
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

BUFFER OVERFLOW DETECTION IN DEVS SIMULATION USING CANARIES

Hae Young Lee

DuDu IT
96 Gamasan-ro

Seoul, 08501, SOUTH KOREA

ABSTRACT

This paper addresses buffer overflows (BOFs) in simulations written in the C/C++ language, which could
be exploited by attackers to pollute simulation results. The paper then presents a BOF detection method
for Discrete Event System Specification, in which canaries placed after buffers are used to detect BOFs.
A concept-of-proof of the proposed method that uses a custom preprocessor has been implemented and
shows that BOFs can be detected with minimal modifications.

1 INTRODUCTION

Buffer overflows (BOFs) could exist within simulations developed in the C/C++ programming language
(Lee 2017). Figure 1 shows an example of BOFs in a simulation developed using adevs (Nutaro 2017),
which is a C++ library for M&S based on Discrete Event System Specification (DEVS) (Zeigler, Praeho-
fer, and Kim 2000). In the example, the processing time, while it should be a constant, of an instance of
class B was initially 100, but is later corrupted to 97 due to BOFs triggered by a class A’s instance.
Malformed inputs that cause such BOFs could be injected by other instances of models, users through us-
er interfaces (UIs), other processes through inter-process communications (IPC), and so on. These BOFs
would not be easy to be detected since they may not result in memory access errors or simulation crashes.
However, they could, due to ‘pollution’ of the simulation results, lead to reaching erroneous decisions in
consideration of applications of simulations. Thus, BOFs must be detected before resulting in ‘the pollu-
tion.’

Figure 1: Example of buffer overflows in simulations.

This paper proposes a canary based method for detecting BOFs within C/C++ based DEVS simula-
tions. An integer variable called ‘canary’ is first inserted right after every buffer in atomic DEVS models.
Since the state of an atomic model may change in the external and internal transition functions, the canar-

4554978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Lee

ies are then checked right after each execution of these functions in order to detect BOFs. A proof-of-
concept of the method for adevs, in which statements for BOF detection using canaries are placed by a
custom preprocessor, shows that BOFs in adevs models can be easily detected.

2 BOF DETECTION FOR DEVS USING CANARIES

Attackers could exploit BOFs in simulations to lead simulation runs to produce erroneous results. To this
end, they could inject malformed inputs into ‘vulnerable’ models through UIs, IPCs, files, and so on. To
detect such BOFs, canaries are placed and then checked in the proposed method. For each atomic DEVS
model, a canary, which is initially set to 0, is placed right after every buffer in the model. While writing
data to a buffer, the program may overrun the buffer’s boundary. That is, a BOF occurs, resulting in
overwriting the adjacent canary with a non-zero value. But by checking the canaries before returning to
the caller, the BOF can be detected and reported to the user.

In an atomic DEVS model, member variables, including buffers, are corresponding to the state set,
and thus allowed to change in the external and internal transition functions. That is, BOF could occur only
within these functions. Thus, by checking the values of canaries right after each execution of the functions,
BOFs can be detected; a BOF has occurred if a canary having a non-zero value exists. If we need not con-
sider BOFs triggered internally, i.e., we assume all BOFs are externally triggered, canaries need to be
checked only after the execution of the external function.

3 IMPLEMENTATION

A proof-of-concept has been implemented for adevs, in which a custom preprocessor replaces preproces-
sor directives with statements for BOF detection as shown in Figure 2. This procedure could be automat-
ed by customizing a compiler.

Figure 2: Preprocessing for BOF detection in the method.

4 CONCLUSION AND FUTURE WORK

This paper presented a BOF detection method for DEVS. BOF could exist in not only C/C++ based
DEVS simulations but also any other scientific programs, and be serious in consideration of their applica-
tions. This will be further investigated.

REFERENCES

Lee, H.Y. 2017. “Buffer Overflow Vulnerabilities in DEVS Models”. In Proc. of the 2017 KSS Spring
Conf. (available at: https://sites.google.com/site/whichmeans/publications/2017-KSS-Spring-
Paper.pdf).

Nutaro, J. 2017. adevs. http://web.ornl.gov/~nutarojj/.
Zeigler, B.P., Praehofer, H., and Kim, T.G. 2000. Theory of Modeling and Simulation, 2nd Ed.

4555

