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ABSTRACT

R is free software for statistical computing, providing a variety of statistical and graphical functionality. For
use in simulation education, R’s capabilities help to develop student intuition. In this paper, we introduce the
simEd package for R, written with a pedagogical focus. The package includes functions for generating
discrete and continuous variates via inversion, with capabilities for independent streams and antithetic
variates; for visualizing inversion in variate generation and the relationship to the pdf/pmf, cdf, and ecdf;
for computing time-persistent statistics; for extensible single- and multiple-server queueing simulation;
and includes data sets for input modeling and analysis. As we demonstrate using several illustrations,
this package, along with native R functionality, provides a compelling case for using R in an introductory
simulation course.

1 INTRODUCTION

R should be considered for a first course in discrete-event simulation that emphasizes programming in a
high-level language as well as the probabilistic and statistical aspects of simulation. R includes traditional
imperative programming language constructs, powerful statistical analysis functions and packages, and
customizable high-level graphics capability. To date, a few R packages related to discrete-event simulation
have appeared, focusing on simulation practice. As examples, consider poisson, which simulates
homogeneous and non-homogeneous Poisson processes (Brock and Slade 2015); simmer, a process-
oriented discrete-event simulation package designed to be a generic simulation framework (Ucar and
Smeets 2017); and rrepast, which allows one to invoke Repast Simphony agent-based models directly
from R (Garcia and Rodriguez–Paton 2016). None, however, have focused on simulation pedagogy.

In this paper, we introduce the simEd package for R, written with a focus on simulation pedagogy.
Our package facilitates simulation education using R by introducing reorganized analogs of existing R
functions as well as new simulation-related functions that do not exist in native R. The package includes:

• variate generation functions for two discrete and five continuous distributions (see Table 1);
• functions to visualize inversion for variate generation, including visual representations of inversion

vs. the cumulative distribution function (cdf), of the histogram vs. the probability density/mass
function (pdf/pmf), and of the empirical cdf (ecdf) vs. the cdf (see Table 2);

• functions implementing single- and multiple-server queueing models (see Table 3); and
• various utilities, including functions for analyzing time-persistent statistics and for sampling, as

well as data sets for queueing input modeling (see Table 4).

The simEd package (Lawson and Leemis 2017) is available on the Comprehensive R Archive Network
(CRAN) (The R Foundation 2017). The package can be installed (a one-time cost) using the R command
install.packages("simEd"), and attached in each R session using library(simEd).
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Table 1: Variate generation functions (two discrete and five continuous distributions).

Distribution Function Signature
Binomial vbinom(n, size, prob, stream = NULL, antithetic = FALSE)

Geometric vgeom(n, prob, stream = NULL, antithetic = FALSE)

Exponential vexp(n, rate = 1, stream = NULL, antithetic = FALSE)

Gamma vgamma(n, shape, rate = 1, scale = 1/rate, stream = NULL, antithetic = FALSE)

Normal vnorm(n, mean = 0, sd = 1, stream = NULL, antithetic = FALSE)

Uniform vunif(n, min = 0, max = 1, stream = NULL, antithetic = FALSE)

Weibull vweibull(n, shape, scale = 1, stream = NULL, antithetic = FALSE)

Table 2: Functions for visualizing inversion of variate generation. (The last 10 parameters are consistent in
all functions, indicated by ellipses.) A null value for u displays distribution plots only, without inversion.

Distribution Function Signature
Binomial ibinom(u = runif(1), size, prob,

minPlotQuantile = 0, maxPlotQuantile = 1, plot = TRUE,

showCDF = TRUE, showPMF = FALSE, showECDF = FALSE, show = NULL,

plotDelay = 0, maxPlotTime = 30, resetRowsMargins = TRUE)

Geometric igeom(u = runif(1), prob, . . . )

Exponential iexp(u = runif(1), rate = 1, . . . )

Gamma igamma(u = runif(1), shape, rate = 1, scale = 1/rate, . . . )

Normal inorm(u = runif(1), mean = 0, sd = 1, . . . )

Uniform iunif(u = runif(1), min = 0, max = 1, . . . )

Weibull iweibull(u = runif(1), shape, scale = 1, . . . )

Table 3: Queueing simulation functions. (The last 14 parameters are identical, indicated by an ellipsis.)

