
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

A GENERATIVE STOCHASTIC GRAPHICAL MODEL FOR SIMULATING SOCIAL PROTEST

Dharmashankar Subramanian

IBM Research
1101, Kitchawan Road, Rte 134

Yorktown Heights, NY 10598, USA

Lucia L. Titus

Laboratory for Analytic Sciences, NCSU
1021 Main Campus Drive
Raleigh, NC 27606, USA

ABSTRACT

Civilian protest is a complex phenomenon where large numbers of protestors participate in demonstrations.
It involves multiple groups, various trigger events and social reinforcement where groups excite each other.
We present a graphical generative model in which a baseline spontaneous process may undergo excitation
due to external triggers, as well as inter-group contagion. We define a trigger-conditional multivariate
Hawkes process, where excitation is conditional on the presence of active triggers. An arrival in this
process corresponds to a batch of protestors, and random marks on the arrival serve to capture both the
excitation-related parameters as well as the size of protest. The batch arrival intensity and the batch
size, while mutually independent, exhibit respective history-dependence due to memory that is modeled
in the excitation phenomena. We present a simulation algorithm for generating sample paths, and results
estimating likelihood of large-scale protest on a realistic model.

1 INTRODUCTION

Civilian protest is a complex phenomenon that culminates in the form of demonstrations, each with a large
number of protestors. Recent civil unrest events in Brazil provide vivid examples of mass protest involving
multiple groups of participants, as well as diverse triggers like transportation fare hike, police brutality,
excessive government spending on stadiums, and corruption and bribery involving public officials; see
(2015-16 protests in Brazil 2015). A notable aspect of mass protest is that both external factors as well as
contagion-like endogenous factors play a role in its dynamics. A study of the Brazil protests (Winters and
Weitz-Shapiro 2014) describes how it started as a response to bus fare hikes and organically developed
into a significantly wider participation from multiple groups over a bigger set of issues such as government
inefficiency and degrading social infrastructure in health and education among others.

With respect to generative models for unrest, there is existing literature that is based on viral propagation
over a network. Unrest rising from social diffusion across connected spatial regions is presented in (Braha
2012). There are similar viral models with focus on Twitter data as a measurable proxy, including applications
of epidemic models and activity cascades; see Hodas and Lerman (2014), Gleeson et al. (2015), Goode
et al. (2015). However, these models are not applicable for quantitatively analyzing the risk of social protest
over some long-term future horizon. For instance, they don’t account for trigger events in the environment
that may heighten the prospect of protest (Snow and Moss 2014). They ignore the possibility of multiple
distinct groups of participants, and also vary in their extent of including social reinforcement within or
across groups. Lastly, with respect to forecasting models of social unrest over the shorter-term, there is
recent work on a fully automated system called EMBERS (Ramakrishnan et al. 2014), which senses signals
from open source indicators like tweets, news, and blogs to issue predictions over a week to ten days of
lead-time.

Our research in this paper is motivated by a risk analysis perspective on social protest. Our application
involves a Government societal risk analyst who might analyze a longer-term future spanning several months
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to a year using qualitative techniques. We are interested in how to quantitatively complement such an
effort. We seek to do so by developing a generative formulation that allows the analyst to use background
knowledge for building models and conduct computational studies via simulation. The simulation is driven
by a combination of subjective beliefs around some forward-looking model parameters, and historical data
driven estimation of the remaining model parameters. The historical data that is available via curation and
annotation (Titus 2016) is as follows. Over a duration, say Jan 1 2015 to Dec. 31 2016 for e.g., the data
contains specific days that experienced mass protest reported in the media, along with the names of groups
that participated and an estimate of the overall size of protest. The time line spanned by the data set is also
annotated by analysts with the historical onset time for various triggers, and an estimate of the duration of
active persistence of each such trigger. Motivated by this, we introduce a novel stochastic graphical model
for social protest by building on the idea of a multivariate Hawkes process.

2 TOWARDS A GENERATIVE RISK SIMULATION MODEL OF SOCIAL UNREST

We consider the problem of modeling social protest over a chosen interval [0,H] into the future and involving
a set G of multiple social groups. A model for protest should ideally incorporate multiple exogenous trigger
events, multiple protest groups with their sensitivities to various triggers, and contagion-like dynamics
within and across groups. The first two items are typically reflected in qualitative methods such as mind
maps, alternative futures analysis and scenario development (Prunckun 2010, Schwartz 1996, Center for
the Study of Intelligence 2009). We present a quantitative model in this section that addresses each of
these.

2.1 Exogenous Events

We consider two types of trigger events. Single-occurrence events (set S) that may happen at most once,
and multi-occurrence events (set M) that may happen more than once over the horizon. The choice of
the event type depends on the nature of the event in terms of its typical time-scale, and how it relates to
the length of the horizon under consideration. For e.g., over a 1 year horizon, an event like a political
corruption scandal in a country where public corruption is high may be treated as a multi-occurrence event,
whereas an event like an economic recession may be treated as a single-occurrence event.

