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ABSTRACT

We present a stochastic gradient descent algorithm with adaptive sampling for the unconstrained optimization
problem where the function or the gradient is not directly accessible. We show that the algorithm exhibits
global convergence and discuss the work complexity with different choices of predetermined function in
the sampling rule.

1 INTRODUCTION

Consider a set of unconstrained optimization problem where the objective function has no closed form but
is at least first order differentiable.

min
x∈Rd

f (x)

For example, the objective function is some expectation whose value at a given point cannot be computed
directly. However the gradient at every point can be estimated (unbiased) by simulations or differencing.
This is a general problem setting with a wide range of applications in various contexts including finance,
machine learning.

2 PREVIOUS WORK

Different SGD (stochastic gradient descent) procedures have been proposed to solve the above optimization
problem. Fixed step size algorithm produces a sequence with bounded average gradient norm and there is
diminishing step size algorithm that yields convergence of limit inferior of gradient norm (Bottou, Curtis,
and Nocedal 2016). In The Adaptive Sampling Gradient Method Optimizing Smooth Functions with an
Inexact Oracle (Hashemi, Pasupathy, and Taaffe ), an ASGM (adaptive sampling gradient method) achieves
convergence of gradient norm and work complexity of O(ε

−2− 1
µ(α)−δ ) (where µ(α) is the error decaying

rate of the approximators) when there are deterministic error bounds for approximators, for example, using
Quasi Monte Carlo.

3 ALGORITHM AND ITS FEATURES

We present an adaptive sampling SGD method for the Monte Carlo case for solving this problem when
f ∈ C1,1

L . Assume that we have some information about the estimator error on how much it varies
along every sample path. The Law of Iterated Logarithm applied to a single point, together with certain
Lipschitz-like assumptions on the estimator error function path-wise ensure a uniform decay of the error
across all x ∈Rd . Meanwhile a sampling rule is imposed so that the error decay on the gradient estimator
will satisfy an inequality, which will be essential in the proof of the convergence and work complexity results.
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The algorithm is within the general frame of SGD methods. Given an iterate point, construct the
gradient estimate and therefore the descent direction through the realizations of the random numbers. The
error of the gradient norm decays as the amount of sampling effort increases. We first consider the case
where the step size is a constant with some upper bound constraints. Iterations repeat to produce a sequence
approaching the solution. The salient features of this procedure are line search and adaptive sampling. The
descent direction comes from the gradient estimator. We show that the algorithm, under certain sampling
rule, exhibits global convergence. The sampling rules should determine whether the sample size at one
iterate point is large enough to construct a gradient estimation. Then for the purpose of reducing work
complexity, we can optimize from the set of sampling rules that lead to convergence. There is a trade-of
between accuracy and work complexity. So the question is what should be the right amount of effort to
spend in constructing the gradient estimator at each iteration. The sampling rule ensures that the procedure
spends just the right amount of effort at each step so that difference between the estimators and the true
gradients will eventually stay within a predetermined gap function. We also discuss the choice of the
predetermined gap function in the sampling rule and compare the corresponding work complexity.

Algorithm 1 Fixed step for f ∈C1,1
L

Setup:
Fix sample path ω (Common Random Numbers), starting point x0, function h,
sampling size lower bound ηk, step size β ≤ L−1

Inputs:
Current iterate xk

Initialize:
n =0

repeat G(n,xk,ω) = 1
n ∑

n
i=1 gi(xk,ω), n = n + 1

until n≥ ηk with n−
1
2+δ σ̂(n,x,ω)ΓG(xk,ω)≤ h(||G(n,xk,ω)||)

n(Xk,ω) = n
Outputs:

Next iterate xk+1(ω) = xk(ω)−βG(n(xk,ω),xk,ω)

4 SUMMARY OF RESULTS

Our results show that the above algorithm is globally convergent and produces an iterate sequence with
true/ estimated gradient norm converging to zero lim

k→∞

||∇ f (xk)||= 0. For the efficiency result, we derive

work complexity in terms of the predetermined gap function h. We also consider a natural choice of h
of the form h(x) = θxq(q ≥ 1). When h is chosen to be linear, we have the optimal work complexity

wk = O(||∇ f (xk)||
−2− 1

1
2−δ ). The result is consistent with our intuition in the sense that more effort should

be spent in where the gradient estimator gets closed to 0.
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