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ABSTRACT 

This paper applies Actor-Critic reinforcement learning to control lot dispatching scheduling in reentrant 

line manufacture model. To minimize the Work-In-Process(WIP) and Cycle Time(CT), the lot dispatching 

policy is directly optimized through Actor-Critic algorithm. The results show that the optimized dispatching 

policy yields smaller average WIP and CT than traditional dispatching policy such as Shortest Processing 

Time, Latest-Step-First-Served, and Least-Work-Next-Queue. 

1 INTRODUCTION 

Most previous research such as Ramírez-Hernández (2009) about applying reinforcement learning to fab 

scheduling focuses on the Critic only method or Critic based heuristic method. These papers show the good 

possibility of application of Critic based reinforcement learning for fab scheduling. However, the Critic 

based methods are indirect in the sense of making only approximation of the critic value function, not 

optimizing directly policy function. 

 Actor-Critic algorithm, proposed by Konda(2000), is combination of Actor only and Critic only method. 

In this algorithm, Critic learns a critic value function from the Bellman equation, and then Actor uses the 

critic value function to update the actor policy function through stochastic gradient methods. That is, Actor 

Critic algorithm optimizes directly policy function over policy space. 

 In this paper, we apply Actor Critic algorithm to optimize the lot dispatching policy, which is to mini-

mize the Work-In-Process(WIP) and Cycle Time(CT) in reentrant line manufacturing model. 

2 ACTOR-CRITIC ALOGORITHM IN DISCOUNTED REWARD SETTING 

A Markov Decision Process is specified by the tuple M = <S, A, P, C, r>, where S is a finite set of states, 

A is a finite set of actions, P is a state transition probability, C is a cost function, r is a discount rate.  

The state S is defined as follows: 

𝑆(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡), 𝑠3(𝑡), 𝑠4(𝑡), 𝑠5(𝑡), 𝑠6(𝑡)),   ∀t ∈ T        (1) 

where 𝑠𝑖 represents the WIP of each processing step i. T represents the decision time when action is made 

 A policy 𝜋 is defined as a distribution over actions given states as follows: 

𝜋𝜃(𝑎𝑖|𝑠) = P[A(t) = loti|𝑆(𝑡) = 𝑠, 𝜃 = 𝜃(𝑡)] =
𝑒𝜙𝑇(𝑙𝑜𝑡𝑖)𝜃(𝑡)

∑ 𝑒
𝜙𝑇(𝑙𝑜𝑡𝑗)𝜃(𝑡)

𝑗

,    𝑖, 𝑗 ∈ 𝐼𝑛𝑝𝑢𝑡 𝑄𝑢𝑒𝑢𝑒   (2) 

where ai represent that lot i in input queue is selected to next job. 

A Actor basis 𝜙(𝑙𝑜𝑡𝑖) is defined as follow: 

𝜙𝑇(𝑙𝑜𝑡𝑖) = (𝜙1(𝑙𝑜𝑡𝑖), 𝜙2(𝑙𝑜𝑡𝑖), 𝜙3(𝑙𝑜𝑡𝑖))       (3) 

where 𝜙1(𝑙𝑜𝑡𝑖), 𝜙2(𝑙𝑜𝑡𝑖), 𝜙3(𝑙𝑜𝑡𝑖) indicate the processing time, processing step, and next machine queue 

level of lot i 

 A cost C is defined as follows: 
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𝐶(𝑡 + 1) = 𝑊𝐼𝑃𝑆(𝑡+1) − 𝑊𝐼𝑃𝑆(𝑡)        (4) 

where C(t+1) represents the difference between total WIP of state S(t+1) and state S(t). 

 In each decision time, Critic parameters(W) and Actor parameters(𝜃) are iteratively updated as follows: 

𝛿(𝑡 + 1) = 𝐶(𝑡 + 1) + 𝛾𝑆𝑇(𝑡 + 1)𝑊(𝑡) − 𝑆𝑇(𝑡)𝑊(𝑡)     (5-1) 

𝐸(𝑡) = 𝜆𝛾𝐸(𝑡 − 1) + 𝑆(𝑡)         (5-2) 

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝛼𝑤,𝑡𝛿𝑡𝐸(𝑡)           (5-3) 

𝜃(𝑡 + 1) = 𝜃(𝑡) + 𝛼𝜃,𝑡𝛿𝑡𝛻𝜃 𝑙𝑜𝑔 𝜋𝜃(𝑡)         (5-4) 

where 𝜆 ∈ [0,1) is the eligibility rate, 𝛼𝑤,𝑡 is the critic learning rate, 𝛼𝜃,𝑡 is the actor learning rate. In real 

experiment, ADAM, proposed by Kingma(2014), was used to update the actor parameters instead of (5-4).

3 EXPERIMENT RESULTS 

The reentrant line manufacturing model used in this experiment composes of three machine groups: G1, 

G2, G3. Each machine group has two machines, which share the queue. The setup depending on the change 

of processing step occurs in G1. The preventive maintenance occurs in G1 and G2. There are three lot type: 

A, B, C. All lot has same arrival rate and same processing steps: G1-G2-G3-G2-G1-G3, but each lot type 

has different deterministic processing time. Queue limit and transport time are not considered in this model. 

 The dispatching policies over each machine group were optimized through 100,000 hours simulation. 

To evaluate Actor-Critic based Dispatching Policy(ACDP), 50 scenarios of which run time is 100,000 hours 

were ran. Shortest Processing Time(SPT), Latest-Step-First-Served(LSFS), and Least-Work-Next-

Queue(LWNQ), are used benchmark dispatching policy. The statics of average WIP of lot and CT are listed 

with the corresponding 95% confidence interval.  
 

Dispatching Policy 
Work-In-Process(lot number) Cycle Time(hours) 

Average 95% confidence interval Average 95% confidence interval 

ACDP 22.32 [22.07, 22.57] 15.63 [15.45, 15.80] 

LSFS 25.02 [24.76, 25.29] 17.52 [17.33, 17.70] 

SPT 25.55 [25.26, 25.84] 17.89 [17.68, 18.09] 

LWNQ 28.47 [28.15, 28.79] 19.93 [19.71, 20.15] 

Table 1. The experiment results of 50 scenarios  

 The results show that the ACDP yields minimum average WIP and CT. The ACDP is statistically better 

than benchmark dispatching policies. The average WIP and CT of ACDP are smaller 10.8% than that of 

LSFS, which is second best dispatching policy. 
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