For each single-occurrence event, s ∈ S, we associate an occurrence probability ps. We also include a
random timing ts that denotes the onset conditional on occurrence, and a duration ds that denotes an interval
over which the event persists. The event persistence may be thought of as a type of social memory, to
model the recency effect of the trigger event with respect to influencing protest. For each multi-occurrence
event, m ∈M, we associate a Poisson model in terms of its intensity, λm over [0,H], along with a duration
dm for each occurrence of this event. Let Dist(ts), Dist(ds) and Dist(dm) denote distribution functions
for these random variables specified by the risk analyst, as per subjective beliefs. This is reasonable (Aven
and Cox 2016) because the events in the longer-term future are typically not always exchangeable with
past occurrences, but the analyst’s belief may however be informed by historical base rate of occurrence.
For notational purposes, let R = S∪M denote the set of all exogenous risk events of interest.

2.2 Protest Groups

Firstly, we associate a Poisson process with a baseline intensity λg with each protest group g ∈ G, where
an arrival corresponds to a protest event involving a batch of protestors. This is meant to capture the
baseline, i.e. random participation in protest without any specific trigger event; for e.g. rallying in support
of long-standing issues that define the group’s agenda. From a generative point of view, it provides a
necessary seeding process that can undergo further excitation under suitable conditions, as we describe
later in the paper. Let Bg denote the set of baseline arrivals in any group g, where each i ∈Bg carries a
random mark µi that denotes the size of the event. This random mark is taken to be independent across
baseline arrivals in any group, as well as across groups.
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2.3 Hawkes Process And Excitation

We begin with a brief introduction to a Hawkes process (Hawkes 1971), which provides a principled way to
model situations where the occurrence of a past event gives a temporary boost to the probability of an event
in the future. It is a point process whose intensity is time-varying and random; it is the sum of a baseline
background rate and additive contributions from past events. In a univariate setting, past events of the only
arrival process under question contribute to what is known as self-excitation. In a multivariate setting, one
considers a vector of such Poisson processes that may also exhibit mutual-excitation (Embrechts, Liniger,
and Lin 2011), where additive contributions to any component process, say g, may result from past arrivals
in any other component processes, say k 6= g. It has seen applications in seismology (Ogata 2013), finance
(Filimonov and Sornette 2012) and tweet cascades in social networks (Cadena et al. 2015). In construction,
it is like a branching process, where an immigrant event is an arrival from a baseline Poisson process.
An offspring event is a realization from an offspring Poisson process that is born at the time of arrival
of its parent event, per excitation. This offspring process starts with an intensity equal to an additive
bump that is imparted by its parent event, and its intensity decays at some rate to zero. Further, offspring
events may similarly reproduce due to excitation. Also, each offspring Poisson process is independent
of its parent process, given the specific parent event that produces it and endows it with a corresponding
starting intensity. See Simma and Jordan (2012) for a random forest view of a univariate Hawkes process.
Notation-wise, each baseline arrival in the above view, i ∈Bg, seeds its own cluster, which we denote as
Ci. Let Og denote the set of all offspring arrivals corresponding to group g. By the constructive view, each
j ∈ Og has a unique baseline arrival ancestor, Ancestor( j) ∈Bg′ from some group g′ ∈ G (potentially,
g′ 6= g). Likewise, it also has an immediate parent, Parent( j) ∈ CAncestor( j), from some group, i.e. in
general a cluster has arrivals from multiple groups. It also has a size µ j to capture the magnitude. Let I
denote the set of all arrivals (baseline and offspring) across all groups, and for any i ∈ I, let Group(i) ∈G
denote the group-type and Ti denote the the time of arrival.

2.4 A Graphical Model For Social Protest

Consider a graph G (V ,E ) whose node set is taken as V = R∪G, i.e. the set of exogenous events and
protest groups. Further, let E consist of directed edges of the form (u,v), where u ∈ R and v ∈G, i.e. edges
denoting the influence exerted by trigger events on groups. Additionally, let E also consist of directed
edges of the form (u,v), where u,v ∈ G, i.e. edges denoting directed influence among protest groups.
These edges represent the potential for self-excitation (self-loops) and mutual-excitation (edges with distinct
vertices) across the set of Poisson processes. Let Rg denote the set of triggers that influence group g,
i.e. Rg = {r|r ∈ Predecessor(g)∩R}. Let Pg denote the set of groups whose events potentially trigger
protest in group g via excitation, i.e. Pg = {k|k ∈ Predecessor(g)∩G} . Figure 1 shows an example that
has three protest groups, g1,g2,g3, two single-occurrence risk events, s1,s2, and two multi-occurrence risk
events, m1,m2, respectively. Past events of each group in this example have the potential to self-excite
future events in their own group, whereas past events in g1 have the potential to also excite future events
in both g2 and g3 respectively. We begin with the following definition of a trigger-conditional Hawkes
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Figure 1: A graphical model with 3 protest groups.
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process.
Definition 1 (Trigger-conditional Hawkes Process) A trigger-conditional multivariate Hawkes process
is conventional multivariate Hawkes process with the following additional conditions. A Parent event i
arriving at Ti in any component process g is eligible to reproduce, i.e. give birth to an offspring Poisson
process in each downstream component k ∈ Successor(g) only if there is a corresponding trigger (risk)
event r ∈ Rg that is active at Ti. Further, if multiple risk event types r ∈ Rg are active at Ti, each unique
type of active trigger enables parent i to give birth to a separate, independent offspring Poisson process in
each downstream component k ∈ Successor(g).