Queue Model Function Signature
Single-Server ssq(maxArrivals = Inf, seed = NA,

interarrivalFcn = defaultInterarrival, serviceFcn = defaultService,

maxTime = Inf, maxDepartures = Inf,

saveAllStats = FALSE, saveInterarrivalTimes = FALSE,

saveServiceTimes = FALSE, saveWaitTimes = FALSE, saveSojournTimes = FALSE,

saveNumInQueue = FALSE, saveNumInSystem = FALSE, saveServerStatus = FALSE,

showOutput = TRUE, showProgress = TRUE)

Multi-Server msq(maxArrivals = Inf, seed = NA, numServers = 2,

serverSelection = c("LRU", "LFU", "CYC", "RAN", "ORD"), . . . )

Table 4: Time-persistent statistics functions and other utilities.

Utility Signature
Mean meanTPS(times, numbers)

Std. Dev. sdTPS(times, numbers)

Quantiles quantileTPS(times, numbers, probs = c(0, 0.25, 0.5, 0.75, 1.0))

Sampling sample(x, size, replace = FALSE, prob = NULL, stream = NULL, antithetic = FALSE)

Data Sets data(queueTrace)

data(tylersGrill)

4176



Lawson and Leemis

To implement independent streams of random numbers for our variate generator functions, we use
Josef Leydold’s CRAN-available rstream package (Leydold 2015). The rstream package implements
easy-to-use wrappers of Pierre L’Ecuyer’s “mrg32k3a” random number generator (L’Ecuyer et al. 2002),
and provides a source for independent streams of uniform random numbers. (We note that the “mrg32k3a”
generator is available by default in R via RNGkind as “L’Ecuyer-CMRG”, but only provides the basis for
multiple streams as implemented by other packages.)

To ease in transitioning to the simEd package, we chose function names and parameter conventions
to be as consistent as possible with existing R functions. We also mask the set.seed function in
the base package by providing our own version of set.seed that will appear first in the search path
(and therefore be the version called) whenever the simEd package is attached. The simEd version of
set.seed performs two tasks: first, it explicitly calls base::set.seed so that stats functions will
act as expected; second, it appropriately seeds the rstream random number streams used by the simEd
package. In this way, the user can call set.seed as usual, with no need for two different functions to set
the initial seed for stats and simEd functions. (Although not discussed here, we also mask the sample
function from the base package to allow for independent streams and antithetic variates—see Table 4.)

2 VARIATE GENERATION

Our simEd package includes variate generation functions for two discrete distributions (binomial and
geometric) and five continuous distributions (exponential, gamma, normal, uniform, and Weibull), as
outlined in Table 1. We have chosen naming and parameter conventions similar to the variate generation
functions available by default in R via the stats package, but replacing the leading ‘r’ in each function
name with ‘v’ (for variate) instead. For example, the stats functions for generating variates from two
discrete distributions are named rbinom and rgeom; the corresponding simEd functions are named
vbinom and vgeom. Moreover, the simEd versions have parameters similar to the stats versions, as
shown in the R examples below (the left uses stats functions, the right uses simEd functions).

> set.seed(8675309)
> rexp(n = 3, rate = 2)
[1] 0.8311 0.6116 0.3837
> rgamma(n = 3, shape = 2, scale = 1)
[1] 2.099 3.011 1.336

> set.seed(8675309)
> vexp(n = 3, rate = 2)
[1] 0.08687 0.32522 0.72366
> vgamma(n = 3, shape = 2, scale = 1)
[1] 2.805 1.012 2.317

Each of our variate generation functions first generates n U(0,1) variates (more below on how these are
generated) and then inverts those variates using the appropriate quantile functions available in stats (i.e.,
qbinom, qgeom, etc.). Although certain of our variate generator functions may be slow in comparison to
the corresponding stats generator functions, our functions are both synchronized and monotone, which is
important for certain variance reduction techniques. Moreover, the inversion approach used here is entirely
consistent with the functions for visualizing inversion for variate generation discussed in Section 3.

The simEd variate generation functions provide the capability for independent streams of random
numbers via a stream parameter. By default, the stream parameter has a value of NULL, in which case
our inversion approach uses the stats::runif function to generate U(0,1) variates for inverting. In
other words, if the stream argument is NULL, the left and right examples below are identical in output
(but differ from the rexp output above left, since stats functions do not necessarily use inversion).

