Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

AUTOMATED MODEL VERIFICATION USING AN EQUIVALENCE TEST ON A
REFERENCE MODEL

Akin Akbulut Christoph Laroque

Stephan Abke
Business Computing

Heinz Nixdorf Institut University of Applied Sciences Zwickau
University of Paderborn Scheffelstrae 39
Fiirstenallee 11 08066 Zwickau, GERMANY

33102 Paderborn, GERMANY

ABSTRACT

In this article, a cross-tooling method for automated model verification is presented using a reference
model. Furthermore, the method is implemented in teaching, using a web platform. The method bases on
Yiicesan and Schruben (1992), demonstrating a procedure for the examination of a structural and behavioral
equivalence of two simulation models based on Simulation Graph models. However, Simulation Graph
models are subject to an event-oriented modeling world view. Since current simulation tools use a process-
oriented - easier to understand - modeling world view, a simple queuing model shows how transformation
from a process-oriented world view (Simio 2017, AnyLogic 2017) takes place in an event-oriented world
view (Simulation Graph models). A further step then checks the structural equivalence via an isomorphic
mapping on the resulting planar graphs.

1 INTRODUCTION

The University of Paderborn offers an introduction course in Modeling and Simulation for Material Flow
Systems. This course is aimed at undergraduate students at the Faculty of Economics and thus also at
students, with a major in business studies or business engineering, who have no or little knowledge of
programming. The course content includes the theory of modeling and concludes by completion of a
simulation study in production and logistics — this also requires the implementation of a computer model.
The task of the simulation study includes a fictitious description of a manufacturing system, a problem
definition and an objective. The choice of a simulation application, in which the computer model is
implemented, will be chosen by the students independently. We regularly observe that students who are
located in the business studies or business engineering can easily create an adequate concept model for
a given problem, but they are very unsure about the implementation of a simple computer model. As
a consequence, the lecturers’ hours are frequently visited by participants to discuss whether a computer
model is correct or whether a concept model has been correctly transformed into a computer model. The
problem space addressed here is shown in Figure 1. Since the simulation study is carried out on a fictitious
manufacturing system, the methods for verification & validation described in the literature are not applicable
so that students can not compare their model results (for example from a control calculation) with a real
system, see e.g. Balci (1998), Knaak et al. (2005), Rabe et al. (2008). A possibility with the existing data
to check whether a concept model has been correctly transformed into a computer model can be done by a
comparison with a sample solution or a reference model. However, a manual verification is time-consuming
because the structure, all functions, and all other attributes of both models must be compared. This fact
led us to the question of how an automated approach for model verification must be built up and which
prerequisites must apply in order to create a method that can be used for teaching. Our contribution in

978-1-5386-3428-8/17/$31.00 ©2017 IEEE 4187

Akbulut, Abke, and Laroque

"‘/—‘—’/ . . .\:\\\\
Manufacturing Validation SN
system :

;
A/

i\ Validation Verification
N

Automatization
possible?

’ Computer model

Figure 1: Process of Modeling.

this paper is a method that is capable of comparing two computer models and make a statement whether
both models model the same manufacturing system. Since the students use different simulation tools, the
method must also be able to compare models from two different simulation tools.

2 RELATED WORK

An explicit check on equality of two simulation models is described in the literature as equivalence of
models and is associated with abstraction techniques for simulation models. In this context, it is checked
whether an abstracted model calculates still the same or similar results as before its abstraction, see e.g.
Sevinc (1991), Zeigler et al. (2000), Johnson et al. (2005). Overstreet (1982) differentiates two different
equivalences: An equivalence of the structure (or structural equivalence) and an external equivalence.
Accordingly, there is a structural equivalence when the sets A and B, by which two models are described,
are identical. External equivalence exists if the inputs U and the calculated outputs Y are identical for two
models. Sargent (1988) provides another definition. He considers the values of the state variables calculated
by the events (S,,,Se,,...,5,) and the discrete time steps at which the events occur (7¢,,T,,...,I¢,). If
the values and the time steps are identical for both models, there is a behavioral equivalence according to
Sargent. Another definition in Systems Science gives Klir (1991) for systems in general with