2.4.1 Marked Arrivals In Each Group

In order to model random excitation as per Definition 1, let us consider an arrival i at time Ti in any
group g. Corresponding to any group k ∈ Successor(g), the above arrival i carries three additional marks,
(∆λg,k,r,i,∆τg,k,r,i,∆µg,k,r,i). ∆λg,k,i denotes the bump in the intensity of arrivals in group k due to arrival
i, if so enabled as per Definition 1. ∆τg,k,r,i denotes the duration of time over which such a bump in
intensity will decay to zero. So a child Poisson process in group k with intensity ∆λg,k,i is conditionally
born at time Ti, and this child process will decay to zero intensity over [Ti,Ti +∆τg,k,r,i]. Lastly, ∆µg,k,r,i
denotes amplification in the size of excited protest, relative to baseline protest size. All random marks are
assumed to be independent across arrivals, as well as mutually independent within any given arrival. Let
(Dist(∆λg,k,r),Dist(∆τg,k,r)) denote distribution functions associated with each edge (g,k) with respect
to r ∈ Rg. Further, we specifically restrict the model to a linear decay function Φ for bump in intensity
from any specific past event, as given below, where ∆λ and ∆τ denote a representative bump in intensity
and duration of decay respectively, and [x]+ = max(x,0). Φ is zero by definition for t < 0, and is given as

Φ(t,∆λ ,∆τ) =
[
∆λ − t∆λ

∆τ

]+
(for t ≥ 0). (1)

2.4.2 Net Arrival Rate In Each Group

With the above setup, we may express the net time-varying rate, νg(t), in any group g as per Definition 1.
Let Ip = Bp∪Op denote the set of all arrivals in group p. We have that,

νg(t) = λg + ∑
p∈Pg

∑
r∈Rp

∑
i∈Ip|Ti<t

1r,TiΦ(t−Ti,∆λp,g,r,i,∆τp,g,r,i). (2)

It may be seen via Equation 2 that the trigger-conditional Hawkes process behaves like a hybrid process
in each component g which may switch between a homogeneous Poisson process with a baseline intensity
and a history-dependent Poisson process with time-varying intensity. The indicator function 1r,Ti is a
binary variable to indicate whether the risk event r is active in its persistence at time Ti. If r ∈ S, i.e. a
single-occurrence risk event (as per notation defined in Section 2.1),

1r,Ti =

{
1 if tr ≤ Ti ≤ tr +dr,

0 otherwise.
(3)

If r ∈M, i.e. a multi-occurrence risk event, let T r
k denote the onset times of multiple occurrences (indexed

by k). The indicator function 1r,Ti in this case is a binary variable that indicates whether there is at least
one such arrival of the risk event that is active in its persistence at time Ti. In this case (as per notation
defined in Section 2.1),

1r,Ti = max
k

(1T r
k ,Ti), (4)

where we have that

1T r
k ,Ti =

{
1 if T r

k ≤ Ti ≤ T r
k +dk,

0 otherwise.
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Lastly, we model a multiplicative amplification over and above a baseline magnitude for the size of all
excited arrivals as,

µ j = µ̃(1+∆µk,g,r, j) (where k = Group(Parent( j))), (5)

where the amplification is with respect to a latent random variable that is distributed as µ̃ ∼ Dist(µg).

3 SIMULATING THE GENERATIVE MODEL

We address the simulation of the process described by Equation 2 to generate sample paths of protest.
We consider a simulation horizon [0,H] consisting of a discrete set {1, . . . ,H} of H time periods in some
appropriate unit of time (say, weeks). Each continuous-time Poisson arrival over [0,H] would then occur
within one of the discrete time periods. The main idea is to recognize that Equation 2 presents a additive
decomposition of the net arrival rate in terms of contributions that conditionally appear on the right hand
side. If the net Poisson arrival intensity is due to an additive set of contributions from mutually independent
contributing Poisson processes, then we may simulate each independent contribution individually on a
common time line and superpose the arrivals by placing them together on the same common time line. This
is the superposition property of Poisson processes in the mutually independent setting (Ross 2014). While
Equation 2 appears more complicated with historical dependence on a random number of contributing
processes, these contributions are mutually independent given their respective parent events.

We adapt the above essential idea by taking a random forest view of the process. So instead of directly
working with Equation 2, we instead focus the simulation on each cluster Ci that is seeded by some baseline
arrival i ∈Bg in some group g, as defined in Section 2.3. This is related to the approximate simulation
approach presented for a univariate Hawkes process in Møller and Rasmussen (2006). Recall that each
cluster is a rooted tree that captures a set of arrivals, possibly spanning multiple groups, with a parent-child
relationship across successive levels in the tree. Starting at t = 0, we firstly generate a set of immigrant
arrivals for each group using the corresponding baseline Poisson processes. We maintain an active list of
unprocessed immigrant arrivals in an ascending order of their arrival times. We sequentially process the
active list to simulate a cluster corresponding to each element in the list, noting that each immigrant is
the root of a cluster that it spawns. Within each cluster, we recursively simulate arrivals from offspring
Poisson processes that descend from previous simulated arrivals in the cluster, and which are conditionally
enabled as per Equations 3 and 4. We do so by maintaining an active list of unprocessed offspring Poisson
processes in the current cluster, organized in an ascending order of their birth times. For e.g., starting
with a baseline immigrant, say i in group g, we simulate arrivals from offspring Poisson processes in
groups k ∈ Successor(g) if they are enabled as per Equations 3 and 4, and continue so recursively with
further generations of offspring Poisson processes if enabled, and so on. If we think of Equation 2 as a
set of equations indexed by group, the cluster-centric simulation captures the cluster-relevant contributions
from the full set of right hand sides in Equation 2. Superposing the simulated set of arrivals across all
simulated clusters on a common time line essentially produces a simulation corresponding to the set of
arrival processes in Equation 2. Lastly, we assume that the baseline Poisson intensity in each group is
λg1t≥0, i.e. we ignore edge-effect possibility of immigrant arrivals with arrival times that are before t = 0,
the simulation start time. This essentially ignores the possibility of offspring arrivals in [0,H] stemming
from such historical parent events.

