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ABSTRACT

Mobility modeling is a critical aspect of the ground vehicle acquisition process. Mobility modeling for
traditional ground vehicles is well-understood; however, mobility modeling tools for evaluating autonomous
mobility are sparse. Users do not understand the performance capabilities of autonomous ground vehicles
at a mission level because no mission-level mobility model exists for autonomous vehicles. Therefore, this
paper proposes a Reference Autonomous Mobility Model (RAMM). The RAMM serves as the mission-level
mobility modeling tool that is currently lacking in the unmanned ground vehicle (UGV) community. The
RAMM is built on the framework already established by trusted mobility modeling tools to fill the current
analysis gap in the autonomous vehicle acquisition cycle. This paper gives a detailed description of the
RAMM along with an example application of the RAMM for modeling autonomous mobility. Once fully
developed, the RAMM could serve as an integral part in the development, testing and evaluation, and
fielding of autonomous UGVs.

1 INTRODUCTION

Unmanned Ground Vehicles (UGVs) are an emergent technology that is reshaping operations for private,
commercial, and military ground vehicle applications. From the Google car (Poczter and Jankovic 2014)
to autonomous military resupply convoys (Zimpfer, Kachmar, and Tuohy 2005), UGVs are being fielded
in increasing numbers for an increasing number of missions. In particular, increased autonomy and robust
autonomy algorithms are a key factor in current UGV research, and autonomous UGVs are beginning to
be tested in the field. As UGVs become more autonomous, the key performance measures that define a
ground vehicle’s performance capabilities will need to be modified and redefined. One such performance
measure that affects UGV operational performance is platform mobility.

For ground vehicles, mobility is a well-understood problem, and many of the performance measures
that define mobility are set. For example, driver response time and willingness to endure rough terrain
can readily be integrated into a mobility model. While the base mechanical mobility platform is, for the
most part, the same between manned and unmanned ground vehicles, there are stark differences in their
total overall mobility. For example, autonomy algorithm response time and durability of sensor systems
when traversing rough terrain are not fully understood. For manned ground vehicles, mobility is based
on mechanical and driver-centric factors. However, for an autonomous UGV, driver-centric factors must
be replaced with sensor and perception-centric factors. For example, visible sight distance for a human is
different from that of a camera or LIDAR, meaning sensor range should be used to determine mobility.
This difference is only one example of how autonomy changes mobility; in general, the factors that affect
autonomous mobility are not yet well defined.

Using defined performance parameters, analysis tools for measuring ground vehicle performance
capabilities at an operational level have been developed. One of the more frequently used of these tools is
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the NATO Reference Mobility Model (NRMM), which is discussed briefly in Section 2. The NRMM was
first developed in the 1970s and is still used in the military ground vehicle acquisition process today. This
type of performance assessment tool can be used across the vehicle acquisition cycle, from development to
testing and evaluation to fielding. It provides a snapshot of how the vehicle will operate during its mission,
where it can and cannot travel within a given terrain, and the impact of design changes on the vehicle’s
mission performance capabilities.

A mobility modeling tool for autonomous UGVs that provides detailed information on a UGV’s
autonomous performance for a given mission on a given terrain would help accelerate the use of autonomy
for military applications. By providing users with a robust understanding of the impact autonomy has on
mission-level performance and the performance capabilities of an autonomous UGV, users would have
more confidence in employing autonomous UGVs for a wider range of missions. Given the need for such a
performance assessment tool, this paper proposes a tool for modeling autonomous mobility; the Reference
Autonomous Mobility Model (RAMM).

The goal of this paper is to briefly describe the NRMM and extend the NRMM into the RAMM in a
logical fashion. The next section gives a short overview of the NRMM, Section 3 proposes the RAMM,
Section 4 provides details on the Virtual Autonomous Navigation Environment (VANE), a simulation tool
that serves as the backbone for the RAMM, Section 5 shows an applications of the RAMM and how the
RAMM operates, and Section 6 provides some conclusions and closing thoughts.