“A homomorphic relation (or homomorphism) between two systems is contingent upon a
function from relevant entities of one system (the original) onto the corresponding entities
of the other system (the modeling system) under which the relation among the entities is
preserved. If the function, which is called a homomorphic junction, is bijective, the relation
is preserved completely (we say that the two systems are isomorphic);”

Zeigler et al. (2000) differentiates between five different Level of morphism. Form level 0 (Observation
frame) where the inputs, outputs and time bases of two systems (or models) can be put into correspondence,
to level 4 (Coupled component) where components of the systems can be placed into correspondence so
that corresponding components are equal. However, Yiicesan and Schruben (1992) have demonstrated how
behavioral equivalence can be determined using Simulation Graph models. They examine the structure
of two Simulation Graph models through an isomorphic mapping between two models. If an isomorphic
mapping exists, then the models are structurally equivalent. In a next step, they prove that structural
equivalence also implies behavior equivalence. The proof is made by contraposition. This proof puts
us in a position to compare two models structurally and to make a decision about whether both models
have the same output (behavior equivalence), without executing the models. Apart from these theoretical
treatments, there is no other literature demonstrating a practical application. Also Simulation Graph models
are subject to an event-oriented modeling world view. However, current simulation tools use a process-
oriented modeling world view, and there is no literature demonstrating an algorithm to transform from one
world view to another world view. Closing this knowledge gap, we present a method with an application for
the verification of simulation models, based on Yiicesan and Schruben (1992), in order to use in teaching.

4188

Akbulut, Abke, and Laroque

Therefore, we will introduce the modeling technique of the Simulation Graph models next. The method is
extended so that models of current simulation applications can be analyzed and, in addition, a comparison
of models from different simulation tools becomes possible.

2.1 Simulation Graph Models

Simulation Graph models are a mathematical form of Event Graph models, therefore we will introduce
this modeling technique first. In Event Graphs, simulation models are represented using directed graphs,
see Figure 2 (Schruben 1983). Events are represented by nodes. Each node has its own state variables
and is associated with a set of state changes that occur in its own variables as soon as a node is activated.
Event Graphs focus on the individual events in a system to be modeled. Entities, for example a discrete
material flow, are only implicitly presented for this reason. Relations between events are represented by
directed edges between two nodes. Edges can have logical and temporal expressions. A logical expression
(i) determines the conditions that must be met for an edge to be passed. A temporal expression ¢ describes
how much time passes when an edge is passed. The illustrated event graph can be interpreted as follows:

Figure 2: Structure of an Event Graph Model.

“Whenever an event A occurs and the condition (i) is satisfied, the event B is scheduled in 7 time units”.
In literature, Event Graphs are used in different variations to create event-discrete simulation models (see
e.g. Law and Kelton 2000, Sargent 1988, Schruben 1991). Schruben describes Simulation Graph models
as an explicitly mathematical form of Event Graphs and defines them as

S=(7,%,7T,G). (M

The first four sets define the entities in a Simulation Graph model, see (1). These are represented
by .# the event functions, ¢ the conditions, .7 the time delays, and 7y the execution priorities defined
as .# = {f,: STATES — STATES | Vv € V(G)}, the set of event functions associated with vertex v.
¢ ={c.: STATES — {0,1} | Ve € E(G)}, the set of edge conditions with a mapping from STATES to
0 = false if a condition is not satisfied, and 1 = true if a condition is heeded. .7 = {1, : STATES —
A" | Ve € E(G)}, the set of edge delay times with a mapping from STATES to a nonnegative real number.
I'={y.: STATES — %" | Ve € E(G), the set of event execution priorities, where STATES is defined as
in Zeigler (1984). To conclude, G is a directed graph as ordered triple (V(G), E(G), ¥¢) and describes
the structure of a Simulation Graph model.

