuous-valued factors.

3.5 Robust Design Methods

A distinction can be made between decision factors that can be controlled in the real world, and noise
factors that cannot be controlled during actual operations. For example, in a simulation of search-and-rescue
operations after a natural disaster, the decision factors might include the communication systems, available
equipment, or number of people on the rescue team. Noise factors might include weather conditions, the
number and location of those in need of rescue, and the skill levels of the emergency medical technicians.
An alternative to an exploratory analysis that seeks to understand how these noise factors affect the responses
is a robust design approach, where the goal of the experiment(s) is to identify design points that yield good
performance across the range of noise factor settings – in other words, to identify robust systems, rather than
systems that are effective only against specific threat and environmental conditions – particularly if these
correspond to the most favorable settings for threat and environmental factors. The robust design philosophy
was pioneered by Taguchi (1987) for manufactured-product design, where it has been successfully used
to achieve high-quality products while keeping costs in line; it also facilitates the evaluation of trade-offs
between quality and cost. An important consideration for the simulation community is that the robust
design philosophy explicitly requires analysts to consider variances, as well as means, in assessing system
performance.

The classification of factors as either decision or noise factors may affect the choice of the design.
Generally, we are interested in fitting metamodels that explain the relationship between the decision factors
(and their interactions, etc.) and the response. Interactions among noise factors may affect the variability
of the response but are not of direct interest, while (noise factor)×(decision factor) interactions show up
as unequal response variances across different decision-factor combinations.

Applying robust design principles to simulation experiments is discussed in Sanchez (2000). A more
detailed discussion and examples appear in Kleijnen et al. (2005), where identifying robust systems and
processes is considered one of three primary goals of simulation experiments.
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4 DESIGN RECOMMENDATIONS

Selecting a design can be an art, as well as a science. Clearly, the number of factors and the mix of different
factor types (binary, qualitative or discrete with a limited number of levels, discrete with many levels,
or continuous) play important roles. But these are rarely cast in stone – particularly during exploratory
analysis. The experimenter has control over how factors are grouped, how levels are determined, etc. Even
if these are specified, different experimenters may prefer different designs.

Having said that, we have strong preferences for large-scale designs that exhibit good space-filling
behavior. This is a “big data” view of simulation experiments (Sanchez 2015, Sanchez and Sanchez 2017)
– and so our advice may be fundamentally different than what you would find from a statistician used
to working with physical experiments. Fortunately, while generating some of the designs suitable for
large-scale (rather than small-scale) simulation experiments may have required a lot of effort, that does
not mean they are any more difficult to use. For example, a spreadsheet for the NOAB design of Vieira
et al. (2013) discussed in Section 3.4 is available online (https:\harvest.nps.edu), and can readily be used
to create custom designs involving up to 300 factors by simply filling in low and high values, along with
the decimals required, for each factor.

5 GAINING INSIGHT

Design of experiment approaches, coupled with analytic and graphical methods such as response-surface
methodology and data-mining techniques, can be useful for all the goals mentioned in section 1. They
help the experimenter develop a better understanding of the simulation, and in turn help develop a better
understanding of the system. Insights gained from simulation experiments can be used in many ways. Results
can be used to evaluate or improve the simulation model. By identifying important factors, interactions,
and nonlinear effects, the experimenter can improve their understanding of the simulation’s behavior, find
robust solutions, or raise questions to be explored in subsequent experiments. Thresholds, plateaus, or other
interesting features of the response surfaces might provide guidance about situations that are particularly
good (or particularly bad).

For classical design of experiments, some statisticians recommend deciding on the metamodel type
before selecting an experiment design. For example, Barton (2015) recommends that analysts interested
in using regression metamodels should decide on the desired polynomial order (typically, first-order or
second-order) before selecting the design. However, we now provide some examples to highlight the vast
difference in insights that can be obtained if you do not unnecessarily restrict yourself to small designs,
but instead take a large-scale, data farming view where, from the outset, you opt for space-filling designs.

If a crystal ball revealed the metamodel form (e.g., first-order or second-order polynomial) before we
began our experiment, then a space-filling design and a so-called ‘optimal’ design for that metamodel will
both provide insights about the important factors, interactions, and quadratic effects – as long as we have
enough data to determine statistically significant effects. One difference between using a space-filling design
and a minimally-sufficient factorial-based design is that we automatically get indications of lack-of-fit if
the responses turn out to be more complicated. While some might see this at first as a drawback, because
the residuals may not fit the regression model assumptions, we see this as a benefit. Let us go back to the
capture-the-flag example – where we have added a rather complicated underlying response surface that has
flat areas, areas of abrupt transition, and with smooth changes – and suppose we use a 65-dp NOLH to
explore the space. Figure 7(a) shows a contour plot of the actual response based on an 11×11 grid. The
regression metamodel in (b) looks quite similar to that which would be obtained using the 211 factorial data
– both have a hard time capturing threshold effects. The partition tree metamodel in (c) has a hard time
capturing diagonal transitions (more on partition trees is coming soon). The Gaussian process (or kriging)
and hybrid regression/partition metamodels in (d) and (e) appear closer to the actual surface, although the
Gaussian process does less well around some edges of the plot. All of the metamodels in (b)–(e) give
much more information than the 22 factorial experiment in Figure 3.
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(a) (b) (c) (d) (e)

Figure 7: Capture-the-flag contour plots. (a) displays the actual response based on an 11×11 grid. The
remaining contours are metamodels following a 65-dp NOLH: (b) 2nd-order regression metamodel, (c)
partition tree with five splits, (d) Gaussian process metamodel, and (e) regression/partition metamodel.

