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ABSTRACT 

The Discrete Event System Specification (DEVS) formalism is a set of conventions for specifying 
discrete event simulation models. In this tutorial, we introduce the core concepts of DEVS. First, we 
introduce a set of informal requirements from which a formal specification is to be developed. Then, we 
present different modeling conventions at different levels of abstraction. The tutorial exploits the DEVS 
formalism’s support for modular model design. The concepts are discussed with an example of cyber-
physical systems modeling and implementation, which can be used to understand the main concepts of the 
formalism. 

1 INTRODUCTION 

Discrete Event System Specification (DEVS), a formalism for specifying discrete event simulation 
models, was first introduced in 1976 with the publication of Bernard Zeigler’s Theory of Modeling and 
Simulation (Zeigler 1976). While the latest edition of that book (Zeigler et al. 2000) provides a 
comprehensive overview of DEVS theory, here we focus on the application of the core concepts. The 
tutorial is organized around a particular example: the simulation of a cyber-physical system, in this case, 
represented by a line-tracking robotic system. We develop this example from a set of informal 
requirements to a complete formal specification. The tutorial is based on a book chapter written by the 
authors, which can be found at (Goldstein et al. 2013). 

Before we begin, let us clarify the difference between a discrete time simulation and a discrete event 
simulation. Numerous simulations are implemented with a time variable t that starts at some initial value 
t0, and increases by a fixed time step Δt between calculations. The flowchart in Figure 1 outlines the 
procedure. This type of simulation is a discrete time simulation, as t is effectively a discrete variable. The 
approach is simple and familiar, but limited in that the duration between any pair of inputs, outputs, or 
state transitions must be a multiple of Δt. 

DEVS can be applied to discrete time simulation, but it is best suited to the discrete event approach 
for which it was invented. In a discrete event simulation, time is continuous. Any pair of events can be 
separated by any length of time, and there is generally no need for a global Δt. Later we will present a 
procedure like that in Figure 1, but suitable for discrete event simulations. 

The adoption of a discrete event approach impacts the model development process. For example, 
suppose one designs separate models for different parts of a larger system. Ideally, modeling the overall 
system would be a simple matter of combining these submodels. With discrete time simulation, one 
would have to choose a single Δt appropriate for every submodel, or invent some scheme by which only 
certain submodels experience events at any given iteration. With DEVS, two models can be coupled 
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together regardless of how they handle time advancement. The only requirement is that the output values 
of one model are consistent with the input values of the other.  

 

Figure 1: Simulation algorithm. 

Here we show the DEVS formalism’s support for modular model design, and we show an application 
in the field of cyber-physical systems (a simple line tracking robot, which will be used as an example to 
show the main concepts and ideas of the formalism, and its application to a concrete problem simple to 
understand). First we present an example of a system as a combination of three interacting subsystems. 
We later specify an atomic model, an indivisible DEVS model, for each of these subsystems. From there 
we specify a coupled model, a DEVS model composed of other DEVS models, by combining the three 
atomic models. We then discuss the definition of a simulation environment to develop such applications, 
and present an actual application of the formal models discussed in the article. 

2 OVERVIEW OF THE DEVS FORMALISM 

One aspect of DEVS that sets it apart from other modeling formalisms is its approach to representing 
state. To understand the impact of how state is represented, let us first consider a formalism that neglects 
state completely. We will apply this formalism to model an Infrared Sensor (IR) connected to a simple 
line-tracking robot designed to follow a track identified by a dark line, and to get back on track if the trail 
is not detected. The IR_Sensor receives actions as input and sends signals as output. Hence, our 
formalism will allow us to define inputs, outputs, and a function that maps the former to the latter. Here is 
such a formalism, which we call Formalism A: 

 
〈𝑋, 𝑌, 𝜆〉 ൌ is the structure of a Formalism A model specification 

𝑋 ൌ is the set of input values 
𝑌 ൌ is the set of output values 

𝜆: 𝑋 → 𝑌 ൌ is the output function 
 

 Following, we can see the IR_Sensor model specified using Formalism A:  
 

𝐼𝑅_𝑆𝑒𝑛𝑠𝑜𝑟஺ ൌ 〈𝑋, 𝑌, 𝜆〉 
ൌൌൌൌ 𝑋 ൌ ሼሺ"colorin", 𝑐𝑜𝑙𝑜𝑟ሻ| 𝑐𝑜𝑙𝑜𝑟 ∈ ሼ"𝑏𝑙𝑢𝑒", "𝑏𝑙𝑎𝑐𝑘", "𝑦𝑒𝑙𝑙𝑜𝑤", "𝑤ℎ𝑖𝑡𝑒"ሽ ሽ 

ൌൌൌൌ 𝑌 ൌ ൛൫"signalout", 𝑠𝑖𝑔𝑛𝑎𝑙൯ห  𝑠𝑖𝑔𝑛𝑎𝑙 ∈ ሼ "𝑂𝑛", "𝑂𝑓𝑓" ሽ ൟ 

178



Wainer, Goldstein, and Khan 
 

ൌൌൌൌ 𝜆൫ሺ"colorin", 𝑎𝑐𝑡𝑖𝑜𝑛ሻ൯ ൌ ൫"signalout", 𝑠𝑖𝑔𝑛𝑎𝑙൯ 
ൌൌൌൌൌൌൌ ሺ𝑐𝑜𝑙𝑜𝑟 ∈ ሼ"blue", "black"ሽሻ ⟹ ሺ𝑠𝑖𝑔𝑛𝑎𝑙 ൌ "On"ሻ 