3 TRANSFORMATION

The challenge in transformation is that a model is translated from one modeling concept into another
modeling concept. Current simulation tools, e.g. AnyLogic (2017) and Simio (2017), describe models with
process blocks. A component in such a model is a complete process, e.g. A assembly cell which represents
a assembly process. This modeling concept is called a process-oriented world view (Law and Kelton 2000).
However, Simulation Graph models are using an event-oriented world view. A model component in such
a graph represents a single event, e.g. an “arrival of material on a assembly cell” (Page and Kreutzer
2005). A process usually consists of a large number of individual events, so the process “assembly” in
the event-oriented world view can be represented by the events “Arrival of material at assembly cell”,
“Processing start in assembly cell” and “Processing end in assembly cell”. However, this is only one of
many ways to describe a process with its inherent events. Information about the actual events aggregated
in a process is hidden in the event list of the respective simulation tools (at runtime). Since AnyLogic and

4189

Akbulut, Abke, and Laroque

Simio do not have the ability to analyze their event lists, this work has been used to manually determine
which events are hidden behind a process in a simulation tool, see Table 1. The table is structured as
follows: If a process type has a restriction regarding its resources, e.g. resources must exist in sufficient
quality and/ or quantity, it will be modeled with two types of events, see Work process. An event type for
the arrival, in which a resource is blocked and an event type for a departure, in which a resource is released
again. If a process type has a restriction on its capacity to hold entities, it is described with an event type
arrival, see Queue. The process types Source and Sink are always described with the event type arrival.

Table 1: Transformation of Elementary Process Types in Event Types.

Process type | Behavior Event type

Source generate entity Arrival
forward entity

Sink take entity Arrival
destroy entity

Queue take entity & swap in Arrival
swap out entity & forward entity

Work process/ | take entity Arrival

Assembly bind resource & schedule delay
unbind resource & forward entity | Departure

Using this table, the new Simulation Graph model is created in three steps using Algorithm 1 in Figure
3. We are briefly explaining its functionality:

1.

Initialization: From a source model, all process blocks are extracted and assigned to the set K.
All links from the source model are assigned to the set L. Then the sets . for Simulations Graph
model, .# for event functions, & for constrains, .7 for time delays, I" for execution priorities, E
for edges, V for vertexes, G for the directed graph, and Z for the state variables are declared and
initialized with the empty set, see lines 1 to 3 in Algorithm 1. After we separated the links and
process blocks into two different sets K and L, we are now able to process them one by one.
Vertexes & local properties: For each process block in set k € K form the source model, the
corresponding events are created for each type defined in the switch-case statements, see lines 5 to
25. The local properties of the events are then formed and parameterized with the values from each
corresponding process block. Local properties are all properties which are in no direct relation to
a predecessor process block, e.g. in lines 7 to 11 the event type source contains one vertex v, one
state variable z, one looping edge e + (v,v), one delay time 7, « k.delay associated with the edge
e, and one event function f, = {z < z+k.arrival} associated with the vertex v.

Edges & global properties: For each link / € L from the source model, a directed edge is formed
in the Simulation Graph model to correctly transfer the model relations, see lines 25 to 26. After
all events (Vv € V) have been generated with the local properties and the directed edges have been
created, in a last step, all properties that are directly dependent on a predecessor process block are
set. Therefore we start with the second event vertex v, € V, to ensure that there is always one
predecessor vertex, see line 28. This relates all event functions, conditions, and time delays which
are set in dependence on a preceding process block, e.g. in lines 30 to 34 the event type service has
a event function f,, = {zx_1,5 < z—1,5— 1} to increment one entity from his predecessor, when it
gets activated. Also there are two constraints; First to ensure enough (R > 0) resources c(,,) =
{zx,r > 0} before activating vertex v; And second to ensure enough entities to process (S > 0) in
the states variables of the predecessor vertex v, with c(,,,) = {zx—1,5 > 0}.

Algorithm 1 in Figure 3 is an example implementation for the simulation tool AnyLogic. The algorithm
follows the described three steps and can also be adapted for each further process-oriented simulation tool
using this approach. The algorithm builds a new Simulation Graph model from a source model. The process

4190

Akbulut, Abke, and Laroque

building blocks source, delay, assembler, service, queue, and sink (Process Modeling Library, AnyLogic
2017) are handled.