Algorithm 1 presents the full procedure. The sampling steps from various probability distribution
functions have standard techniques (see for e.g. Ross (2012), Law and Kelton (2000)) and implementations
(see for e.g. Jones, Oliphant, Peterson, et al. (2001)). Techniques to sample arrivals from homogenous
Poisson processes may be found in Pasupathy (2011a), while those for nonhomogenous Poisson processes,
such as our time-varying Poisson intensity Φ from Equation 1, may be seen in Pasupathy (2011b). It should
be noted that the branching process view of the generative model also allows the possibility of a run-away
in the simulation, i.e. a situation where the number of offspring grows indefinitely and the inner while
loop in Step 3 continues without termination. This may happen when the various excitation parameters
in the model, namely, ∆λ and ∆τ assume sufficiently large values and the average number of offspring
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stemming from a parent event is greater than one. Such a regime is referred to as super-critical or explosive
(Filimonov and Sornette 2015) from the view of a branching process. In order to address this in practice,
we suggest that the termination condition of the inner while loop consider alternative criteria. For e.g.
one may consider the earlier of two criteria, namely that of reaching a suitably large upper limit on the
number of unprocessed offspring in the corresponding ACTIVECHILDREN list, or as stated in Algorithm
1, the criterion of emptying out the corresponding ACTIVECHILDREN list. The former case represents
the run-away condition, which may be interpreted by the analyst as the realization of a very large protest
participation. A more nuanced simulation procedure may also choose to handle the run-away condition
via an upper limit on the resulting size of participation in the corresponding group, as follows. Recall that
we use a discrete-time model for keeping track of the number of arrivals and their corresponding protest
sizes. So we may choose to ignore future offspring arrivals in time-periods that have already reached an
upper limit on the size of protest participation from the corresponding group (due to already processed
arrivals). Such an upper limit may be provided by the analyst as an estimated bound on the size of each
protest group.

For each simulated time line, we may capture various quantities of interest to support risk analyst
queries. These include a) the cluster-specific view in terms of the seeding lineage of historical events
along with their respective group identities, arrival times and protest sizes, as well as b) the trigger events
that were active at the time of each parent event along with the onset and duration of persistence of each
trigger event. Mapping the continuous arrival times of various arrivals to the discrete time scale over
[0,H], we may generate a cumulative view of the protest size by group as well as across groups over the
horizon of interest at the desired time resolution for the risk analyst (e.g. weekly). Similarly, one may also
track the composition of protestors in terms of their generation index (0th,1st , . . . ) from any given group
that protested in any given time period to gain insights about the contagion dynamics. Such fine-grained
book-keeping would enable informative responses to queries from the risk analyst such as: Tell me more
about the history and dynamics that led to the large cumulative protest that I see in this simulated time
line at time period, say T . The collective implications of the analyst’s subjective beliefs about the future,
as well as historical data, are exposed via such queries whose responses may serve insights around risk
preparedness with respect to risk consequences.
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Figure 2: A graphical model with 18 protest groups

4 COMPUTATIONAL RESULTS

We present computational results on a model instance based on protest groups in Brazil, as shown in
Figure 2. The model involves 18 protest groups shown in black (outline) nodes, 5 multi-occurrence risk
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Algorithm 1 Trigger-conditional Social Protest Generative Process simulation
specify

Number of simulations NUMSIM
Horizon H, Graphical model G (V ,E )
Dist(ts) , Dist(ds), ps for each s ∈ S and Dist(dm), λm for each m ∈M
λg, Dist(µg) for each g ∈ G
Dist(∆λg,k,r),Dist(∆τg,k,r),Dist(∆µg,k,r), ∀(g,k) ∈ E , where g ∈ G, k ∈ Successor(g), and r ∈ Rg

repeat
0. Initialize

COUNTER = 0,
ACTIVEIMMIGRANTS ← EMPTY SORTEDARRIVALLIST (list sorted by arrival time)
Bg =∅, Og =∅, ∀g ∈ G

1. Generate risk event realizations for each r ∈ R
For each single-occurrence event s ∈ S, sample δs ∼ Bernoulli(ps), and associate:

ts ∼ Dist(ts), ds ∼ Dist(ds)
For each multi-occurrence event m ∈M, for arrival k ∼ Poisson(λm) at time T m

k associate:
tim ∼ Dist(tm), dim ∼ Dist(dm)