ൌൌൌൌൌൌൌ ሺ𝑐𝑜𝑙𝑜𝑟 ∈ ሼ"white", "yellow"ሽሻ ⟹ ሺ𝑠𝑖𝑔𝑛𝑎𝑙 ൌ "Off"ሻ 
 

There are a couple of things in the specification worth noting. First, we have defined an input port 
“colorin” and an output port “signalout”. A port is a label used to distinguish a particular type of input or 
output from other types of inputs or outputs. Ports are not strictly necessary for such a simple model, but 
we will make a habit of using them to help us combine models later on. All inputs and outputs will be de-
fined as (port, value) pairs, as done above. Also note the two implications that define the output function. 
One maps both the “blue” and “black” input colors to the output signal “On” (i.e., when we detect we are 
on the track, we must turn on the robot’s motors), and the other maps both “white” and “yellow” to “Off” 
(we are off-track so we turn off the motors). There is a subtle problem with this specification. If a “black” 
action is received, followed by “blue”, the model will output two consecutive “On” signals. If it receives 
two consecutive “white” actions, it will send two consecutive “Off” signals. We want the signals “On” 
and “Off” to be output in alternation only. If an input action would produce the same signal as its 
predecessor, the redundant output should be skipped. This implies that each output will depend not only 
on the current input, but on previous inputs as well. In other words, the model must have state. 

State is generally represented as a group of state variables. State variables are analogous to model 
parameters in that they are associated with a single model and can affect that model’s output. The 
difference is that model parameters remain constant throughout a simulation.  

If we want to simulate the IR_Sensor model with Formalism A, we must define the simulation proce-
dure associated with the formalism. Illustrated in Figure 2, the procedure is simple. Time t starts at some 
initial time t0. It then advances repeatedly to the time of the next event, which in this formalism is the time 
of the next input x (x ∊ X). At each event, the output function λ is evaluated to obtain the corresponding 
output y (y ∊ Y). Note that when the inputs are exhausted, we assume that “[time of next input]” is ∞. 

 

Figure 2: Simulation procedure for Formalism A. 

Models specified in Formalism A have no state (as the formalism does not have a representation of 
state). Formalism A models are therefore memoryless. Among other things, this prevents us from 
avoiding identical consecutive output values (as in our IR_Sensor model). To address this issue, let us 
propose a more complex formalism, called Formalism B, which is similar to Formalism A, but models 
now have state. The state of a model remains constant between events, but may change during any event: 
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ൌ 〈𝑋, 𝑌, 𝑆, 𝛿, 𝜆〉 ൌ is the structure of a Formalism B model specification 
ൌൌൌൌ 𝑋 ൌ is the set of input values 
ൌൌൌൌ 𝑌 ൌ is the set of output values 
ൌൌൌൌ 𝑆 ൌ is the set of states 
ൌൌൌൌ 𝛿: 𝑆 ൈ 𝑋 → 𝑆 ൌ is the transition function 
ൌൌൌൌ 𝜆: 𝑆 ൈ 𝑋 → 𝑌 ∪ ሼ∅ሽ ൌ is the output function 

 
There are four differences between this formalism and the previous one. First, a set of states S has 

been added. At any point, a model’s state s must satisfy s ∊ S. Second, there is now a transition function δ 
that can change the model’s state. Third, the output function λ now takes s as one of its arguments. 
Fourth, λ may result in ∅, indicating that the output is to be ignored. By giving up Formalism A for 
Formalism B, we have accepted additional complexity for improved generality. The IR_Sensor model 
specification below is lengthier than the previous, but we have introduced behavior that we could not 
previously describe.  

 
  𝐼𝑅_𝑆𝑒𝑛𝑠𝑜𝑟஻ ൌ 〈𝑋, 𝑌, 𝑆, 𝛿, 𝜆〉 

ൌൌൌൌ 𝑋 ൌ ൛ሺ"colorin", 𝑐𝑜𝑙𝑜𝑟ሻห 𝑐𝑜𝑙𝑜𝑟 ∈ ሼblue, black, yellow, whiteሽൟ 
ൌൌൌൌ 𝑌 ൌ ൛൫"signalout", 𝑠𝑖𝑔𝑛𝑎𝑙൯ห 𝑠𝑖𝑔𝑛𝑎𝑙 ∈ "𝑂𝑛", "𝑂𝑓𝑓" ൟ 
   ൌൌൌ 𝑆 ൌ ሼ "On", "Off" ሽ 
ൌൌൌൌ 𝛿൫𝑠𝑖𝑔𝑛𝑎𝑙, ሺ"colorin", 𝑐𝑜𝑙𝑜𝑟ሻ൯ ൌ 𝑠𝑖𝑔𝑛𝑎𝑙ᇱ 
ൌൌൌൌൌൌൌ 𝑐𝑜𝑙𝑜𝑟 ∈ ሼ"blue", "black"ሽ ⟹ ሺ𝑠𝑖𝑔𝑛𝑎𝑙′ ൌ "On"ሻ 
ൌൌൌൌൌൌൌ 𝑐𝑜𝑙𝑜𝑟 ∈ ሼ"white", "yellow"ሽ ⟹ ሺ𝑠𝑖𝑔𝑛𝑎𝑙′ ൌ "Off"ሻ 
ൌൌൌൌ 𝜆൫𝑠𝑖𝑔𝑛𝑎𝑙, ሺ"colorin", 𝑐𝑜𝑙𝑜𝑟ሻ൯ ൌ ൫"signalout", 𝑠𝑖𝑔𝑛𝑎𝑙′൯ 