3.1 Example of a Transformation

To clarify the procedure, a simple queuing model is described that has been implemented with the tools
AnyLogic and Simio. Now both implementations will be transformed into separate Simulation Graph
models. The queuing model consists of a material arrival (x piece, an interval a), a waiting area (capacity y
pieces), and a service station that operates sequentially (resource 1, processing time s). A correct computer
model in the simulation tool Anylogic contains a source, a queue, a delay, and a sink process block as
shown in Figure 4. The model implemented in AnyLogic given the algorithm in Figure 3 as source model
generates the following Simulation Graph model .%; with

GA(V) — {A07A1,A2,A37A47A5}7 (2)
GA(E) = {Ena1) Ear.a0) Ea1,42) E(42,03), E(43.44) E(as.05) E (g a5) 1 3)
Ya = {(A0,A1),(A1,A1),(A1,A2), (A2,A3),(A3,A4), (As,A3), (As,As) }, “)

Fa = {faos fars fags fags fags fas =1

e ntnn s otnasua—xn0ncn-—LnslLaucutlizs—s+luesu—1}, 6

Ca = {Ca,,42):Car,43):Clag a9) } = {22 <¥iz3 > 0322 > 0}, ©)
T = {t(A1,A1);tA37A4} = {a’s}’ ™
Ty =0. ®)

The sets (2), (3) and (4) are creating the directed graph and thus the structure of the Simulation Graph
model. The sets (5), (6), (7) and (8) are defining the behavior of the Simulation Graph model. In the
simulation tool Simio, an adequate model contains the process blocks source, server and sink, see figure
5. Due page restrictions, we have only described one algorithm for transforming a process-oriented model
into an event-oriented model for reasons of demonstrating the implementation. So, a adapted algorithm
for the simulation tool Simio should generate a Simulation Graph model .#3 with the following sets

GB(V) == {B()7B17B27B3aB4aB5}7 (9)
GB(E) = {E(B(),B|)7E(B| ,B])7E<B] ,Bz)7E(Bz,B3)7E(B3,B4)’E(B4,B3)’E(B47BS)}7 (10)
lPB - {(B07Bl)7(B17B])7(BlaBZ)a(B27B3)7(B37B4)7(B47B3)7(B47B5)}7 (11)

FB = {fBy3 [B,5[B,5 55 843 fBs } = 1

e atnnentryaea-—xn—0nn—Lnelu—utlizsezst+lzue—u—1} (12)

€8 =1{C(8,8,):C(B,.8,):CBy.Bs) } = {22 <323 > 0520 > O}, (13)
T = {18, 8 !(B;.8)) = 10,5}, (14)
Ty =0. (15)

The sets (9), (10) and (11) are also shaping the directed graph and thus the structure of the Simulation
Graph model. The sets (12), (13), (14) and (15) are defining the behavior of the Simulation Graph model.

4191

Akbulut, Abke, and Laroque

o NN N R W N

I I S T N S N S N N S S S S e T
N AW N =S 8RN R WD =D

2
27

=)

28
29
30
31
32
33
34
35
36
37

38
39

Data: Source Model

Result:

Simulation Graph Model .&

K < Process Blocks C Source Model;
L < Links C Source Model;

SFC, T, E,V,G,Z + 0

for i < 1 to |K| do

switch k;.type do

case Source do

V< VU{v; < ki.Typ};

Z <+ ZU{zixs5+ 0}

E+—FEU {6,‘ — (v, V,‘)};

T« T U{t,, « ki.delay};

F — FI{f,} ={z < z+ki.arrival};

case Service | Assembler | Delay do

V = VU{vixe1 < kitype} U{vixc o < ki.type};
Z <+ ZU{zixer < 0}U{zZixes < 0};

E — EU{eix1 (i1, vip)}s

E < EU{ejx2 (vi2, viD}s

T «— T U{t,,, < kidelay};

ZiR ki.resources;

T~ FU{fi,} ={ar—zr—1};

T — FU{fy,} ={airzr+ 1l zsus+1}h
case Queue | Sink do

V < VU{v; < ki.type};

Z <+ ZU{zixer 4 0}U{zZixes < 0};

Zi g < kj.capacity;,

F yU{fvi} = {Zl}S —Zis+ 1};

for j < 1 to |L| do
L E < EU{ep|g|+1 < (vx <Source(l}), vy +Target(l;))};

for k<2 to |V| do
switch v; do
case Service | Assembler | Delay do
F— FU{fi)={as < a-15— 1}
E +—EU {C(quﬂ/k)} = {ZkJe >0},
C <+ CU {C(Vk+1,Vk)} = {Zk—l,S > 0},
k+—k+1
case Sink do
F— FZU{fi} ={a1s—u1s5—1};
B E +—EU {C(quﬂ/k)} = {Z/@s < Zk7R};
G+ (V,E);
S (£,6,7.T,G),

Figure 3: Algorithm 1 - Transformation in a Simulation Graph Model.