> set.seed(8675309)
> u <- runif(n = 3)
> qexp(u, rate = 2)
[1] 0.08687 0.32522 0.72366

> set.seed(8675309)
> vexp(n = 3, rate = 2)
[1] 0.08687 0.32522 0.72366

If, however, the stream argument is not NULL, but rather is an integer in the range {1,2, . . . ,25} (where
25 is the maximum number of streams implemented in the simEd package), then our functions use the
rstream::rstream sample function associated with one of the 25 independent streams to generate

4177



Lawson and Leemis

U(0,1) variates for inverting. This capability to use independent streams permits the user to employ
appropriate variance reduction techniques (see Section 3). For example, the following R code demonstrates
the ability to use streams for isolating stochastic components of a simulation. We begin by defining an
exponential interarrival-time function with rate λ = 1 and an exponential service-time function with rate
µ = 10/9, each using separate streams. As shown on the left and right below, calls to the functions can
be interleaved without disturbing the order in which variates are generated from each stream.

> myArr <- function() { vexp(n = 1, rate = 1, stream = 1) }
> mySvc <- function() { vexp(n = 1, rate = 10/9, stream = 2) }

> set.seed(8675309)
> for (i in 1:4) cat(myArr(), ’ ’)
0.2335 1.078 0.7856 0.3531
> for (i in 1:4) cat(mySvc(), ’ ’)
0.03059 0.1224 1.425 4.551

> set.seed(8675309)
> for (i in 1:4)

cat(myArr(), ’ ’, mySvc(), ’ ’)
0.2335 0.03059 1.078 0.1224 0.7856 ...

Additionally, the simEd variate generation functions include an antithetic parameter, which
provides the capability to produce antithetic variates. The rstream package can produce antithetic variates
directly, but given that speed is not our primary concern, we compute the antithetic versions of the U(0,1)
variates ourselves, whether produced using stats::runif or rstream::rstream sample. For
example, the following R code demonstrates the use of antithetic N(0,1) variates using the vnorm function.
We begin by explicitly using stats::runif and stats::qnorm to demonstrate the production of
antithetic variates, and then show that our vnorm function produces the same behavior simply by changing
the antithetic argument. The results below are identical because of the default NULL value for the
stream argument, which causes vnorm to use stats::runif to generate U(0,1) variates for inverting.
Were the stream parameter to have an integer argument, the function output would be different since
vnorm would generate U(0,1) variates using rstream::rstream sample instead.

> set.seed(8675309)
> u <- runif(n = 3)
> qnorm(u, mean = 0, sd = 1)
[1] -0.9966 -0.0547 0.7218
> qnorm(1 - u, mean = 0, sd = 1)
[1] 0.9966 0.0547 -0.7218

> set.seed(8675309)
> vnorm(3, mean = 0, sd = 1, antithetic = F)
[1] -0.9966 -0.0547 0.7218
> set.seed(8675309)
> vnorm(3, mean = 0, sd = 1, antithetic = T)
[1] 0.9966 0.0547 -0.7218

3 VISUALIZING INVERSION FOR VARIATE GENERATION

Our simEd package also includes functions to visualize distributions and inversion for variate generation
for the seven distributions discussed in Section 2. Again, we have chosen naming and parameter conventions
similar to the stats variate generation functions, but replacing the leading ‘r’ in the function name with
‘i’ (for inversion). Each of these functions accepts zero or more U(0,1) variates, followed by distribution-
specific parameter values, and then an optional sequence of plotting-command arguments (see Table 2).
By default, each function produces custom graphics (which can optionally be suppressed) to visualize
the inversion process associated with generating variates from the corresponding distribution, and returns
the values of the generated variates. Several examples are given below. Moreover, if the value of the u
parameter is NULL, the functions will display only two plots — pdf/pmf and cdf — allowing the user to
visualize distributions and their parameter values independent of variate inversion.

The example of R code below left, along with Figure 1a, shows the result of executing the igamma
function given user-specified values for U(0,1) variates to invert. The example below right, along with
Figure 1b, shows the result of executing igamma using 50 randomly-generated U(0,1) variates. In Figure 1,
red points on the vertical axis correspond to the values of the U(0,1) variates to be inverted, and red points
on the horizontal axis represent the distribution-specific variates generated. A vertically-inverted histogram
of the generated variates is displayed beneath the horizontal axis. Note the plotDelay argument in the
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second example — on execution, there will be a 0.1-second delay between plotting each variate inversion,
with the U(0,1) variates inverted in the order they are generated/supplied.