ൌൌൌൌൌൌൌ ൬
𝑐𝑜𝑙𝑜𝑟 ∈ ሼ"white", "yellow"ሽ

𝑠𝑖𝑔𝑛𝑎𝑙 ൌ "On"
൰ ⟹ ሺ𝑠𝑖𝑔𝑛𝑎𝑙′ ൌ "Off"ሻ 

ൌൌൌൌൌൌൌ ൬
𝑎𝑐𝑡𝑖𝑜𝑛 ∈ ሼ"blue", "black"ሽ

𝑠𝑖𝑔𝑛𝑎𝑙 ൌ "Off"
൰ ⟹ ሺ𝑠𝑖𝑔𝑛𝑎𝑙′ ൌ "On"ሻ 

ൌൌൌൌൌൌൌ ቂabove conditions
are all false

 ቃ ⟹ ሺ𝑦 ൌ ∅ሻ 

 
Observe that the transition function δ records the previous output, either “On” or “Off”, in the state 

variable signal. Likewise, note the changes to the output function λ, which now depend on signal. We 
only output “On” if signal was previously “Off” and vice-versa. Also, if neither of the first two conditions 
is met, we output ∅. Figure 3 shows the simulation procedure associated with Formalism B. Note the 
inclusion of s, its initial value s0, its reassignment using δ, and the changes to λ. 

Formalism B appears well suited to the IR_Sensor model. However, our modeling requirements are 
about to get steeper. The sensor is connected to a Motor model. After receiving an “On” input signal, the 
motor will turn off after a time of ΔtSpeed, to model the motor’s speed. So after ΔtSpeed elapses, the Motor 
model must spontaneously send an output without having received an input at the same time. Such 
internally triggered outputs are not possible with Formalism B. But, Formalism B and others like it have 
an even more fundamental problem. The problem pertains to how state is represented. 

In Formalism B, the state remains constant between events. The problem is that the state of a real-
world system may change continuously over time. Take our line-tracking robot, for example. After we 
give the instruction to the motor to turn on, the system is in such a state that it will turn off after a time of 
ΔtSpeed. One infinitesimal time dt later, the robotic system is in an entirely new state “the motor will turn 
off after time ΔtSpeed – dt”. And the system passes through an infinite number of states like this one before 
ΔtSpeed elapses and the motor turns off. Fortunately, this can be captured by a single variable: Δte, which 
represents the time elapsed since the previous event. If we know that Δte time units have elapsed the last 
change, we know that the motor will turn off after a time of ΔtSpeed − Δte.  
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Figure 3: Formalism B Simulation Procedure. 

Having acknowledged the importance of the elapsed time, we now have a means to represent two 
types of state: our original type of state, s, which remains constant between events (which we will still call 
s as “the state”), and the total state, (s, Δte), which reflects the continuously changing state of a real-world 
system. In the DEVS formalism, a model’s output values and state transitions can be considered functions 
of its total state. As mentioned earlier, this approach to representing state sets DEVS apart from other 
modeling formalisms. It gives DEVS the generality to represent practically any real-world system that 
varies in time. 

2.1 DEVS Atomic Models 

It can be convenient to distinguish between atomic models, which are indivisible DEVS models, and 
coupled models, which are DEVS models composed of other DEVS models. The conventions below are 
typically associated with atomic models. Indirectly, they apply to coupled models as well. 

 
ൌ 〈𝑋, 𝑌, 𝑆, 𝛿௘௫௧, 𝛿௜௡௧, 𝜆, 𝑡𝑎〉 ൌ is the structure of a DEVS atomic model 
ൌൌൌൌ 𝑋 ൌ is the set of input values 
ൌൌൌൌ 𝑌 ൌ is the set of output values 
ൌൌൌൌ 𝑆 ൌ is the set of states 
ൌൌൌൌ 𝛿௘௫௧: 𝑄 ൈ 𝑋 → 𝑆 ൌ is the external transition function 

ൌൌൌൌൌൌൌ 𝑄 ൌ ൜ሺ𝑠, 𝛥𝑡௘ሻฬ
𝑠 ∈ 𝑆

0 ൑ 𝛥𝑡௘ ൑ 𝑡𝑎ሺ𝑠ሻൠ ൌ is the set of total states 

ൌൌൌൌ 𝛿௜௡௧: 𝑆 → 𝑆 ൌ is the internal transition function 
ൌൌൌൌ 𝜆: 𝑆 → 𝑌 ∪ ሼ∅ሽ ൌ is the output function 
ൌൌൌൌ 𝑡𝑎: 𝑆 → 𝑇 ൌ is the time advance function 
ൌൌൌൌൌൌൌ 𝑇 ൌ ሼ𝛥𝑡௜௡௧|0 ൑ 𝛥𝑡௜௡௧ ൑ ∞ሽ ൌ is the set of time durations 

 
The first thing to notice is that instead of one transition function δ, there are two: δext and δint. The 

external transition function δext is invoked whenever an input is received. Observe that one of its 
arguments is an input value (some x ∊ X). The internal transition function δint is invoked at the same time 
as the output function λ. At what simulated time, exactly, are λ and δint invoked? The answer is provided 
by the time advance function ta. An internal event will occur after a time of ta(s), provided that no inputs 
are received beforehand. 
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We stated earlier that a model’s output values and state transitions can be considered functions of its 
total state. Yet we see above that only δext takes the total state (s, Δte) as an argument. The output function 
and the internal transition function use s but not the elapsed time Δte. Passing Δte into λ or δint is 
unnecessary, as they are evaluated when Δte is equal to ta(s). Thus, if the total state is needed during an 
internal event, one simply evaluates the time advance function and obtains the elapsed time. Based on 
these, we can now show a discrete event simulation flowchart based on DEVS, as seen in Figure 4. 

 

Figure 4: Discrete event simulation procedure using DEVS. 

We observe that if an input is received before the time elapsed reaches ta(s), the model experiences 
an external event during which the input is processed. If on the other hand ta(s) elapses before the next 
input is scheduled, an internal event occurs and an output may be processed. But, what happens if the 
time of the next input coincides with the elapsing of ta(s)? External events take priority over internal 
events.  