2. Generate a set of immigrant arrivals ig ∀g ∈ G and store them in ACTIVEIMMIGRANTS

GENARRIVALS(Poisson(λg), ACTIVEIMMIGRANTS, NULL, g, 0)
3. Cluster Simulation
. Simulate a cluster seeded by each immigrant from above ACTIVEIMMIGRANTS

while ACTIVEIMMIGRANTS is not empty do
. POP below removes the item at the head of the sorted list, i.e. least arrival time item

i = ACTIVEIMMIGRANTS ← POP, g = Group(i), Bg = Bg∪ i
ACTIVECHILDREN(i) ← EMPTY SORTEDARRIVALLIST

for each r ∈ Rg do
if (1r,Ti = 1) (as per Equations 3, 4)

for each k ∈ Successor(g) do
. Generate offspring ik and PUSH to ACTIVECHILDREN(i)

GENARRIVALS(Poisson(Φ(Ti,∆λg,k,r,i,∆τg,k,r,i)),ACTIVECHILDREN(i), i, k, Ti)
(see Equation 1 for Φ(t,∆λ ,∆τ)))

end for
end for
while ACTIVECHILDREN(i) is not empty do

j = ACTIVECHILDREN(i) ← POP, and f = Group( j), O f = O f ∪ j
for each r ∈ R f do

if (1r,Tj = 1)
for each k ∈ Successor( f ) do
. Generate offspring ik and PUSH to ACTIVECHILDREN(i)

GENARRIVALS(Poisson(Φ(Tj,∆λ f ,k,r, j,∆τ f ,k,r, j)),ACTIVECHILDREN(i), j, k, Tj)
end for

end for
end while

end while
. Unioning all arrivals in the resulting Bg and Og across all groups g ∈G, and superposing them on a
common timeline, contains the simulated trace of all arrivals in the process described by Equation 2.
4. COUNTER = COUNTER+1

until COUNTER < NUMSIM
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Procedure 1 GENARRIVALS
specify Horizon H
GENARRIVALS(Poisson(γ), LIST, PARENT j , GROUP g, START-TIME T0)

Generate arrivals i∼ Poisson(γ) over remaining time [T0,H−T0] and store them in LIST
. For each arrival i∼ Poisson(γ) arriving at time Ti, associate:
. Group and Cluster-related information: Group(i) = g

if j is NULL
Ancestor(i) = j, µi ∼ Dist(µg)

else
Parent(i) = j, Ancestor(i) = Ancestor( j), µi as per Equation 5

. Excitation-related information: ∀k ∈ Successor(g) and ∀r ∈ Rg

∆λg,k,r,i ∼ Dist(∆λg,k,r), ∆τg,k,r,i ∼ Dist(∆τg,k,r), ∆µg,k,r,i ∼ Dist(∆µg,k,r)
Immigrants i sorted in an ascending order of arrival times Ti in LIST

factors shown in bolded red nodes and 2 single-occurrence risk factors shown in red nodes, and its structure
was built in collaboration with government analysts. The red edges denote the triggering influences exerted
by the risk factors on the protest groups, and the blue edges denote excitations in the generative model
formulation defined in Section 2.4. We consider the model over a horizon H = 16 weeks. The excitation
phenomenon is parameterized at the resolution of a hyperedge involving three nodes, namely a risk trigger
node and two excitable nodes that correspond to the same (self-excitation) or two distinct (cross-excitation)
protest groups. Table 1 shows all such hyperedges that exhibit non-trivial cross excitation, which serves
as a transfer mechanism, i.e. triggers that don’t directly affect a group may indirectly excite it via another
group that they directly affect. Table 3 shows all the self-excitation combinations, where the first column
stands for both the source and target groups, and the second column shows the triggers. The remaining
columns show the excitation related parameters that are assumed to hold for both self- and cross-excitations.
Parameters with minimum, mode and maximum are taken as random variables with a triangular density
with these values, whereas those with minimum and maximum alone are taken as uniform random variables
over the specified range. All parameters are estimated from historical data Titus (2016), and we omit the
details due to space, and details may be found in Subramanian (2016). The parameters corresponding to
the futuristic beliefs of the analyst around risk triggers is assumed to be as per Table 4 and Table 2.

Figure 3 shows five sample paths in solid lines (out of 10000 projections) over 16 weeks that are
generated via simulation by the model. It also shows three dashed lines corresponding to three different (and
non-overlapping) intervals of 16 week durations taken from the historical data set. As seen in the figure,
the generative model is rich enough to capture the range of actual protest trajectories that were witnessed
in the data set. Paths 1 and 2 exceed 10 Million at their peak in aggregate number of protestors, whereas
Path 5 witnesses a maximum of 20000 and appears close to zero due to the scale of the y-axis in the
figure. With more simulations, one may explore further extreme scenarios (such as the dashed line ‘Actual
1’) that are potentially within the reach of the model. The figure shows a simulation based estimate of the
likelihood of exceeding 1 Million of aggregate number of protestors in at least one week over the horizon.
The annotations on the plot show the identities of the protest groups that were dominant participants in
these sample paths, along with the triggers that were active over respective intervals of time (shown as a
weekly range in square brackets). For e.g. in Path 2, ‘Political Corruption’ trigger was active over weeks
7-10, ‘Public Transportation’ trigger was active over weeks 8-11, and the dominant participation was from
Vem Pra Rua, Frente Brasil Popular and Revoltados.