> u <- c(0.2, 0.5, 0.8)
> igamma(u, shape = 4, scale = 1)
[1] 2.297 3.672 5.515

> set.seed(8675309)
> u <- runif(n = 50)
> igamma(u, shape = 4, scale = 1, plotDelay = 0.1)
[1] 2.090 3.569 5.222 5.261 2.621 4.592 9.001 ...
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Figure 1: Function igamma displaying (a) inversion of u = 0.2, 0.5, and 0.8; (b) inversion of 50 randomly-
generated U(0,1) variates. Note the vertically-inverted histogram of variates beneath the horizontal axis.

The graphics are customizable in that the user can choose which, if any, among three plots to display:
the cdf with inverted U(0,1) variates; the pdf/pmf superimposed on a histogram of the generated variates;
and the cdf superimposed on an empirical cdf of the generated variates. Displaying of these plots is
controlled via showCDF, showPDF (showPMF for discrete distributions), and showECDF parameters.
(The show parameter, with a length-three binary vector for its argument, can instead be used to control the
plots.) Figure 1b shows an example of the default behavior, with only showCDF being true, resulting in a
graphic with only the cdf and inverted U(0,1) variates. The additional R code below, along with Figure 2,
shows four other examples using variates identical to those in Figure 1b but with different plot selections.

> variates <- igamma(u, shape = 4, scale = 1, showPDF = TRUE)
> variates <- igamma(u, shape = 4, scale = 1, showECDF = TRUE)
> variates <- igamma(u, shape = 4, scale = 1, show = c(0, 1, 1)) # show PDF, ECDF
> variates <- igamma(u, shape = 4, scale = 1, show = c(1, 1, 1)) # show all three
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Figure 2: Variate generation visualization function igamma displaying (a) cdf with inversion and pdf, (b)
cdf with inversion and ecdf, (c) pdf and ecdf, (d) all three plots.
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The graphics are also customizable via theminPlotQuantile andmaxPlotQuantile parameters.
In this way, the user can focus on a portion of the quantile space, as shown in the R code below and in the
corresponding plots in Figure 3a. The vertical axes will maintain their default scales, but the horizontal
axes will display only the portion corresponding to the indicated quantile sub-space. In particular, the
inverted-variates plot will display points corresponding to all of the U(0,1) variates on the vertical axis;
but on the horizontal axis, only points corresponding to inverted values that fall within the quantile limits
are displayed. As confirmed by the code below and Figure 3a, 40 of the 50 inverted variates fall in [2,6].

> qLo <- pgamma(q = 2, shape = 4, scale = 1)
> qHi <- pgamma(q = 6, shape = 4, scale = 1)
> variates <- igamma(u, shape = 4, scale = 1, showECDF = TRUE,

minPlotQuantile = qLo, maxPlotQuantile = qHi)
> length(variates[ variates >= 2 & variates <= 6 ])
[1] 40
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Figure 3: Function igamma displaying (a) subset of the quantile space, and (b) focused subset of the
quantile space with superimposed vertical lines to visualize Kolmogorov–Smirnov test statistic.

The graphics can be further customized through use of the resetRowsMargins parameter. In
creating the visualization plots, our functions explicitly modify the R-default plot margins and number of
rows, which are reset by default before exiting. On occasion, the user may wish to superimpose additional
graphics or text onto the final plot. As an example, inspection of Figure 3a suggests that the largest vertical
distance between the cdf and ecdf occurs somewhere between 4 and 5 on the horizontal axis. As shown
in the R code below and in the corresponding Figure 3b, we can use the Kolmogorov–Smirnov test (using
ks.test from the stats package) to quantify that largest vertical distance D, and then, by setting
resetRowsMargins to false, visually explore the location of D by superimposing line segments on the
bottommost plot. (If more than one plot is displayed and resetRowsMargins is true, any subsequent
superimposition will appear relative to the entire graphics area, not to the axes of the bottom plot.)