4192

Akbulut, Abke, and Laroque

source queue delay sink
oo
© L © EE

Figure 4: Model A - Simple Queuing Model in AnyLogic.

B. . B
Source1 Server1 Sink1

Figure 5: Model B - Simple Queuing Model in Simio.

4 EQUIVALENT SIMULATION MODELS

Two Simulation Graph models .7y = (%4, G4, T4, L'a, Ga) and . = (¥, €5, I5, I g, Gp) are isomorph
to each other .4 ~ ., if there is a bijective mapping between .74 and .#p with (Yiicesan and Schruben
1992)

0: V(GA) — V(GB),

®: E(Gy) — E(Gp),
AN: Fy — Fp,
Q:%6r — 63,
X Ia— T,
A:Ty—Tp.

The sets O, &, A, Q, x, A form an isomorphism between the simulation graph models .4 and %3 (Bondy
and Murty 1976). The first two mappings ® and & check a match in the structure between the vertexes and
edges of the graphs. Next, the remaining four sets will be explained in detail. The mapping A : .%4 — Fp
checks for a match between the event functions, which are responsible for the calculation of all the system
states. For two event functions to be considered equivalent, their calculations must produce identical results.
In cases where a function has a stochastic component, the generated random numbers need not be identical,
but they must be subject to identical stochastic distributions. The mapping Q : 64 — %3 checks for a match
between the conditions of two different models. The terms for the expressions and the binary operators
must not be identical for the conditions in the different simulation graph models. It is only important that
the conditions assume identical Boolean values as soon as an identical model state exists in two different
simulation graph models. The mapping y : 94 — Jp checks for a match between the delay times. If the
delay times are deterministic, then they must be identical in the different models. If the delay times are
stochastic, then it must be ensured that they are subject to the same stochastic distributions, so that they can
be classified as equivalent. The mapping A : 'y — I's checks for a match between the execution priorities.

Since the execution priorities are not considered in this work, both sets are empty. In general, there
is currently no efficient algorithm known for checking isomorphism between two graphs (Deiser et al.
2016, S.95). However, a Simulation Graph model is a planar graph (Yiicesan 1989), i.e., it can be drawn
on the plane in such a way that its edges intersect only at their endpoints. For the examination of an
isomorphism in planar graphs, different algorithms were presented in the literature. The implementation
presented here is based on our theoretical description, we made first. The graphs G of the Simulation Graph
models are first checked to determine whether they are planar and then to check whether an isomorphic
mapping exists between them. For this purpose, we use the method as described by Kukluk et al. (2004).
If the mapping ® and ® can be created, the function checklsomorphism gives true as result. Then the sets
F, %€, 7 and I are checked for a match. For this purpose, all assignments (<—) and binary operations

4193

Akbulut, Abke, and Laroque

(+,—,<,=,>) are checked with regular expressions for string analysis whether they exist in the same
quantity in both sets. If this is the case, the equals function returns the Boolean value frue as result.
After termination the Algorithm 2 in Figure 6 gives five boolean variables as result. Only if all variables
contain the value true the test for isomorphism for two Simulation Graph models is complete and successful.

Data: Simulation Graph Model .%4, Simulation Graph Model .#3
Result: Boolean, Boolean, Boolean, Boolean, Boolean

iso, fn, constr, times, prio < false;

iso < checkIsomorphsim(G(%4),G(.3));

tn « equals(F (), F(SB));

costr «— equals(€(4),€(7B));

times <« equals(7 (%4), 7 (SB));

prio « equals(T'(4),T(-%8));

return iso, fn, constr, times, prio

N QN N AW

Figure 6: Algorithm 2 - Isomorphic Simulation Graph Models.