5 CONCLUSIONS

We have presented a graphical, generative risk model for simulating social protest involving a network of
multiple groups and external triggers. Our model integrates three distinct phenomena to generate protest,
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Figure 3: Simulated projections of aggregate weekly protest

namely, a baseline spontaneous phenomenon that is due to apparent randomness, an exogenously excited
phenomenon that is due to external events in the environment, and an endogenously excited phenomenon
that is due to a stochastic contagion effect both within and across protest groups. We have developed a
novel formulation by defining a trigger-conditional adaptation of multivariate Hawkes processes, which
exhibit self-excitation and mutual excitation that is further conditional on the presence of active triggers.
An arrival in this process corresponds to a batch of protestors, and random marks on the arrival serve to
capture both the excitation-related parameters as well as the size of protest. Both the batch arrival intensity
and the batch size, while mutually independent, exhibit respective history-dependence due to memory that
is modeled in the excitation phenomena. We also present a simulation algorithm for generating sample
paths.

In a productive collaboration with the analysts, we identified and assembled historical data with necessary
annotations in line with the needs of a realistic model instance. We performed data analysis for estimating
various model parameters and have reported computational results from our model with these estimates.
The generative capacity of the proposed stochastic model is sufficiently rich to capture a realistic range of
protest event trajectories and participation volumes. The model itself is more general than its inspiration,
namely the phenomenon of social protest, and may be used in any context where one seeks to model
contagion that is due to external triggers and network interaction effects. The proposed trigger-conditional
multivariate Hawkes process provides a natural format to mathematically express such dynamics.
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Table 1: Edge-risk combinations that are non-trivial in the model.

Source Target Trigger Source Target Trigger

Revoltados On LINE APEOESP Gov inefficiencies Povo Sem Medo MBL Austerity Measures
Revoltados On LINE APEOESP Gov spending Revoltados On LINE MBL Gov inefficiencies
Revoltados On LINE APEOESP Political Corruption Vem Pra Rua MBL Gov inefficiencies
Vem Pra Rua APEOESP Gov inefficiencies MBL MST Gov spending
Vem Pra Rua APEOESP Gov spending MBL MST Political Corruption
Vem Pra Rua APEOESP Political Corruption Revoltados On LINE MST Gov inefficiencies
MPL Black Bloc Gov inefficiencies Revoltados On LINE MST Gov spending
MBL CMP Gov spending Revoltados On LINE MST Political Corruption
MBL CMP Political Corruption Vem Pra Rua MST Gov inefficiencies
Revoltados On LINE CMP Gov inefficiencies Vem Pra Rua MST Gov spending
Revoltados On LINE CMP Gov spending Vem Pra Rua MST Political Corruption
Revoltados On LINE CMP Political Corruption MBL MTST Gov spending
Vem Pra Rua CMP Gov inefficiencies MBL MTST Political Corruption
Vem Pra Rua CMP Gov spending Revoltados On LINE MTST Gov inefficiencies
Vem Pra Rua CMP Political Corruption Revoltados On LINE MTST Gov spending
MBL CTB Gov spending Revoltados On LINE MTST Political Corruption
MBL CTB Political Corruption Vem Pra Rua MTST Gov inefficiencies
Revoltados On LINE CTB Gov inefficiencies Vem Pra Rua MTST Gov spending
Revoltados On LINE CTB Gov spending Vem Pra Rua MTST Political Corruption
Revoltados On LINE CTB Political Corruption CUT Nas Ruas Austerity Measures
Vem Pra Rua CTB Gov inefficiencies Frente Brasil Popular Nas Ruas Austerity Measures
Vem Pra Rua CTB Gov spending Povo Sem Medo Nas Ruas Austerity Measures
Vem Pra Rua CTB Political Corruption MBL Povo Sem Medo Gov spending
MBL CUT Gov spending MBL Povo Sem Medo Political Corruption
MBL CUT Political Corruption Revoltados On LINE Povo Sem Medo Gov inefficiencies
Revoltados On LINE CUT Gov inefficiencies Revoltados On LINE Povo Sem Medo Gov spending
Revoltados On LINE CUT Gov spending Revoltados On LINE Povo Sem Medo Political Corruption
Revoltados On LINE CUT Political Corruption Vem Pra Rua Povo Sem Medo Gov inefficiencies
Vem Pra Rua CUT Gov inefficiencies Vem Pra Rua Povo Sem Medo Gov spending
Vem Pra Rua CUT Gov spending Vem Pra Rua Povo Sem Medo Political Corruption
Vem Pra Rua CUT Political Corruption CUT Revoltados On LINE Austerity Measures
MBL Frente Brasil Popular Gov spending Frente Brasil Popular Revoltados On LINE Austerity Measures
MBL Frente Brasil Popular Political Corruption Povo Sem Medo Revoltados On LINE Austerity Measures
Revoltados On LINE Frente Brasil Popular Gov inefficiencies MBL UBES Gov spending
Revoltados On LINE Frente Brasil Popular Gov spending MBL UBES Political Corruption
Revoltados On LINE Frente Brasil Popular Political Corruption Revoltados On LINE UBES Gov inefficiencies
Vem Pra Rua Frente Brasil Popular Gov inefficiencies Revoltados On LINE UBES Gov spending
Vem Pra Rua Frente Brasil Popular Gov spending Revoltados On LINE UBES Political Corruption
Vem Pra Rua Frente Brasil Popular Political Corruption Vem Pra Rua UBES Gov inefficiencies
CUT LPJ Austerity Measures Vem Pra Rua UBES Gov spending
Frente Brasil Popular LPJ Austerity Measures Vem Pra Rua UBES Political Corruption
MBL LPJ Gov spending MBL UNE Gov spending
MBL LPJ Political Corruption MBL UNE Political Corruption
Povo Sem Medo LPJ Austerity Measures Revoltados On LINE UNE Gov inefficiencies
Revoltados On LINE LPJ Gov inefficiencies Revoltados On LINE UNE Gov spending
Revoltados On LINE LPJ Gov spending Revoltados On LINE UNE Political Corruption
Revoltados On LINE LPJ Political Corruption Vem Pra Rua UNE Gov inefficiencies
Vem Pra Rua LPJ Gov inefficiencies Vem Pra Rua UNE Gov spending
Vem Pra Rua LPJ Gov spending Vem Pra Rua UNE Political Corruption
Vem Pra Rua LPJ Political Corruption CUT Vem Pra Rua Austerity Measures
CUT MBL Austerity Measures Frente Brasil Popular Vem Pra Rua Austerity Measures
Frente Brasil Popular MBL Austerity Measures Povo Sem Medo Vem Pra Rua Austerity Measures