> qLo <- pgamma(q = 4, shape = 4, scale = 1)
> qHi <- pgamma(q = 5, shape = 4, scale = 1)
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> variates <- igamma(u, shape = 4, scale = 1, resetRowsMargins = FALSE,
showECDF = TRUE, minPlotQuantile = qLo, maxPlotQuantile = qHi)

> D <- ks.test(variates, "pgamma", shape = 4, scale = 1)$statistic
> for (x in seq(4, 5, by = 0.05)) {

y <- pgamma(x, shape = 4, scale = 1)
segments(x, y - D, x, y, lwd = 2, col = "blue") }

> arrows(4.85, 0.2, 4.85, 0.5, lwd = 2, length = 0.1, col = "blue")

All of the visualization functions given in Table 2 work similarly, differing only in distribution-specific
parameters. Examples for a discrete distribution are given in the R code below and in Figure 4. In the
discrete case, spikes represent the estimated pmf (red, without dots) and theoretical pmf (black, with dots).

> set.seed(8675309)
> u <- runif(n = 50)
> variates <- ibinom(u, size = 6, prob = 0.5, showPMF = TRUE)
> variates <- ibinom(u, size = 6, prob = 0.5, showECDF = TRUE)
> variates <- ibinom(u, size = 6, prob = 0.5, showPMF = TRUE, showECDF = TRUE)
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Figure 4: Variate generation visualization function ibinom displaying (a) cdf with inversion and pmf, (b)
cdf with inversion and ecdf, (c) cdf with inversion, pmf, and ecdf.

4 QUEUEING FUNCTIONS AND UTILITIES

The simEd package includes two functions simulating different queueing models: a function ssq for
a single-server queue model, and a function msq for a multiple-server queue model. Both functions are
very flexible through use of the parameters shown in Table 3, and are extensible by permitting user-provided
arrival and service functions. Both ssq and msq use an event-oriented approach in their implementation.

The ssq function is discussed at length in Lawson and Leemis (2015), to which we refer the interested
reader for details of ssq and corresponding pedagogical examples. Relative to that previous work, the
current version of ssq has been modified slightly: some of the parameters have been renamed and reordered
for clarity and ease of use; and the default arrival and service functions now use streams as implemented
by the vexp function discussed in Section 2. Otherwise, using default parameter values, the ssq function
still simulates an M/M/1 queue, having arrival rate λ = 1 and service rate µ = 10/9. Here, we provide
examples using: ssq with our time-persistent statistics functions; ssq with our variate generator functions
(see Section 2) demonstrating variance reduction techniques; and msq employing multiple service models.

Time-persistent statistics: For a time-persistent statistic x(t) observed over the time interval [0,T ],

x̄ =
1
T

∫ T

0
x(t)dt and s2 =

1
T

∫ T

0
x2(t)dt− x̄2.
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are the mean and variance, respectively. The notion of time-persistent statistics is unique to simulation
and is often challenging for students new to simulation. For this reason, we provide three functions for
computing time-persistent statistics given simulation output: meanTPS, sdTPS, and quantileTPS.

The R code example below shows the output produced by these three functions using simulation output
from a 50-customer M/M/1 queue simulation having arrival rate λ = 1 and service rate µ = 10/9. In
particular, we compute the time-averaged mean, standard deviation, and (default) quantiles of the number of
customers in the queue across time. The vector named output$numInQueueT contains the time values
when changes occurred to the number in the queue, and the vector output$numInQueueN contains
each associated number in the queue at those times. Figure 5a depicts the number in queue versus time
for this simulation, with the time-averaged mean (2.904) superimposed as a solid horizontal line and one
standard deviation away from the mean (2.904±1.676) superimposed as dotted horizontal lines. Figure 5b
also depicts the number in queue versus time, but with time-averaged quantiles superimposed as dotted
lines. Visual depictions of these statistics aid in understanding, and are easy to produce using our software.