Here is a specification of the IR_Sensor using the DEVS formalism: 
 

                             𝐼𝑅ௌ௘௡௦௢௥ ൌ 〈𝑋, 𝑌, 𝑆, 𝛿௘௫௧, 𝛿௜௡௧, 𝜆, 𝑡𝑎〉 
                                       𝑋 ൌ ൛ሺ"colorin", 𝑐𝑜𝑙𝑜𝑟ሻห 𝑐𝑜𝑙𝑜𝑟 ∈ ሼblue, black, yellow, whiteሽൟ 
                                       𝑌 ൌ ൛൫"signalout", 𝑠𝑖𝑔𝑛𝑎𝑙൯ห 𝑠𝑖𝑔𝑛𝑎𝑙 ∈ "𝑂𝑛", "𝑂𝑓𝑓" ൟ 

ൌൌൌൌ                         𝑆 ൌ ൜ሺ𝑠𝑖𝑔𝑛𝑎𝑙, 𝑠𝑒𝑛𝑡ሻฬ
𝑠𝑖𝑔𝑛𝑎𝑙 ∈ ሼ "On", "Off" ሽ

𝑠𝑒𝑛𝑡 ∈ ሼ⊤, ⊥ሽ
ൠ 

ൌൌൌൌ                         𝛿௘௫௧ ቀ൫ሺ𝑠𝑖𝑔𝑛𝑎𝑙, 𝑠𝑒𝑛𝑡ሻ, 𝛥𝑡௘൯, ሺ"colorin", 𝑐𝑜𝑙𝑜𝑟ሻቁ ൌ ሺ𝑠𝑖𝑔𝑛𝑎𝑙ᇱ, 𝑠𝑒𝑛𝑡ᇱሻ 

ൌൌൌൌൌൌൌ                       ൬
𝑐𝑜𝑙𝑜𝑟 ∈ ሼ"blue", "black"ሽ

𝑠𝑖𝑔𝑛𝑎𝑙 ൌ "Off"
൰ ⟹ ൬𝑠𝑖𝑔𝑛𝑎𝑙ᇱ ൌ "On"

𝑠𝑒𝑛𝑡ᇱ ൌ⊥
൰ 

ൌ                                        ൬
𝑐𝑜𝑙𝑜𝑟 ∈ ሼ"white", "yellow"ሽ

𝑠𝑖𝑔𝑛𝑎𝑙 ൌ "On"
൰ ⟹ ൬𝑠𝑖𝑔𝑛𝑎𝑙ᇱ ൌ "Off"

𝑠𝑒𝑛𝑡ᇱ ൌ⊥
൰ 
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                                             ቂabove conditions
are all false

ቃ ⟹ ൬𝑠𝑖𝑔𝑛𝑎𝑙ᇱ ൌ 𝑠𝑖𝑔𝑛𝑎𝑙
𝑠𝑒𝑛𝑡ᇱ ൌ ⊤

൰ 

                                  𝛿௜௡௧൫ሺ𝑠𝑖𝑔𝑛𝑎𝑙, ⊥ሻ൯ ൌ ሺ𝑠𝑖𝑔𝑛𝑎𝑙, ⊤ሻ 
ൌൌൌൌ                    𝜆൫ሺ𝑠𝑖𝑔𝑛𝑎𝑙, ⊥ሻ൯ ൌ ൫"signalout", 𝑠𝑖𝑔𝑛𝑎𝑙൯ 
ൌൌൌൌ                   𝑡𝑎൫ሺ𝑠𝑖𝑔𝑛𝑎𝑙, 𝑠𝑒𝑛𝑡ሻ൯ ൌ 𝛥𝑡௜௡௧ 
               ൌൌൌൌൌൌൌ ൓𝑠𝑒𝑛𝑡 ⟹ ሺ𝛥𝑡௜௡௧ ൌ 0ሻ ൌൌൌൌ 𝑠𝑒𝑛𝑡 ⟹ ሺ𝛥𝑡௜௡௧ ൌ ∞ሻ 
 

The new δext looks like the output function in Formalism B, but we store the state “On/Off” in a state 
variable to be output at a later stage. Another difference is that there is no longer a need to output ∅. In-
stead, we make use of the new state variable sent, which is either true (⊤) or false (⊥), to avoid unwanted 
outputs: if an input is received, δext updates the state and the time advance function will be evaluated. In 
the case that δext changes the signal from “On” to “Off” (or vice-versa), sent is assigned ⊥ and ta(s) is 0, 
causing an instantaneous internal event. Once the output value λ(s) is sent, δint changes sent to ⊤. This 
causes ta(s) to yield ∞, which means nothing happens until the next input arrives. Suppose that δext leaves 
the signal unchanged (i.e., the “[above conditions are all false]”). According to the specification, sent 
must end up ⊤, and thus ta(s) will yield ∞. The ta(s) = ∞ prevents λ from being evaluated at all. 

We have looked at three formalisms: Formalism A, Formalism B, and DEVS. Each of these formal-
isms was more complex than the previous, but allowed us to define a larger set of possible models. Extra-
polating this trend, one wonders if there are models that cannot be specified with DEVS. When might we 
require yet another, even more flexible formalism? The answer is hardly ever. True to its name, DEVS is 
a very general formalism for specifying discrete event simulation models. Incidentally, it can also be used 
for discrete time simulation, which is really just a special case of the discrete event approach. While 
DEVS is a plausible option for modeling almost any time-varying system, it may not be the most con-
venient option for all applications. If the scope of a simulation project is both constrained and well 
understood, other approaches should be considered as well. But, especially for large projects, it is 
reassuring to use a set of conventions like DEVS that can accommodate a wide range of potentially 
unforeseen model requirements.  