Throughout this paper, frequent references are made to “autonomy algorithms” and “sensor-centric /
sensor-based” mobility modeling. “Autonomy algorithms” refer to any intelligence software used by the
UGV for navigation purposes. These algorithms take in sensor data and uses them to reason about the world
and decide the course of action for the UGV. The autonomy algorithms are akin to the human driver for
traditional ground vehicles. “Sensor-centric / sensor-based” factors refer to the physical limitations of the
UGV sensor systems. These factors determine the accuracy and availability of data to feed the autonomy
algorithms. So, for autonomous mobility, the sensor-centric factors will determine overall mobility. This
idea is fleshed out in full in Section 3.

2 THE NATO REFERENCE MOBILITY MODEL

Recognizing the need for a modeling tool that could answer important questions about the viability of a
ground vehicle for a particular mission and environment, the Army developed a mobility modeling tool for
off-road vehicle performance (the Army Mobility Model), which was quickly improved upon and adopted
by NATO in the 1970s. At its heart, the NRMM is a parameterized model, meaning the ground vehicle
and the environment are both simplified into a set of parameters, and the vehicle parameters are compared
against the environment parameters using empirical mobility models to determine overall mobility. The
NRMM works by comparing the vehicle data to the environment data using empirical relations developed
through field testing to determine if the vehicle can cross a particular patch of terrain and, if so, at what
speed can it operate. This output is referred to as “speed-made-good.” A generalized workflow of NRMM,
including its sub-modules, is shown in Figure 1.

The NRMM provides several key abilities to both ground vehicle developers and military decision
makers. By varying the vehicle parameters, users are able to quickly weigh the benefits of system design
choices and perform module tradeoff studies. Users can also leverage the NRMM as a planning tool to
determine what ground vehicle is best for employment in given situations. Because of these features and
despite its age, the NRMM is still the primary mobility modeling tool used in the ground vehicle acquisition
process. Several important references decribing the NRMM can be found, including (Petrick, Janosi, and
Haley 1981) and (Ahlvin and Haley 1992).
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Figure 1: The NRMM workflow.

3 THE VIRTUAL AUTONOMOUS NAVIGATION ENVIRONMENT

The Virtual Autonomous Navigation Environment (VANE) is a high-fidelity, physics-based simulator for
autonomous UGVs. The VANE began development primarily as a tool for developing autonomy algorithms
for UGVs (Jones 2008) (Cummins 2008). The VANE is used to simulate an autonomous UGV performing
a given mission in a given environment. As VANE has developed, it has shifted towards primarily being
a tool for simulating sensor-environment interactions with less focus on autonomy in the loop simulations
(Goodin, Kala, Carrrillo, and Liu 2009) (Goodin 2010). Where the NRMM is a coarse, macro-scale
performance forecasting tool, the VANE is a micro-scale, mission-level simulation tool for performance
assessment and algorithm development for autonomous UGVs. As discussed in the following section, the
final RAMM formulation relies on the simulation of sensor systems within VANE and the impact these
sensor data have on autonomy algorithms.

There are several key components to the VANE. First and foremost is the architecture, which serves
as the means by which the other pieces of the VANE communicate with each other. The most important
part of the VANE, and the part that will play the biggest role in the RAMM, is the sensor and environment
models that are used in the development and testing of autonomy algorithms. On top of the sensor modeling
is the mobility and vehicle dynamics models. These models provide the location of the UGV relative to the
environment, which in turns provides the location of the UGV’s sensors as they perceive the environment.
These mobility and sensor models together recreate the physical behaviors of the UGV as it reacts to its
autonomy algorithms.

3.1 VANE Architecture

The VANE architecture is modeled after the High-Level Architecture (HLA) concept used in DoD simulations.
In this architecture, federates, or models, subscribe to and publish outputs of pre-defined formats. Because
the VANE is non-real-time and the VANE’s models work at disparate time scales, the advancement of time
is controlled by a time-manager federate that tracks the internal state of each of the participating federates
(models). In typical VANE simulations, sensor federates subscribe to the vehicle state message and publish
sensor data. The autonomy federate subscribes to both the vehicle state and sensor data messages. The
autonomy federate publishes driving commands that are used to determine the vehicle state at the next
time step. The HLA architecture controls the messages sent back and forth between these pieces to create
a complete VANE simulation.

3.2 VANE Sensor and Environment Modeling

The core of the VANE is its sensor and environment models. Sensor outputs drive the autonomy algorithms
used by UGVs. By providing high-fidelity, physics-based simulated sensor outputs, the VANE can more
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accurately simulate autonomous UGVs behaviors. The mechanism by which the VANE generates high-
fidelity sensor outputs is its ray tracer.

