
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

PRACTICAL EXPRESSIVENESS OF INTERNAL AND EXTERNAL DOMAIN-SPECIFIC
MODELING LANGUAGES

Tom Warnke
Adelinde M. Uhrmacher

University of Rostock
Albert-Einstein-Str. 22

D-18059 Rostock, GERMANY

ABSTRACT

During the long history of modeling and simulation, many answers have been given to the question
of how to specify simulation models. Many of these approaches can be perceived as domain-specific
modeling languages offering a syntax and a semantics. However, the individual languages are often vastly
different. A central distinguishing aspect is the classification as external or internal domain-specific language.
External and internal domain-specific languages are characterized by specific trade-offs regarding syntactical
flexibility, computational efficiency, and amount of implementation work. We present a case study of
alternative approaches to implement domain-specific languages for a small modeling problem in supply
chain management. We illustrate the influence of using an external or internal language on different aspects
of language performance, in particular the practical expressiveness, which we identify as one of the central
properties of modeling languages.

1 DOMAIN-SPECIFIC MODELING LANGUAGES

One of the main contributions of the scientific discipline of modeling and simulation is the separation of
model and simulation concerns. The model abstracts a system of interest, approximating it with a set of
assumptions. The simulation produces data from the model by stimulating its inputs and recording its
outputs (Cellier 1991). By adhering to this separation of concerns, many challenges that arise when dealing
with simulation models can be handled much more efficiently. However, despite being separated from
the execution algorithms, the model description must be clear and unambiguous. One way to describe
simulation models is to use a domain-specific modeling language (DSML).

Domain-specific languages (DSLs) have been successfully applied in many fields in computer science
(for an overview see Van Deursen, Klint, and Visser (2000)). The defining property of DSLs compared to
General Purpose Languages (GPLs) is their better expressiveness, but limited application domain. Frequently
cited examples for DSLs include SQL, makefiles, or LATEX, which exemplifies that the idea is applicable in
different domains. In general, the advantages of DSLs are widely acknowledged. However, it is equally
acknowledged that designing a good DSL is hard (Mernik, Heering, and Sloane 2005).

One of the reasons that designing a good DSL is hard is that expressiveness of a (programming)
language is not clearly defined. While it is often interpreted in terms of theoretical expressiveness, for
most DSLs the practical expressiveness is more important. Rather than evaluating programming languages
in terms of the programs that can be expressed, practical expressiveness refers to aspects such as the
conciseness, readability, or the abstractions of programs written in a given language (Felleisen 1991). A
precise definition of practical expressiveness is still elusive; however, the underlying idea was expressed in
quotes such as “Beware of the Turing tar-pit in which everything is possible but nothing of interest is easy”
(Perlis 1982) and “Simple things should be simple, complex things should be possible” (Alan Kay in Leuf
and Cunningham (2001)).

4566978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Warnke and Uhrmacher

op-1test-1

rework
scrap

Operation

Test

Queue

Figure 1: Schematic view of a simple supply chain model, in which items pass through a sequence of
operations and tests (Persson and Olhager 2002).

Two general approaches to achieve practical expressiveness in DSLs can be distinguished. First, external
DSLs define arbitrary syntax and semantics, and thus enjoy the maximal freedom in designing the language.
The language designer can adapt the language to the needs of the application domain and directly provide
the desired ease of use. However, the designer also has to provide a tool chain (editor, lexer, parser) to
make the language usable. Second, internal (or embedded) DSLs build upon an existing GPL by defining
an expressive application programming interface (API). Thus, when writing in the DSL, the language user
actually writes a program in the host language and can exploit available tools, language features, and
libraries. These can provide the language with practical expressiveness as well, by allowing to delegate
aspects of the model description to the underlying host language. The drawback of internal DSLs is that
the language design is constrained by the syntax and semantics of the host language.

Both approaches have been applied to DSLs for modeling, or DSMLs. With a DSML, the model to
simulate is defined textually and parsed or compiled to a computational model, which can then be input to
a simulation algorithm. This way, the separation of model and simulation is supported.

2 CASE STUDY

To illustrate the differences in implementing different approaches to DSMLs, we showcase a small case
study where we tackle a simulation problem with different DSML implementations. As an example use
case for our DSMLs we chose the modeling of simple supply chains based on the work by Persson and
Olhager (2002). Our DSMLs are able to capture simple variants of supply chain models such as the one
represented graphically in Figure 1. Based on our DSML implementations, we offer some insights on
the effect of different implementation strategies on the resulting languages. Specifically, we focus on the
practical expressiveness of the languages, one of the important properties in practice.

REFERENCES

Cellier, F. E. 1991. Continuous System Modeling. Secaucus, NJ, USA: Springer-Verlag New York, Inc.
Felleisen, M. 1991. “On the expressive power of programming languages”. Science of Computer Program-

ming 17 (1): 35 – 75.
Leuf, B., and W. Cunningham. 2001. The Wiki Way: Quick Collaboration on the Web. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc.
Mernik, M., J. Heering, and A. M. Sloane. 2005. “When and How to Develop Domain-specific Languages”.

ACM Comput. Surv. 37 (4): 316–344.
Perlis, A. J. 1982. “Epigrams on Programming”. ACM SIGPLAN Notices 17 (9): 7–13.
Persson, F., and J. Olhager. 2002. “Performance simulation of supply chain designs”. International Journal

of Production Economics 77 (3): 231 – 245.
Van Deursen, A., P. Klint, and J. Visser. 2000. “Domain-specific languages: An annotated bibliography.”.

Sigplan Notices 35 (6): 26–36.

4567

