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ABSTRACT

Stochastic neural networks serve as general models useful for machine learning problems. Several models
on discrete state spaces have been studied, and their proposed gradient estimation procedures are based on
having closed form solutions for the resulting probability distributions. The methods exploit constraints
on network connectivity, such as symmetry, or the absence of cycles. Our interest is in the general case
of long-term average cost in networks with arbitrary connectivity, where only knowledge of the transition
probabilities is available. We propose an algorithm that computes descent directions based on simultaneous
perturbation analysis and measure valued differentiation.

1 BACKGROUND

The earliest neural network models to be studied from the computational perspective were the deterministic
threshold networks (Rosenblatt 1958). Unfortunately, their non-smooth nature prevents these models from
being used in complex problems such as image recognition. One solution is to randomize the network
using noise that is in some way smooth, and perform gradient based optimization that exploits smoothness
of the resulting probabilities. A very general model for such a network was introduced in (Little 1974).

The Little model can be interpreted as a threshold network, where the thresholds are randomly chosen at
each time step. A formal definition can be given as follows. Let the network have n nodes, and let ξ (1),ξ (2) . . .
be a sequence of noise vectors inRn, with the entire collection{ξi(t); i= 1, . . . ,n, t = 1,2, . . .} independent and
distributed according to the logistic distribution. That is, the CDF of ξi(t) is P(ξi(t)< x) = σ(x) = 1

1+exp(−x) .
Define f : {0,1}n×Θ×Ξ→{0,1}n in terms of the component functions f1, . . . , fn as

fi(x,(w,b),ξ ) =

1 if
n
∑
j=1

wi, jx j +bi > ξi

0 otherwise.
(1)

This function f and the noise ξ (1),ξ (2) . . . determines the operation of the network. From the initial point
x(0), generate each successive point x(n) following the recursion

x(t +1) = f (x(t),θ ,ξ (t +1)). (2)

We denote by Pθ (x0,x1) be the probability of going to state x1 from state x0.
The equation (2) defines an ergodic Markov chain. Let dTV be the total variation metric. It can be

shown it possesses a stationary measure πθ for any θ , and, setting ε = σ(−‖w‖∞−‖b‖∞)
n, for any initial

measure µ it holds that
dTV (µPk

θ ,πθ )≤ (1− ε)kdTV (µ,πθ ).

Given the stationary measure π , and a cost function e : {0,1}n→ R, we define the overall objective:

J(θ) = Ex∼πθ
[e(x)]
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To compute the derivative of J, we will not attempt to compute the stationary the distribution. Rather we
are interested in a gradient estimator which uses only knowledge of the kernel P.

2 RESEARCH QUESTION

The idea of measure valued differentiation is to express the derivative of an expectation as the scaled
difference of two expectations (Heidergott, Vázquez-Abad, Pflug, and Farenhorst-Yuan 2010). If these
measures are easy to sample from, this leads to a simple, unbiased derivative estimator. The concept of
MVD can be extended from measures to Markov kernels, and then applied to derivatives of stationary costs
(Pflug 1992).

In general for measure valued differentiation, m simulations are required for a system with m parameters.
To address this potentially burdensome requirement, we propose a gradient estimator that works by picking
a random direction, as in the simultaneous perturbation approach of (Spall 1992), and then computes the
directional derivative using measure valued differentiation. The method is termed simultaneous perturbation
measure valued differentiation. The only requirement is that one can compute the measure valued derivative
along arbitrary directions.

Let µθ be a measure depending on an n-dimensional vector parameter θ . Let v ∈ Rn be a direction.
A triple (cθ ,v,µ

+
θ ,v,µ

−
θ ,v) is called a measure valued directional directional derivative in the direction v at

θ if for all e : X → R,

∂

∂θ
µθ (e)v = cθ ,v[µ

+
θ ,v(e)−µ

−
θ ,v(e)].

Defining the extension to Markov chains is straightforward. A triple (cθ ,v,P+
θ ,v,P

−
θ ,v) is a measure valued

derivative for the Markov kernel P in the direction v if for each x, (cθ ,v(x),P+
θ ,v(x, ·),P

−
θ ,v(x, ·)) is an MVD

in the direction v for the measure Pθ (x, ·).
The proposed gradient estimator for stationary costs proceeds by choosing a random direction, and

applying the stationary MVD algorithm of (Pflug 1992). The estimator will be applied to our motivating
example, the Little model. The theoretical questions involve relating the variance and convergence properties
of the estimator to the properties of the underlying neural network. On the practical side, we are interested
in using the estimator to apply the Little networks to machine learning tasks such as image classification.
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