The VANE ray-tracer (VRT) uses high-performance computing to simulate the radiative transfer of
energy through the environment. The VRT is a full spectral simulation that calculates spectral reflectance
properties using either the cosine lobe model or the He-Torrance-Sillion-Greenberg (He, Torrance, Sillion,
and Greenberg 1991) bidirectional relectance distribution function (BRDF) model for surface reflectance.
Subsurface scattering and transmission are not modeled in the VANE. The atmosphere is modeled in VANE
using the Hosek-Wilkie Sky model in the visible region (Hosek and Wilkie 2012) and the Bird (Bird and
Riordan 1986) model in the near-IR (NIR) to long-wave IR (LWIR) regions of the spectrum.

To obtain high-fidelity sensor outputs, a high-fidelity environment is required. The simulation environ-
ment itself must contain physical data to stimulate the sensors. The environment must contain not just the
geometry of each object but also critical physical information, such as spectral reflectance. Moreover, the
environment will look different to different sensor models. The modeled BRDF is critical to LIDAR and
camera models, but not to GPS, which is more concerned with geometry. For the UGV mobility platform,
the environment should contain the soil strength of the ground surface. Figure 2 shows an example VANE
geo-environment.

Figure 2: An image of part of an example VANE environment of a forest geo-environment. In addition to
the geometry of the environment, objects are given physically meaningful attributes that drive the sensor
models.

The VANE contains models for the sensors most commonly used by autonomous UGVs, e.ge. camera,
LIDAR, and GPS sensors. The camera model includes both near-IR and hyperspectral cameras in addition
to traditional charged-coupled device (CCD) digital cameras. The LIDAR model is a general model that
uses ray tracing to simulate the individual laser beams as they propagate through the environment. It is
parameterized to match the performance of a variety of LIDAR sensors. The GPS model includes both
commercial and differential GPS sensors. Figure 3 shows an example simulated sensor output for a CCD
camera.

3.3 VANE Mobility and Vehicle Dynamics Modeling

Vehicle dynamics in the VANE are modeled using the Mercury package from the Computational Research
and Engineering Acquisition Tools and Environments Ground Vehicles program (Post 2016). Mercury is
built on the Chrono dynamics engine (Tasora 2015) and provides a high-fidelity, physics-based software tool
for conducting simulations of vehicle mobility. By integrating cutting edge, massively parallel modeling
techniques for soft, cohesive soil and dry granular soil that integrating state-of-the-art soil simulation with
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Figure 3: An output image from a Sony CCD camera compared with the real object being modeled within
the geo-environment.

high-fidelity multi-body dynamics and powertrain modeling, Mercury provides a next-generation mobility
simulation.

3.4 VANE Sensor Accuracy Simulations

Outside of closed-loop simulations, the VANE sensor models can also be used “off-line” to generate sensor
data within an environment. In particular, sensor data quality, or accuracy, can be measured within the
environment. Because the ground-truth geometry and positions are known, sensor outputs can be compared
to these truth data to measure the sensor data error at that position within the environment. Figure 4 gives
an example of this sensor accuracy measurement for a GPS sensor. This GPS sensor study is revisited later
in this paper as an example application of the RAMM.

These sensor accuracy prediction maps in particular mimic the NRMM. They provide an environment
in which mobility forecasting can be performed for autonomous UGVs. Compromised sensor data would
lead to lower speeds of operation for autonomous UGVs, or even potential NOGO regions. In this fashion,
the VANE can be used as a performance prediction tool.

4 THE REFERENCE AUTONOMOUS MOBILITY MODEL

The introduction of autonomy requires several changes to the NRMM paradigm. For autonomous UGVs,
mechanical mobility is no longer the driving factor for determining vehicle mobility. Similarly, a human
driver is no longer the key factor for determining performance. In order to predict autonomous mobility, a
prohibitive number of major changes would be required in the core NRMM software. The core concepts of
the NRMM, in particular the comparison of a vehicle’s basic parameters against its operational environment,
are still crucial to the mobility modeling process. However, a new tool is needed to capture the effects of
autonomy on mobility. The goal of the RAMM is to provide this tool.