Table 2: Single-occurrence risk triggers in the model.

Trigger,s ∈ S Probability, ps Timing, ts,min, week Timing, ts,mode, week Timing, ts,max, week ds,min, weeks ds,max, weeks

Austerity Measures 0.01 0 None 4 2 4
Public Transportation Costs 0.01 0 6 16 2 4
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Table 3: Edge-risk combinations for self-excitation and excitation parameters.

Group Triggers ∆λ·,g,· ∆µ·,g,· ∆τ·,g,·
(min,mode,max)% (min,mode,max)% (min,max) weeks

APEOESP Aust. Meas.,Impeach. (0,94,1031) (156, 3760, 5724) (1 , 2)
Black Bloc Polic. Viol.,Pub. Transp. Costs (0,720,1950) (500, 632, 640) (1 , 2)
CMP Aust. Meas.,Impeach. (0,217,2423) (297, 413, 588) (1 , 2)
CTB Aust. Meas.,Impeach. (0,155,681) (0, 792, 1030) (1 , 2)
CUT Aust. Meas.,Impeach. (0,99,193) (85, 716, 1324) (1 , 2)
Frente Brasil Popular Aust. Meas.,Impeach. (0,722,741) (67, 6568, 80191) (1 , 2)
LPJ Impeach. (0,107,1212) (485, 2562, 5779) (1 , 2)
MBL Gov. spend.,Impeach.,Polit. Corr. (0,549,925) (165, 22709, 67802) (1 , 2)
MST Aust. Meas.,Impeach. (0,73,218) (108, 644, 1658) (1 , 2)
MTST Aust. Meas.,Impeach. (0,98,349) (196, 2169, 5501) (1 , 2)
MPL Gov. ineff.,Pub. Transp. Costs (0,99,583) (180, 1349, 2900) (1 , 2)
Nas Ruas Gov. ineff.,Gov. spend.,Impeach.,Polit. Corr. (0,132,811) (179, 1266, 2399) (1 , 2)
Povo Sem Medo Aust. Meas.,Impeach. (0,674,1212) (82, 6689, 37078) (1 , 2)
Revoltados On LINE Gov. ineff.,Gov. spend.,Impeach.,Polit. Corr. (0,707,4586) (0, 70811, 152168) (1 , 2)
Tarifa Zero Pub. Transp. Costs (0,185,583) (0, 15, 15) (1 , 2)
UBES Aust. Meas.,Impeach. (0,121,1071) (143, 3773, 4931) (1 , 2)
UNE Aust. Meas.,Impeach. (0,62,700) (2152, 3064, 3501) (1 , 2)
Vem Pra Rua Gov. ineff.,Gov. spend.,Impeach.,Polit. Corr. (0,1423,1462) (249, 17990, 149800) (1 , 2)

Table 4: Multi-occurrence risk triggers in the model.

Trigger,m ∈M Mean Rate µm per year Duration dm,min, weeks dm,max, weeks

Gov inefficiencies 0.5 2 4
Gov spending 0.5 2 4
Impeachment 0.5 2 4
Police Violence 0.5 1 2
Political Corruption 0.5 2 4

REFERENCES

2015-16 protests in Brazil 2015. “2015-16 protests in Brazil — Wikipedia, The Free Encyclopedia”.
Accessed April 05, 2016. https://en.wikipedia.org/wiki/2015-16 protests in Brazil.

Aven, T., and L. A. Cox. 2016. “National and Global Risk Studies: How Can the Field of Risk Analysis
Contribute?”. Risk Analysis 36 (2): 186–190.

Braha, D. 2012, 10. “Global Civil Unrest: Contagion, Self-Organization, and Prediction”. PLoS ONE 7
(10): 1–9.