Research has shown that for any of a great number of alternative modeling formalisms, any 
specification written in that formalism can be mapped into a DEVS specification. This generality has led 
to the description of DEVS as a “common denominator” that supports the use of multiple formalisms in a 
single project (Vangheluwe 2000). 

Whenever we specify a model using DEVS, we ought to ensure that the specification is both 
consistent and legitimate. For a specification to be consistent, it must contradict neither itself nor the 
conventions of the formalism. Suppose we have a DEVS model in which Y is the set of positive real 
numbers. If there exists an s ∊ S for which λ(s) is negative, the specification is inconsistent. Legitimacy is 
more subtle. Even if a DEVS model has a consistent specification, it will not necessarily allow simulated 
time to properly advance. The problem is not that the simulation procedure stops. Rather, if the 
specification is not legitimate, an infinite number of events may occur in a finite duration of simulated 
time. A DEVS model has a legitimate specification if, in the absence of inputs, simulated time will 
necessarily advance towards ∞ without stopping or converging.  

2.2 DEVS Coupled Models 

To complete a specification we need to link the atomic models together as submodels of a DEVS coupled 
model. The conventions for doing this are given below. 

 
ൌ 〈𝑋, 𝑌, 𝐷, 𝑀, 𝐸𝐼𝐶, 𝐸𝑂𝐶, 𝐼𝐶, 𝑆𝑒𝑙𝑒𝑐𝑡〉 ൌ is the structure of a DEVS coupled model 
ൌൌൌൌ 𝑋 ൌ is the set of input values 
ൌൌൌൌ 𝑌 ൌ is the set of output values 
ൌൌൌൌ 𝐷 ൌ is the set of submodel IDs 
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ൌൌൌൌ 𝑀: 𝐷 → ℳ ൌ is the ID-to-submodel mapping function 
ൌൌൌൌൌൌൌ ℳ ൌ is the set of possible DEVS models 
ൌൌൌൌ 𝐸𝐼𝐶 ൌ is the set of external input couplings 
ൌൌൌൌ 𝐸𝑂𝐶 ൌ is the set of external output couplings 
ൌൌൌൌ 𝐼𝐶 ൌ is the set of internal couplings 
ൌൌൌൌ 𝑆𝑒𝑙𝑒𝑐𝑡: 2஽ → 𝐷 ൌ is the tie-breaking function 

 
We can see that, like an atomic model, a coupled model has a set of inputs X and a set of outputs Y. 

Coupled models also have ports associated with their inputs and outputs. We will give our Robotic model 
an input port to start/end the activity, which will track a line. We will also define two output ports, one for 
the robot’s actions and another one for the robot speed. Below is the specification of the Robotic model, 
with the exception of the tie-breaking Select function.  

 
ൌ 𝐿𝑇𝑅𝑜𝑏𝑜𝑡൫𝛥𝑡௦௣௘௘ௗ൯ ൌ 〈𝑋, 𝑌, 𝐷, 𝑀, 𝐸𝐼𝐶, 𝐸𝑂𝐶, 𝐼𝐶, 𝑆𝑒𝑙𝑒𝑐𝑡〉 
ൌൌൌൌ 𝑋 ൌ ሼሺ"commandin", 𝑐ሻ | 𝑐 ∈ ሼ𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑠𝑒𝑛𝑠𝑜𝑟_ሽሽ 
ൌൌൌൌ 𝑌 ൌ 𝑌௦௣௘௘ௗ ∪  𝑌௔௖௧௜௢௡ 
ൌൌൌൌൌൌൌ 𝑌௔௖௧௜௢௡ ൌ ሼሺ"actionout", 𝑎𝑐𝑡𝑖𝑜𝑛ሻ|𝑎𝑐𝑡𝑖𝑜𝑛 ∈ ሼ𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑠𝑡𝑜𝑝ሽ ሽ 
ൌൌൌൌൌൌൌ 𝑌௟௘௩௘௟ ൌ ሼሺ"speedout",   𝑠ሻ| 𝑠 ∈ ሼ0 െ 5 𝑘𝑚/ℎሽ ሽ 
ൌൌൌൌ 𝐷 ൌ ሼ"IR_Sensor", "Motor", "Control_U"ሽ 
ൌൌൌൌ 𝑀ሺ𝑑ሻ ൌ 𝑚 
ൌൌൌൌൌൌൌ ሺ𝑑 ൌ "IR_Sensor"ሻ ⟹ ሺ𝑚 ൌ 𝐼𝑅_𝑆𝑒𝑛𝑠𝑜𝑟ሻ 

ൌൌൌൌൌൌൌ ሺ𝑑 ൌ "Motor"ሻ ⟹ ቀ𝑚 ൌ 𝐷𝐶𝑀𝑜𝑡𝑜𝑟൫Δ𝑡௦௣௘௘ௗ൯ቁ 

ൌൌൌൌൌൌൌ ሺ𝑑 ൌ "Control_U"ሻ ⟹ ሺ𝑚 ൌ 𝑃𝐼𝐷_𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟ሻ 
ൌൌൌൌ 𝐸𝐼𝐶 ൌ ൛൫ሺ"LTRobot", "commandin"ሻ, ሺ"Control_U", "start_stopin"ሻ൯ൟ 

ൌൌൌൌ 𝐸𝑂𝐶 ൌ ቊ
൫ሺ"Motor", "speed୭୳୲"ሻ, ሺ"𝐿𝑇𝑅𝑜𝑏𝑜𝑡", "speedout"ሻ൯,

൫ሺ"Control_U", "action୭୳୲"ሻ, ሺ"𝐿𝑇𝑅𝑜𝑏𝑜𝑡", "actionout"ሻ൯
ቋ 

ൌൌൌൌ 𝐼𝐶 ൌ ൞

൫ሺ"Control_U", "actionout"ሻ, ሺ"Motor", "actionin"ሻ൯,

ቀ൫"IR_Sensor", "signalout"൯, ൫"Control_U", "signalin"൯ቁ ,

൫ሺ"Motor", "speedout"ሻ, ሺ"Control_U", "speedin"ሻ൯

ൢ 

 
The set D contains a unique ID for each submodel. Each coupling between ports takes the form 

(([source ID], [output port]), ([destination ID], [input port])). The specification shows that the 
LT_Robot’s input port, “commandin”, is connected to the “start_stopin” input port of the “Control_U” 
submodel. The port names can match or be different, like in this case. The relationship is represented by 
((“LT_Robot”,“commandin”), (“Control_U”, “start_stopin”)) in the set EIC.  