4.1 Example of an Isomorphism Test

After model A and model B have been transformed into separate Simulation Graph models .#4 and .3,
it can be checked whether there is an isomorphism between both models with:

V(Ga) = V(Gp) ={0O(A9) =By, 0(A;) =B;,0(A;) = B,,0(A3) = B3,0(A4) = B4,0(As) = Bs} (16)

D : E(Ga) = E(Gp) = {P((A0,A1)) = (Bo,B1),P((A1,A1)) = (B1,B1), P((A1,A2)) = (B1, B2),
D((A2,43)) = (B2,B3), P((A3,A4)) = (B3,B4), P((A4,A3)) = (B4, B3), P((As4,A5)) = (B4, Bs)} (17)
A Ty — Fp={Afa,) = f,, Afa,) = [, A fay) = [, A fas) = [A fas) = foa A fas) = fas} (18)
Q:6x — € =1{QC, 4,)) = C8,.8,), 2UClar.43)) = C8,,85), 2Cla, 45) = Ciiy) } (19)
X Ta— T ={X(ta,A) =18,.8) X(t(as.40) = 1(Bs8a) } (20
A:Ty —T'g={A(0) =0} 21
Therefore we try with Algorithm 2 in line 2 to assert the equation (16) and (17). Then in line 2
to 6, the algorithm is trying with regular expressions for string analysis to establish the equations (18),
(19), (20), and (21). When the algorithm terminates, only if all variables contain the value true the test

for isomorphism for two Simulation Graph models is successful. After an isomorphic mapping has been
identified between .4 and .75, we assume that model A and model B are equivalent.

5 WEB PLATFORM

The method was implemented as an application and integrated into a web platform. The structure corresponds
to a classic SaaS (Software as a Service) architecture, as shown in Figure 7. Students can access different
tasks on the platform via a Web browser. Each of these tasks contain a description of a manufacturing
system, a problem position, an objective, and a reference model. The reference model is a sample solution,
but the student is not given access to it. The students are asked to implement a computer model for a task
and to save it after completion. Students themselves choose the simulation tool with which they implement
their model. A computer model stored in this way is uploaded for verification into the web platform and
read in with an XML parser. The model is transformed with an algorithm into a Simulation Graph model.

4194

Akbulut, Abke, and Laroque

000 o
DOO OC >|

source queue delay sink

Reference Model @ o l @

J—— .’45 (Vgsewer
\\\\\ ______ > p&') Web R:esr::ce

Computer Model Models

\4

Database

Computer Model E . oIl |E|

Source1 Server1 Sink1

------------ » : Transformation |y - ISOmoOrphism ||

Web Browser

Figure 7: Overview of Implementation.

With Algorithm 2, the model is checked together with a reference model from a database for an existence
of a isomorphic mapping between them. The algorithms are executed on client side using the programming
language JavaScript. Once an isomorphic mapping is identified (%4 ~ .#5), model A and model B are
assumed to be structurally equivalent. Since it is shown in Yiicesan and Schruben (1992) that a structural
equivalence also implies a behavioral equivalence, it is assumed that Simulation Graph models identified
in this way, calculate the same results ¥ when they get same inputs Y — therefore a computer model is
correctly implemented for a given task.

6 CONCLUSION

In this article, a cross-tool-based method for automated model verification was presented using a reference
model. Furthermore, implementation took place in teaching, using a web platform. For this method,
we refer to the work of Yiicesan and Schruben (1992) in which a procedure for the examination of a
structural and behavioral equivalence of two simulation models was demonstrated. It is based on Simulation
Graph models. However, Simulation Graph models are subject to an event-oriented modeling world view.
Since current simulation tools use a process-oriented modeling world view and process-oriented model
blocks are easier to understand for beginners, a simple queuing model shows how a transformation from a
process-oriented world view (Simio 2017, AnyLogic 2017) into an event-oriented world view (Simulation
Graph) can take place. As a further step, structural equivalence was tested via an isomorphic mapping to
the resulting planar graph. During the test, it is assumed that two simulation models (even if implemented
in different simulation tools) must have the same structure, functions, conditions, and time delays so that
they can be identified as (structure) equivalent. These conditions, which lead to a positive test result, make
the method very strict and inflexible. For this reason, there is currently still a need for further research in
order to allow identifying models that do not have the same structure (structure equivalence) but calculate
the same results (external equivalence).

REFERENCES

AnyLogic 2017. “Simulation Tool”. www.xjtek.com/AnyLogic. [Online; accessed 2017-04-27].

Balci, O. 1998. “Verification, Validation and Testing”. In Handbook of Simulation - Principles, Methodology,
Advances, Applications, and Practice, edited by J. Banks, 335-393. N.Y., USA: Wiley.