Cadena, J., G. Korkmaz, C. J. Kuhlman, A. Marathe, N. Ramakrishnan, and A. Vullikanti. 2015. “Forecasting
social unrest using activity cascades”. PloS one 10 (6): e0128879.

Center for the Study of Intelligence 2009. “A Tradecraft Primer: Structured Analytic Techniques for
Improving Intelligence Analysis”. CIA Center for the Study of Intelligence.

Embrechts, P., T. Liniger, and L. Lin. 2011, 08. “Multivariate Hawkes processes: an application to financial
data”. J. Appl. Probab. 48A:367–378.

Filimonov, V., and D. Sornette. 2012. “Quantifying reflexivity in financial markets: Toward a prediction
of flash crashes”. Physical Review E 85 (5): 056108.

Filimonov, V., and D. Sornette. 2015. “Apparent criticality and calibration issues in the Hawkes self-
excited point process model: application to high-frequency financial data”. Quantitative Finance 15
(8): 1293–1314.

Gleeson, J. P., K. P. O’Sullivan, R. A. Baños, and Y. Moreno. 2015. “Determinants of Meme Popularity”.
arXiv preprint arXiv:1501.05956.

Goode, B. J., S. Krishnan, M. Roan, and N. Ramakrishnan. 2015, 10. “Pricing a Protest: Forecasting the
Dynamics of Civil Unrest Activity in Social Media”. PLoS ONE 10 (10): 1–25.

4406



Subramanian and Titus

Hawkes, A. G. 1971. “Point Spectra of Some Mutually Exciting Point Processes”. Journal of the Royal
Statistical Society. Series B (Methodological) 33 (3): 438–443.

Hodas, N., and K. Lerman. 2014. “The Simple Rules of Social Contagion”. Scientific Reports 4 (4343).
Jones, Eric and Oliphant, Travis and Peterson, Pearu and others 2001. “SciPy: Open source scientific tools

for Python”. [Online; accessed 2016-06-15].
Law, A. M., and W. D. Kelton. 2000. Simulation Modeling & Analysis. 3rd ed. New York: McGraw-Hill,

Inc.
Møller, J., and J. G. Rasmussen. 2006. “Approximate Simulation of Hawkes Processes”. Methodology and

Computing in Applied Probability 8 (1): 53–64.
Ogata, Y. 2013. “A prospect of earthquake prediction research”. Statistical Science 28 (4): 521–541.
Pasupathy, R. 2011a. “Generating homogenous Poisson processes”. In Wiley Encyclopedia of Operations

Research and Management Science. Wiley.
Pasupathy, R. 2011b. “Generating nonhomogenous Poisson processes”. In Wiley Encyclopedia of Operations

Research and Management Science. Wiley.
Prunckun, H. 2010. Handbook of scientific methods of inquiry for intelligence analysis. Lanham: Scarecrow

Press.
Ramakrishnan, N., P. Butler, S. Muthiah, N. Self, R. Khandpur, P. Saraf, W. Wang, J. Cadena, A. Vullikanti,

G. Korkmaz, C. Kuhlman, A. Marathe, L. Zhao, T. Hua, F. Chen, C. T. Lu, B. Huang, A. Srinivasan,
K. Trinh, L. Getoor, G. Katz, A. Doyle, C. Ackermann, I. Zavorin, J. Ford, K. Summers, Y. Fayed,
J. Arredondo, D. Gupta, and D. Mares. 2014. “’Beating the News’ with EMBERS: Forecasting
Civil Unrest Using Open Source Indicators”. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, 1799–1808. New York, NY, USA:
ACM.

Ross, S. M. 2012, 11. Simulation, Fifth Edition. 5 ed. Academic Press.
Ross, S. M. 2014, 2. Introduction to Probability Models, Eleventh Edition. 11 ed. Academic Press.
Schwartz, P. 1996, 4. The Art of the Long View: Planning for the Future in an Uncertain World. Reprint

ed. Currency Doubleday.
Simma, A., and M. I. Jordan. 2012. “Modeling events with cascades of Poisson processes”. arXiv preprint

arXiv:1203.3516.
Snow, D. A., and D. M. Moss. 2014. “Protest on the fly toward a theory of spontaneity in the Dynamics

of Protest and Social Movements”. American Sociological Review:0003122414554081.
Subramanian, D. 2016. “Appendix with details on data analysis”. http://researcher.watson.ibm.com/

researcher/files/us-dharmash/appendix.pdf.
Titus, L. 2016. “Social unrest movements database in Excel”. Technical Report 16-1, Laboratory of Analytical

Sciences, North Carolina State University, Raleigh, North Carolina.
Winters, M. S., and R. Weitz-Shapiro. 2014. “Partisan protesters and nonpartisan protests in brazil”. Journal

of Politics in Latin America 6 (1): 137–150.

AUTHOR BIOGRAPHIES

Dharmashankar Subramanian is a Principal Research Staff Member with IBM Research. His research
interests include decision-making under uncertainty, risk analysis, and applications of statistical machine
learning and mathematical modeling in a diverse set of domains. His email address is dharmash@us.ibm.com.

Lucia L. Titus is a researcher with the Laboratory for Analytic Sciences, where she collaborates on a
variety of open source intelligence projects. Her research interests include social movements and social
unrest, extremism and radicalization, and threat and risk assessments. Her email address is lltitus@ncsu.edu.

4407