The variable M specifies the DEVS model associated with each submodel ID. Observe that we have 
used its definition to distribute the parameters of the Robotic model to the individual submodels. Here we 
are treating M as a function that maps an ID d to the corresponding DEVS submodel M(d) = 〈Xd, Yd, …〉.  

Earlier we presented the simulation procedure associated with DEVS atomic models. What is the 
simulation procedure for coupled models? It turns out that the procedure is the same. DEVS has a 
property known as closure under coupling, which guarantees that the behavior of any coupled model can 
be represented using the conventions associated with atomic models.  

 
ൌ 〈𝑋, 𝑌, 𝐷, 𝑀, 𝐸𝐼𝐶, 𝐸𝑂𝐶, 𝐼𝐶, 𝑆𝑒𝑙𝑒𝑐𝑡〉 ൌ is the structure of a DEVS coupled model 
ൌ 〈𝑋, 𝑌, 𝑆, 𝛿௘௫௧, 𝛿௜௡௧, 𝜆, 𝑡𝑎〉 ൌ is the structure of a DEVS atomic model 
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The eight variables that compose a coupled model can be mapped into the seven variables of an 
atomic model, yielding what is referred to as the resultant. We will review this mapping informally to 
highlight the sequences of events that occur in coupled models. First, the input and output sets X and Y are 
the same in both a coupled model and its resultant. The state of the resultant includes the total state of 
every model in M. Therefore, the set of states S includes all possible combinations of all possible total 
states for every submodel. A coupled model experiences an external event when it receives an input. In 
that case, the resultant’s δext redirects the input to all receiving submodels as specified by EIC. Each 
receiving submodel then experiences its own external event; their δext functions are invoked. For example, 
a “commandin” input received by the Robotic model will get redirected to the “start_stopin” port of the 
Control_U model. The Control_U model will then receive the same input and experience an external 
transition. The resultant’s ta yields the time before any one submodel experiences an internal event. If this 
time elapses, the coupled model experiences an internal event as well. The resultant’s λ and δint invoke the 
λ and δint functions associated with the one submodel that triggered the event. The triggering submodel’s 
output is redirected to receiving submodels according to IC, and those receiving submodels experience 
external events. For example, if the IR_Sensor model triggers an internal event, a “signalout” output will 
be sent to the Motor model. The Motor model will then experience an external event. If, according to 
EOC, the triggering submodel’s output is linked to the output of the entire coupled model, then the 
resultant’s λ reflects that output. Otherwise, the resultant’s λ yields ∅. If the Motor model sends an output, 
the Robotic model sends the same output as well. But, if the IR_Sensor model sends an output, the 
Robotic model outputs ∅. When an event of any kind occurs in a coupled model, the elapsed time 
associated with every submodel is updated.  

There is one remaining complication: multiple submodels may try to trigger internal events at the 
same time. In such cases, the select function is used to break the tie. The function takes the argument 
Dimm, the set of IDs of all imminent submodels. A submodel is imminent if it is scheduled to experience 
an internal event at least as soon as any other. The result of Select is ds, the ID of the submodel selected to 
trigger the internal event (ds ϵ Dimm). Here is the select function for the Robotic model: 

 
ൌ 𝑆𝑒𝑙𝑒𝑐𝑡ሺ𝐷௜௠௠ሻ ൌ 𝑑௦ 
ൌൌൌൌ ሺ"Motor" ∈ 𝐷௜௠௠ሻ ⟹ ሺ𝑑௦ ൌ "Motor"ሻ 

ൌൌൌൌ ൬
"IR_Sensor" ∈ 𝐷௜௠௠

"Motor" ∉ 𝐷௜௠௠
൰ ⟹ ሺ𝑑௦ ൌ "IR_Sensor"ሻ 

ൌൌൌൌ ൭
"Control_U" ∈ 𝐷௜௠௠
"IR_Sensor" ∉ 𝐷௜௠௠

"Motor" ∉ 𝐷௜௠௠

൱ ⟹ ሺ𝑑௦ ൌ "Control_U"ሻ 

  
Suppose the IR_Sensor and Motor submodels are both imminent. According to Select, the Motor 

model experiences the internal event first. By the time the IR_Sensor model triggers an internal event and 
signals the Motor model, the Motor model is in a new state and is no longer imminent. In a similar 
fashion, Select prevents the Control_U model from sending actions to an imminent IR_Sensor model. 

When we say a coupled model is legitimate, we mean that its resultant is legitimate based on the 
definition presented earlier for atomic models. As one would expect, for a coupled model to be legitimate, 
all of its submodels must be legitimate. The question is, if all of its submodels are legitimate, may we 
assume that the coupled model is legitimate? It turns out that if there are no feedback loops in the coupled 
model, the answer is yes. A feedback loop in a coupled model is any circular path formed by traversing 
couplings from their source submodels to their destination submodels. The problem is not the existence of 
a feedback loop, but rather the possibility that a sequence of self-perpetuating events propagates around 
the loop an infinite number of times in a finite duration of time. If the time required for a sequence of 
events to propagate around a feedback loop is either equal 0 or their sum converges on 0, the model is not 
legitimate.  