> output <- ssq(maxArrivals = 50, seed = 8675309, saveNumInQueue = T, showOutput = F)
> mean <- meanTPS(output$numInQueueT, output$numInQueueN)
> sd <- sdTPS(output$numInQueueT, output$numInQueueN)
> quant <- quantileTPS(output$numInQueueT, output$numInQueueN)

> plot(output$numInQueueT, output$numInQueueN, type = "s",
xlab = "time", ylab = "number in queue", las = 1, bty = "l")

> abline(h = mean, lwd = 2, col = "red")
> abline(h = c(mean - sd, mean + sd), lty = "dotted", lwd = 2, col = "red")

> plot(output$numInQueueT, output$numInQueueN, type = "s",
xlab = "time", ylab = "number in queue", las = 1, bty = "l")

> abline(h = quant, lty = "dotted", lwd = 2, col = "red")
> mtext(c("0%","25%","50%","75%","100%"), side = 4, at = quant, las = 1, col = "red")
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Figure 5: Number in the queue versus time for the first 50 customers using ssq, with (a) time-averaged
mean and one standard deviation superimposed and (b) time-averaged quantiles superimposed.

Common random numbers: Using our ssq function, the example below demonstrates the use of our
streams-capable variate generators for implementing the variance reduction technique of common random
numbers. We begin by defining two different arrival functions having different rates, each using stream 1.
The subsequent calls to ssq each use one of the two different arrival functions (highlighted in bold) but
the same default service function (which uses stream 2). The corresponding printed output demonstrates
that different interarrival times, but exactly the same service times, are seen by each simulation. (The
differences in interarrival times and in service times are also highlighted in bold.) Our streams-capable
variate generators allow for easy separation of stochastic elements in a simulation.
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> myArr1 <- function() { vexp(1, rate = 1, stream = 1) }
> myArr2 <- function() { vexp(1, rate = 10/9, stream = 1) }
> output1 <- ssq(maxArrivals = 1000, seed = 8675309, showOutput = FALSE,

interarrivalFcn = myArr1, saveAllStats = TRUE)
> output2 <- ssq(maxArrivals = 1000, seed = 8675309, showOutput = FALSE,

interarrivalFcn = myArr2, saveAllStats = TRUE)
> sum(output1$interarrivalTimes != output2$interarrivalTimes)
[1] 1000
> sum(output1$serviceTimes != output2$serviceTimes)
[1] 0

Antithetic Variates: We will now use our software to demonstrate the use of antithetic variates as a
variance reduction technique in discrete-event simulation. We begin with some general notation. Let X1 be
the estimate of a particular measure of performance for a first run of some discrete-event simulation model.
Let X2 be an estimate of that same measure of performance for a second run of the same model. Then,
X̄ = (X1 +X2)/2 will be used to estimate the measure of performance from the two runs. We consider two
approaches to estimating the measure: “raw simulation”, in which X1 and X2 are independent, resulting
from independent sequences of random numbers used in the two separate simulation runs; and “simulation
with antithetic variates”, in which X1 and X2 are dependent. In the latter case, the run resulting in X1
uses a sequence of random numbers u1,u2,u3, . . ., while the run resulting in X2 uses the antithetic random
numbers 1−u1,1−u2,1−u3, . . . at the analogous positions. Hence, in the case of simulation with antithetic
variates, X1 and X2 are dependent because of the induced correlation. The variance of X̄ is

V [X̄ ] =V
[

X1 +X2

2

]
=

1
4
[
V [X1]+V [X2]+2Cov(X1,X2)

]
.

In the case of raw simulation, X1 and X2 are independent, so Cov(X1,X2) = 0. But when antithetic variates
are employed, then typically Cov(X1,X2)< 0, which will reduce V [X̄ ], the essence of antithetic variates.

To transition to a specific model, we will use the ssq function to investigate an M/M/1 queue with
arrival rate λ = 1 and service rate µ = 10/9. The measure of performance that will be estimated is the
average sojourn time for the first 25 customers in the queue, assuming an initial state of empty and idle.
(To five digits accuracy, the true mean sojourn time of the first 25 customers is 3.0245.) The R code for the
experiment is given below. We begin by defining two pairs of interarrival and service functions, each using
independent streams for the interarrival and service processes, but only the second pair of functions using
antithetic variates. (The capability of our variate generators to produce independent streams and antithetic
variates is needed for this experiment.) The raw simulation code then appears on the left, while the code
for simulation with antithetic variates appears on the right. The vector x1 will contain the average sojourn
times for the first 10,000 replications. (Note that the initial seed is used for the first replication, whereas the
previous state of the generator is used in subsequent replications.) In the case of raw simulation, the vector
x2 will contain the average sojourn times for the next 10,000 replications, where, for each replication, the
underlying sequences of random numbers are independent from those used in the first 10,000 replications.
In the case of simulation with antithetic variates, the vector x2 will contain the average sojourn times for
the next 10,000 replications, where, for each replication, the underlying sequences of random numbers are
the antithetic versions of the sequences used in the first 10,000 replications. Code differences are in bold.