To be clear, the RAMM is not an extension of the NRMM; it is a new tool that is built using the NRMM
conceptual design. The NRMM is a macro-scale mobility predictor that uses low-fidelity environmental
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Figure 4: GPS sensor accuracy prediction within a small urban area. The simulated GPS output position
was compared with the ground-truth sensor position within the environment to determine the positioning
error. Warmer colors indicate higher levels of GPS positioning error.

data as input. Autonomous mobility modeling requires studying the outputs of autonomy algorithms, and
these algorithms cannot be evaluated without micro-scale, high-fidelity environment information. Just like
the NRMM computes vehicle mobility as a function of environment, the RAMM must compute vehicle
autonomous mobility as a function of both environment and input sensor data. Unlike the NRMM, highly-
detailed simulation environments are needed to simulate these sensor data and integrate these sensor data
with autonomy algorithms to model UGV mobility.

Given the need for high-fidelity simulation environments and sensor data, the RAMM is realized using
the VANE. The VANE provides both aspects of mobility modeling, mechanical and perceptional. Unlike
the NRMM, the RAMM is a deterministic simulation that uses a physics-first approach to generate, at a
near-truth level, sensor and mobility model outputs. Rather than comparing lump parameter vehicle and
environment files via empirical relationships, the VANE actually simulates a vehicle traversing a terrain.
Similarly, the VANE simulates UGV sensors within the simulation environment. Together, these mobility
and sensor simulations can be merged into an overall mobility prediction for an autonomous UGV.

The RAMM operates in a manner akin to the NRMM. A UGV vehicle model is compared against the
terrain unit, or operational environment, and speed-made-good is computed. However, for the RAMM,
this is accomplished by actually simulating the UGV traversing the environment in the VANE to determine
mobility. For the RAMM, the environment is characterized by both the mobility hazards and the fidelity of
the sensor data available at that terrain unit (see Figure 4). For the vehicle model, the UGV is characterized
by both its mobility performance and its on-board sensors and autonomy algorithms. For driver-based
concerns, the VANE is used as a pre-processor to simulate the autonomy algorithms within the environment
to determine the UGV’s autonomy algorithms’ performance as a function of input sensor data.

The overall operation of the RAMM closes the loop between the VANE pre-processing for determining
autonomy algorithm performance and the VANE sensor performance modeling. This mobility modeling
workflow is show in Figure 5. The pre-processing defines autonomy performance as a function of sensor
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input data. The sensor performance data define the quality of sensor data available. By comparing autonomy
algorithm performance against available data, the RAMM can define the overall ability of a UGV to operate
across a given terrain unit. To use the above example from Figure 4, the sensor performance modeling
shows that a UGV using an algorithm highly dependent on high-fidelity GPS data would either operate at
very low speeds or not operate at all in a dense urban area (this example is shown in detail in Section 5).
Using specific algorithm performance, the RAMM could go on to determine what these operational speeds
would be.

Figure 5: The proposed RAMM workflow. Autonomy algorithm performance is pre-processed, and this
characteristic performance is compared against the available sensor data across the environment.

The RAMM will allow for the same types of evaluations performed on manned vehicles as the NRMM
performs on autonomous UGVs. For example, the RAMM can be used as a mission planning tool for
UGVs. As of writing, the fielding of autonomous UGVs for military applications is limited. One of the
hurdles facing autonomous UGV deployment is the inability to understand the mission-level capabilities
of these UGVs. By capturing the mobility performance of an autonomous UGV, the RAMM provides
mission planners with an understanding of where the UGV can operate and at what speeds it can operate
there. This will help in particular in route planning for UGVs.

Another key capability the RAMM will provide is the ability to compare manned vs. unmanned vehicle
performance. The trade-off between manned and unmanned vehicles is poorly understood. Difficulties are
faced when trying to definitively show the benefits of unmanned vehicles. Difficulties are also faced when
trying to determine whether a manned or unmanned vehicle is best for a given mission. The RAMM will
provide, via speed-made-good, a snapshot of the performance capabilities of both manned and unmanned
vehicles, which allows for an easy comparison between the two.

Furthermore, the RAMM will allow for trade-off studies similar to the ones performed using the NRMM.
Rather than looking at performance changes as a function of suspension or tire inflation, the RAMM will
allow developers to look at the performance changes as a function of sensors and autonomy algorithms.
This will allow decision makers to understand what the benefits of one sensor suite vs. another are or what
the relative performance between autonomy algorithms is. This aids in both the requirements writing for
and the development of UGV systems.