185



Wainer, Goldstein, and Khan 
 

3 CASE STUDY: A LINE TRACKING ROBOT  

In this section, we discuss the simulation of a model based on the specifications above using the CDBoost 
simulator (Vicino et al. 2015), a DEVS simulator built as an extension of the CD++ simulator (Wainer 
2009). At the time of the publication of Vicino et al. (2015), the CDBoost was the fastest existing DEVS 
simulator. The CDBoost simulator provides a library of DEVS simulation engines based on the ideas 
discussed in Section 2. An embedded version of the tool, called E-CDBoost (Niyonkuru and Wainer 
2016) can be used to run the models in real-time mode, using a variety of embedded devices. In this 
section, we show how to use it to build an actual cyber-physical system, in this case, a simple line 
tracking robotic application like the one discussed in the previous section. 

There are model classes that allow for defining the DEVS models, and execution classes that imple-
ment the simulation algorithms. Utility classes provide useful functions such as time classes, message 
classes, input streams for external events and a future event list. Model classes contain three main classes: 
Model, which offers a common interface to atomic and coupled models, PDEVSAtomic, which can be ex-
tended to implement user-defined atomic models, and PDEVSCoupled, which provides an interface to 
specify the structure of a model. These are the classes the users define to build their models and run 
simulations.  

Using these services, we will show now how to define our line-tracking robot. The controller, which 
was not defined in detail in Section 2, considers a medium percentage of reflected light as a detected path 
and initiates the robot to move forward. When the robot goes off track, i.e., does not sense a path trail, it 
stops, turns slightly, and then tries to detect a trail again. The robot also receives manual signals to start 
and stop. In terms of components, the sensor unit contains input devices. The sensor controller activates 
or stops the light sensor, receives the sensor readings, and sends messages to the motor controller, 
specifying whether the robot is on track, off track, or has reached the destination. The controller also 
receives on/off track and stop signals from the sensor, and it sends appropriate commands to the motors. 
Figure 5 illustrates a DEVS Graph representing the sensor controller’s behavior.  

 

Figure 5: Sensor controller state diagram. 
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This graphical representation is an extended version of the notation used in Section 2, which we can 
then translate to CDBoost. As we can see, the Sensor Controller is IDLE until a start command is issued. 
Then, an external transition is triggered and the Sensor Controller state changes to PREP_RX. At this 
point, it waits for ta=scRxPrepTime, after which a ‘start’ output is sent to the Light Sensor and an internal 
transition changes state to WAIT_DATA. It waits in this state until it receives a signal from the Light 
Sensor. If the signal indicates that the robot reached the destination (ALL_DARK), the external transition 
causes a switch to PREP_STOP, where it will immediately send a stop signal to the Light Sensor and the 
Movement Controller, and it will transition back to IDLE. However, if the signal is different, the Sensor 
Controller will go to TX_DATA, will wait for ta=scTxTime, after which it will send an output to the 
Movement Controller indicating whether the robot is on track or not. If the Sensor Controller receives a 
manual stop signal (STOP_PROC), it will transition to the PREP_STOP to stop all activities. 

In order to implement atomic models in CDBoost, we extend the basic model class providing state 
transition and output functions. The code in Figure 6 shows an example for the sensor controller 
functions. We can see that it includes the state transition and output functions that correspond to the 
original DEVS specification. A message is constructed using the port and the value to be sent. The TIME 
parameter returned by the time advance function is defined using real time units.  

 
void internal() noexcept { 

    switch (_state){   

        case PREP_STOP:  _state = IDLE;   _next = infinity;  break; 

        case PREP_RX: 

        case TX_DATA: _state = WAIT_DATA; _next = infinity;  break;       } 

} 

 

TIME advance() const noexcept { return _next; }  

  /* @return Time until next internal event. */ 

 

std::vector<MSG> out() const noexcept {   ... 

 switch (_state){ 

   case PREP_STOP:      //Send stop through IR_Sensor _start_out and mctrl 

     _outputMessage1 = MSG(portName[IR_Sensor _start_out], STOP_PROC);  

     _outputMessage2 = MSG(portName[IR_Sensor _mctrl_out], STOP_PROC);  

     std::vector<MSG>{_outputMessage1, _outputMessage2}; 

   case PREP_RX: //Send Start through IR_Sensor _start_out 

       _outputMessage1 = MSG(portName[IR_Sensor _start_out], START_PROC);  

      return std::vector<MSG>{_outputMessage1}; 

  case TX_DATA:    //Send on/off track signals IR_Sensor _mctrl_out 

     int output_val; 

     if(sensor_input == DARK) output_val = ON_TRACK; 

         else if (sensor_input == BRIGHT) output_val = OFF_TRACK; 

   _outputMessage1 = MSG(portName[IR_Sensor _mctrl_out], output_val);              

       return std::vector<MSG>{_outputMessage1};  

  }; 

   return std::vector<MSG>{}; //Default: empty output      } 

Figure 6: Atomic model definition. 

To implement the coupled model, we use the syntax shown in Figure 7. 
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auto IR_Sensor  = make_atomic_ptr <IR_Sensor<Time, Message>>(); // Atomic models definition 
auto Control_U= make_atomic_ptr <Control_U<Time, Message>>(); 
shared_ptr< coupled<Time, Message>> LTRobot( new coupled<Time, Message>{{IR_Sensor ,mctrl}, 
     {IR_Sensor }, {{IR_Sensor ,mctrl}}, {mctrl}});    //Coupled model definition 

Figure 7: Coupled model definition. 