myArr1 <- function() { vexp(1, rate = 1, stream = 1, antithetic = FALSE) }
mySvc1 <- function() { vexp(1, rate = 10 / 9, stream = 2, antithetic = FALSE) }

myArr2 <- function() { vexp(1, rate = 1, stream = 1, antithetic = TRUE) }
mySvc2 <- function() { vexp(1, rate = 10 / 9, stream = 2, antithetic = TRUE) }

nrep <- 10000
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# raw discrete-event simulation
x1 <- rep(0, nrep)
seed <- 5551212
for (i in 1:nrep) {

if (i == 2) seed <- NA
output <- ssq(maxArrivals = 25,

seed = seed,
interarrivalFcn = myArr1,
serviceFcn = mySvc1,
saveSojournTimes = TRUE)

x1[i] <- mean(output$sojournTimes)
}

x2 <- rep(0, nrep)
seed <- NA # use previous state of RNG
for (i in 1:nrep) {

output <- ssq(maxArrivals = 25,
seed = seed,
interarrivalFcn = myArr1,
serviceFcn = mySvc1,
saveSojournTimes = TRUE)

x2[i] <- mean(output$sojournTimes)
}
xBar <- (x1 + x2) / 2

cat(mean(xBar), var(xBar), cor(x1,x2))

# simulation with antithetic variates
x1 <- rep(0, nrep)
seed <- 5551212
for (i in 1:nrep) {

if (i == 2) seed <- NA
output <- ssq(maxArrivals = 25,

seed = seed,
interarrivalFcn = myArr1,
serviceFcn = mySvc1,
saveSojournTimes = TRUE)

x1[i] <- mean(output$sojournTimes)
}

x2 <- rep(0, nrep)
seed <- 5551212
for (i in 1:nrep) {

if (i == 2) seed <- NA
output <- ssq(maxArrivals = 25,

seed = seed,
interarrivalFcn = myArr2,
serviceFcn = mySvc2,
saveSojournTimes = TRUE)

x2[i] <- mean(output$sojournTimes)
}
xBar <- (x1 + x2) / 2

cat(mean(xBar), var(xBar), cor(x1,x2))

The results of the raw simulation are given in columns 2–4 of Table 5, comparing the results using three
different initial seeds. For each, the mean of the 10,000 average sojourn times is close to the analytic value
3.0245, and since all of the runs are independent, the correlation is close to zero as expected. In particular,
note the variance of the point estimate, which in the raw simulation case averages approximately 1.7.
Similarly, the results of simulating with antithetic variates are given in columns 5–7 of Table 5. Again, the
point estimators are close to the theoretical value 3.0245. The bottom right of Table 5 also shows that the
correlation between the initial and antithetic replications is indeed negative, so we expect that the antithetic
variates will be effective in reducing the variance of the point estimator of the mean sojourn time. Here, the
variance of the sojourn time is roughly 1.0, so there is about a [(1.7−1.0)/1.7] ·100% = 41.7% reduction
in variance by using antithetic variates. Our software makes implementing this experiment straightforward.

Table 5: Results of simulating an M/M/1 queue using raw simulation and using simulation with antithetic
variates, estimating mean sojourn time of the first 25 customers.

raw simulation simulation w/ antithetic variates
initial seed 5551212 8675309 1234567 5551212 8675309 1234567

mean of sojourn times 3.0091 3.0422 3.0292 3.0220 3.0293 3.0314
variance of sojourn times 1.7098 1.7474 1.7089 0.9893 1.0090 1.0333

correlation between means 0.0096 0.0103 −0.0051 −0.4147 −0.4135 −0.4035

Multiple-Server Queue: Using default arrival and service processes, function msq simulates an M/M/k
queue (default k = 2), having arrival rate λ = 1 and service rate µ = 10/(9k) per server. Functionality of
msq is similar to that of ssq with the exception of two additional parameters: numServers, indicating
the number of servers k; and serverSelection, which takes one of five values corresponding to a
server selection criteria (least recently used; least frequently used; cyclic, starting from the successor of
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the last server engaged; random; and in-order, starting from the first — see Table 3). In addition, the
serviceFcn parameter value can be a single function, in which case the same service process is used
for all k servers, or can be an R list of functions, allowing the servers to use different service processes.