Bondy, J., and U. Murty. 1976. Graph Theory with Applications. North-Holland, N.Y., USA: Macmillan.

4195

Akbulut, Abke, and Laroque

Deiser, O., C. Lasser, V. Elmar, and W. D.. 2016. 12 x 12 Schliisselkonzepte zur Mathematik - Diskrete
Mathematik. Berlin, Germany: Springer.

Johnson, R. T., J. W. Fowler, and G. T. Mackulak. 2005. “A Discrete Event Simulation Model Simplification
Technique”. In Proceedings of the 2005 Winter Simulation Conference, edited by M. E. Kuhl, N. M.
Steiger, F. B. Armstrong, and J. A. Joines, 2172-2176. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Klir, G. J. 1991. Facets of Systems Science. International Federation for Systems Research International
Series on Systems Science and Engineering. Boston, MA, USA: Springer US.

Knaak, N., B. Page, and W. Kreutzer. 2005. “Validation, Verification, and Testing of Simulation Models”.
In The Java Simulation Handbook - Simulating Discrete Event Systems with UML and Java, edited by
B. Page and B. Kreutzer, 195-231. Aachen, Germany: Shaker.

Kukluk, J. P, L. B. Holder, and D. J. Cook. 2004. “Algorithm and experiments in testing planar graphs for
isomorphism.”. Journal of Graph Algorithms and Applications 8 (2): 313-356.

Law, A., and W. Kelton. 2000, 4. Simulation Modeling and Analysis. 3 ed. McGraw-Hill.

Overstreet, C. 1982. Model Specification and Analysis for Discrete Event Simulation. Ph. D. thesis, Virginia
Tech., Blacksburg, Virginia, USA.

Page, B., and W. Kreutzer. 2005. The Java Simulation Handbook - Simulating Discrete Event Systems with
UML and Java. Aachen, Germany: Shaker.

Rabe, M., S. Spieckermann, and S. Wenzel. 2008. Verifikation und Validierung fiir die Simulation in
Produktion und Logistik - Vorgehensmodelle und Techniken. Berlin, Germany: Springer.

Sargent, R. 1988, October. “Event Graph Modeling for Simulation with an Application to Flexible Manu-
facturing Systems”. Management Science 34 (10): 1231-1251.

Schruben, L. 1983, November. “Simulation Modeling with Event Graphs”. Communications of the ACM
Journal 26 (11): 957-963.

Schruben, L. 1991. Sigma: A Graphical Simulation System. Thomson South-Western, Mason, USA.

Sevinc, S. 1991. “Theories of Discrete Event Model Abstraction”. In Proceedings of the 1991 Winter
Simulation Conference, edited by B. L. Nelson, W. D. Kelton, and G. M. Clark, 1115-1119. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Simio 2017. “Simulation Tool”. http://www.simio.com. [Online; accessed 2017-04-21].

Yiicesan, E. 1989. Simulation graphs for the design and analysis of discrete event simulation models. Ph.
D. thesis, Cornell University, Ithaca, USA.

Yiicesan, E., and L. Schruben. 1992, January. “Structural and Behavioral Equivalnce of Simulation Models”.
ACM Transitions on Modeling and Computer Simulation 2 (1): 82-103.

Zeigler, B. P. 1984. Theory of Modelling and Simulation. Melbourne, USA: Krieger Publishing Company.

Zeigler, B. P., H. Prachofer, and T. G. Kim. 2000. Theory of modeling and simulation: integrating discrete
event and continuous complex dynamic systems. 2. ed. San Diego, USA: Academic Press.

AUTHOR BIOGRAPHIES

AKIN AKBULUT is research associate and PhD student at the department of Business Computing, es-
pecially CIM at the Heinz Nixdorf Institute, University of Paderborn. He studied business computing at
the University of Paderborn. His email address is Akin.Akbulut@hni.upb.de.

STEPHAN ABKE is research associate and PhD student at the department of Business Computing, especially
CIM at the Heinz Nixdorf Institute, University of Paderborn. His email address is Stephan.Abke @hni.upb.de.

CHRISTOPH LAROQUE studied business computing at the University of Paderborn, Germany. Since

2013 he is Professor of Business Computing at the University of Applied Sciences Zwickau, Germany.
His email address is Christoph.Laroque @th-zwickau.de.

4196