Sometimes graphs are enough to provide insight. Figure 8 shows some results for the well-known
deterministic combat model of Dewar et al. (1996). Here, only two factors are varied: the reinforcement
block size for both Red and Blue forces take on 201 distinct levels. The graph in Figure 8(a) shows the
results of a 42 full factorial design, while that in Figure 8(b) shows the results of a 2012 full factorial
design (Vinyard and Lucas 2002, Sanchez and Lucas 2002), where the shaded blue results represent a
win for Blue. Neither regression, logistic regression, or kriging models on the small design in Figure 8(a)
reveal the pervasive regions of chaotic non-monotonicity in the response surface. At the time the runs for
Figure 8(b) were made in 2001, they required eight hours of CPU time on a single Pentium III PC – a
computational effort well worth the additional insights. With current computers, these runs would require
mere minutes of computation. Of course, using a space-filling design would be a much more efficient way
to reveal regions of complex or chaotic behavior, and allow us to investigate a larger number factors.

(b) 
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e 
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e 
 

(a) 

Figure 8: Results of (a) 42 and (b) 2012 full factorial designs for a deterministic combat model.

The previous two examples have focused on a small number of factors. For a large number of factors, it
is less likely that a single, simple metamodel form is appropriate for all responses of interest – consequently,
it is even more beneficial to use flexible, space-filling designs. A partition tree (also called a classification
and regression tree), mentioned earlier, is a nonparametric metamodeling technique that we find useful for
both screening and model-fitting purposes. It starts with all the data in a single group, then searches among
all factors to find the binary partitioning of a factor that splits the data into two groups resulting in the largest
improvement in R2. This process can be repeated until the analyst deems the marginal improvement is
unimportant. We illustrate this with some results from a fleet management simulation experiment involving
50 replications of an experiment with 19 factors and 1040 design points (Marlow et al. 2015). Of interest
are two responses related to the ashore flight hours per “tail” of a fleet of Naval helicopters: Yavg is a
measure of the average, and Yspread is a measure of the spread. In Figure 9(a), the first two splits of the
partition tree for Yspread reveal that the tail rotation heuristic used is most important (the ideal Yspread is
zero). A more detailed metamodel for Yspread includes two other decision factors. The metamodel for Yavg,
where high values are desired, is dominated by noise factors. The scatter plot of these two responses in
Figure 9(b) shows that while many dps are capable of achieving high Yavg, there are vast differences in
their corresponding Yspread . Alternatives in the lower right are robust.
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Figure 9: Robust design results for ashore hours per tail from a fleet management simulation: (a) first two
splits of a partition tree for Yspread , and (b) scatterplot of two responses.

6 FINDING OUT MORE

For more on the philosophy and tactics of designing simulation experiments, examples of graphical methods
that facilitate gaining insight into the simulation model’s performance, and extensive literature surveys,
we refer the reader to Sanchez et al. (2012) or Kleijnen et al. (2005). Books that discuss experiment
designs for simulation include Santner et al. (2003), Law (2014), and Kleijnen (2017). For experiments
where it is very time-consuming to run a single replication, there are other single-stage designs (often used
for physical experiments) that require fewer runs than fractional factorial designs. Some of these designs
appear in the above references; others can be found in experiment design texts such as Box et al. (2005)
or Ryan (2007).

Finally, the benefits of efficient experiment designs are often more tangible if you see how they are
used in practice. Designs like the ones described in this paper have assisted the U.S. military and several
allied countries in a series of international data farming workshops. Interdisciplinary teams of officers and
analysts develop and explore agent-based simulation models to address questions of current interest to the
U.S. military and allies, such as network-centric operations, effective use of unmanned vehicles, peace
support operations, and more. Sanchez and Lucas (2002) provide an overview of issues in modeling and
analysis aspects of agent-based simulation. A humanitarian assistance scenario is discussed in Kleijnen
et al. (2005). Lucas et al. (2007) describe several defense and homeland security applications: critical
infrastructure protection, non-lethal capabilities in a maritime environment, and emergency first response
to a crisis event. The website of the SEED Center for Data Farming (https:\harvest.nps.edu) also has
links to many papers, design spreadsheets and software, and over 200 student theses covering a wide
range of applications (SEED Center for Data Farming 2018). These provide more details about statistical
and graphical analysis of the simulation results, along with implementation issues regarding leveraging
high-performance computing assets.

7 CONCLUSIONS

The process of building, verifying, and validating a simulation model can be arduous – but once complete,
then it is time to have the model work for you. One extremely effective way of accomplishing this is to use
designed experiments to help explore your simulation model. This tutorial has touched on a few designs
that we have found particularly useful, but other design and analysis techniques exist. Our intent was to
open your eyes to the benefits of DOE, and convince you to make your next simulation study a simulation
experiment. As we have shown, if you are interested in exploring the behavior of a simulation model with
more than a handful of input factors, efficient experiment designs are readily available – and help you to
work smarter, rather than harder, in order to gain insights from your simulation.
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