The sensor model (IR_Sensor  at line 1) and control unit (Control_U at line 2) are the two of the 
components of the coupled model. If we want to test them individually, the model on line 3 can be used; 
it includes its components ({IR_Sensor ,mctrl}), then its EIC (signals from hardware components; 
IR_Sensor is connected to the light sensor and push button), its IC (IR_Sensor  is connected to Control_U 
internally), and finally its EOC (components sending output signal to hardware: Control_U to the two 
motors).  

We will illustrate the execution mechanism using trace logs collected during the execution of the line 
tracking robot. Two examples are provided to illustrate internal execution mechanism. 

 
DRIVER: INPUT MESSAGE     Time: 02:517:459 

 Port: start_in Value: 10  

 - advance_execution()::LTRobot; advance_execution()::IR_Sensor  

  model->external() model->advance(): 00:040:000  

 - collect_outputs()::LTRobot; advance_execution()::LTRobot  

 - collect_outputs()::IR_Sensor ; model->out()  

 - advance_execution()::IR_Sensor    model->internal() model->advance(): ...  

 - advance_execution()::Control_U  model->external() model->advance(): ...  

DRIVER: INPUT MESSAGE  Time: 02:600:697 

 Port: light_in Value: 1  

- advance_execution()::LTRobot; advance_execution()::IR_Sensor  

  model->external() model->advance(): 00:040:000  

- collect_outputs()::LTRobot; advance_execution()::LTRobot  

 - collect_outputs()::IR_Sensor       model->out()  

 - advance_execution()::IR_Sensor   model->internal() model->advance(): ...  

 - advance_execution()::Control_U 

  model->external() model->advance(): 00:040:000  

 - collect_outputs()::LTRobot  collect_outputs()::Control_U   model->out()  

DRIVER: OUTPUT MESSAGE  Time: 02:680:850 

 Port: motor Value: 1  

Figure 8: Simulation results. Internal transition execution. 

Figure 8 shows a sequence that follows a start message at time 02:517:459. An input message with 
value 10 (turn on) triggers a call to the external function of the sensor model. An input message indicating 
a line detection is then sent and causes the sensor and controller external functions to be called. Two 
outputs are generated, commanding the motors to go forward (Value 1 sent to the motor). 

Figure 9 shows the case corresponding to a manual stop that causes stop commands (0 sent to the 
motor). 

Once the tests are done, the controller model is deployed onto a robotic device built using a Nucleo 
board to autonomously control the robot. A number of videos showing the result on the target platform 
are available at http://www.youtube.com/arslab. Following the model, the robot tracks the dark lines on 
the floor, and whenever it detects a junction it takes a right turn, as seen in Figure 10. If it does not detect 
a line it will take a turn and search for the black line. 
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DRIVER: INPUT MESSAGE  Time: 00:02:10:403:002 

 Port: start_in Value: 11  

 - advance_execution()::LTRobot  

 - advance_execution()::IR_Sensor  

  model->external() model->advance(): 00:000:000  

 - collect_outputs()::LTRobot  

 - advance_execution()::LTRobot  

 - collect_outputs()::IR_Sensor   model->out()  

 - advance_execution()::IR_Sensor   model->internal() model->advance(): ...  

 - advance_execution()::mctrl 

  model->external() model->advance(): 00:000:000  

 - collect_outputs()::LTRobot  

 - collect_outputs()::mctrl  model->out()  

DRIVER: OUTPUT MESSAGE  Time: 00:02:10:403:559 

 Port: motor Value: 0  

Figure 9: Simulation results. 

 

Figure 10: Line tracking model real-time execution. 

4 SUMMARY 

With state transitions that depend in part on the time elapsed since the previous event, a DEVS model can 
represent practically any real-world system that varies in time. The DEVS formalism provides first and 
foremost a set of conventions for specifying atomic models, along with a procedure for performing 
simulations with these models. If one specifies a coupled model, then due to closure under coupling one 
has implicitly defined an equivalent atomic model. This modular approach can be used to avoid a 
complex atomic model in favor of multiple simpler atomic models. Similarly, by combining models in a 
hierarchical fashion, one avoids a complex coupled model in favor of multiple simpler coupled models. 

It is important to ensure that every DEVS model has a legitimate specification, one that always allows 
a simulation to properly advance time. For atomic models, this requires an examination of the delay 
between events in an infinite sequence of internal events. For coupled models, one must look at the delay 
between inputs and outputs for every submodel in a feedback loop. 

We have applied these core DEVS concepts by developing and analyzing specifications representing 
an office robotic system and its various components. As mentioned at the outset, more information on the 
DEVS formalism and related theory can be found in Zeigler et al. (2000).  

DEVS users should familiarize themselves with several variants of the formalism. One of these 
variants is Parallel DEVS. Another variant is Cell-DEVS, which applies DEVS to models composed of an 
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array of cells (Wainer and Giambiasi 2001). Among other things, Cell-DEVS has been used to model the 
spread of forest fires, the diffusion of heat, and urban traffic. Stochastic DEVS (STDEVS) is one of 
several ways one can introduce randomness into a DEVS model (Castro et al. 2008). It replaces the 
deterministic results of the transition functions with probability spaces. There is also a variant called 
Dynamic Structure DEVS (DSDEVS), which allows a coupled model’s submodels and connections to be 
added and deleted during a simulation (Barros 1995).  

Several books cover DEVS from different perspectives. Written for simulation practitioners, Wainer 
(2009) demonstrates the application of DEVS and the Cell-DEVS variant to physical, biological, 
communication, and urban systems. Nutaro (2011) focuses on the implementation of simulation software 
using object-oriented techniques and Parallel DEVS. A chapter on hybrid systems shows how DEVS can 
be integrated with various differential equation solving techniques. For those interested in the latest 
developments in the field, Wainer and Mosterman (2011) provide a collection of recent DEVS research. 
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