An example using different service functions per server is shown below. We first define two service
functions with different rates, and then pass those functions in an R list to msq via the serviceFcn
parameter. The two servers will have service rates µ1 = 10/13 and µ2 = 10/23 respectively. (The call to
msq uses the default value of “LRU”, least recently used, for serverSelection.) The corresponding
printed output indicates that the first server has a lower utilization (0.81 vs. 0.85) despite receiving a
significantly larger proportion of customers (63% vs. 37%). In addition, the estimated mean service times
per server are consistent with their expected values of 1.3 and 2.3. Of interest in this context, the R code
below, along with Figure 6, also shows how msq output can be used to plot each server’s status versus time.
For each server, we plot their first 100 serviced customers only, with overall utilization (all customers)
superimposed as a horizontal line. Additionally, the beginning time of service for each of the 100 customers
appears as a red dot on the horizontal axis. These plots are consistent with the msq output, in that the
first server (higher service rate) processes 100 customers in approximately t = 150 time units, compared
to approximately t = 300 time units for the second server to process the same number of customers.

> server1Svc <- function() { vexp(1, rate = 10 / 13, stream = 1) }
> server2Svc <- function() { vexp(1, rate = 10 / 23, stream = 2) }
> output <- msq(maxTime = 10000, seed = 8675309, numServers = 2,

serviceFcn = list(server1Svc, server2Svc), saveAllStats = T, showOutput = F)
> for (s in 1:2) { cat( s, ’:’, output$utilization[s], ’\t’, output$serverShare[s],

’\t’, mean(output$serviceTimesPerServer[[s]]), ’\n’) }
1 : 0.81038 0.62527 1.309
2 : 0.8519 0.37473 2.2958

> for (s in 1:2) {
n <- output$serverStatusN[[s]] # each 1 entry: start service on another customer
t <- output$serverStatusT[[s]]
customerIndices <- which(cumsum(n) <= 100 & n == 1) # 100 starts-of-service
plot(t[1:tail(customerIndices, 1)], n[1:tail(customerIndices, 1)], type = "s",

xlab = "time", ylab = paste("server", s, "status"), las = 1, bty = "l")
abline(h = output$utilization[s], lwd = 2, col = "red")
points(t[customerIndices], rep(0,100), pch = 20, col = "red")

}
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Figure 6: Server status versus time (first 100 customers) using msq with (a) µ1 = 10/13, (b) µ2 = 10/23.

Queueing Data Sets: Our package also includes two queueing data sets that can be used for input
modeling and analysis. The first, queueTrace, contains two lists of 1000 arrival and service times
(fabricated data) for a single-server queue. The second, tylersGrill, contains actual data collected on
one business day at Tyler’s Grill at the University of Richmond: its first list contains 1434 arrival times of
all customers throughout the day; its second list contains 110 service times sampled throughout the day.
The R code below, along with Figure 7, provides one example of using the tylersGrill data set for
input modeling, specifically fitting a gamma distribution to the service times using the method of moments.
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> svc <- tylersGrill$serviceTimes
> aHat <- mean(svc) 2 / var(svc) # MOM estimator for gamma shape parameter^
> bHat <- var(svc) / mean(svc) # MOM estimator for gamma scale parameter

> x <- 1:max(svc)
> hist(svc, freq = FALSE, xlab = "", ylab = "")
> curve(dgamma(x, shape = aHat, scale = bhat),

add = TRUE, col = "red", lwd = 2)

> plot.ecdf(svc, verticals = TRUE, pch = "",
xlab = "", ylab = "")

> curve(pgamma(x, shape = aHat, scale = bhat),
add = TRUE, col = "red", lwd = 2)
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Figure 7: Tyler’s Grill service times fit with gamma using MOM: (a) histogram, (b) empirical CDF.

5 CONCLUSIONS

To date, no R package has focused on simulation pedagogy. This paper introduces the simEd package for
R, which includes functions for variate generation with streams and antithetic capabilities, for visualizing
inversion in variate generation, and for single- and multiple-server queueing simulation, as well as select
utility functions and data sets. This package facilitates use of R for an introductory simulation course.
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