5 EXAMPLE APPLICATION OF THE RAMM - ROUTE PLANNING WITH GPS SENSOR
ATTRIBUTION

Route planning plays an integral role in mission planning for ground vehicle operations in urban areas.
Determining the optimum path through an urban area is a fairly well understood problem for traditional
ground vehicles; however, in the case of autonomous UGVs, additional factors must be considered. The
RAMM takes these factors into account by using perception factors in determining operational areas. For
this RAMM application, perception was incorporated into the route planning process via environment
attribution with GPS sensor accuracy. For this study, a two-km by two-km urban simulation environment
was developed for use in the VANE. By simulating a GPS sensor along the road network within this scene
in VANE, the accuracy of the GPS sensor outputs was calculated. The relative error in the GPS outputs
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Figure 6: The urban scene developed for use in this study.

were then associated with a cost, and an A* path planner was used to find the lowest cost path across
the urban area. This path was compared to the shortest route to highlight the difference in performance
between manned and unmanned vehicles.

5.1 Simulating GPS Sensor Accuracy

Figures 6 shows the VANE simulation scene used in this study. The scene chosen was a typical urban
cityscape containing approximately 1700 buildings. The urban environment was designed such that it
contained many features known to challenge autonomous navigation systems, including urban canyons
(narrow roadways surrounded by tall buildings which result in significant GPS dropout). The goal in
choosing this scene was to provide a simulation environment that contained areas of both high- and
low-quality GPS data.

The GPS sensor error was simulated along a six-meter resolution road network grid at a height of three
meters off the ground. To generate the average GPS error values, the GPS was simulated by collecting
stationary position data at each grid cell for two hours. The output receiver position was compared to the
true receiver position within the scene, and the average GPS error for each grid cell was determined using
Equation 1.

GPSerr(x,y) =
1
N

N

∑
i=1
|GPSsim(x,y, ti)−GPStrue(x,y, ti)| (1)

Figure 7 shows the GPS errors along the road network. Each grid cell represents one pixel within the
image shown in Figure 7. The x,y axes of pixels in the scene used for this study was run from 0 to 200,
with each (x,y) point representing one six-meter by six-meter terrain unit. Once calculated, the GPS errors
were normalized to have maximum value of one in the case of GPS dropout and scaled values of 0.99 to
0.01 for grid cells with GPS returns.

5.2 Path Planning using GPS Sensor Accuracy

For manned ground vehicles, path planning uses the A* algorithm, which finds the shortest open path
between the start and goal points. Therefore, the natural starting point for this study is the application of
A* to the urban road network to determine the base case. Figure 8 shows the optimal path determined by
A* in the absence of sensor errors. The path was chosen to have a start point of (12,5) and a goal point
of (157, 157). It has a total distance traveled of 213 terrain units and a total path cost of 256.08, where
cost is defined as given in (Hart, Nilsson, and Raphael 1968):
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Figure 7: The average GPS error along the road network.

f (x) = g(x)+h(x) (2)

The path cost function, g(x), can be any function of a node that assigns a positive, real number value
to that node (0, in the base case of no GPS error). The heuristic function h(x) represents an acceptable
estimate of the distance between the node x and the goal node.

Next, A* is again applied to the road network grid, only now the GPS sensor errors are added as
additional costs to (g(x), to be taken to be the normalized output of Equation 1) to traveling through each
grid cell. In this case, A* will return the path with the lowest total cumulative GPS sensor error. A* will
also still attempt to follow the shortest path; therefore, the path returned is the shortest path that minimizes
GPS sensor error, and not necessarily the path with the absolute minimum total cumulative error.

Figure 9 shows the path chosen for the case of minimizing cumulative errors. From a mobility
standpoint, it is a less optimal path, having a total distance traveled of 226 grid cells and a total path cost
of 306.48. Furthermore, this path can be qualitatively described as having many sharp turns, a switchback,
and following several narrow roadways.

Using the VANE as the foundation of the RAMM, the capabilities of the UGV are discovered and
quantitatively measured. A UGV that is reliant on GPS data cannot operate in almost 25% of the area
of interest. Furthermore, the relative cost of traversing the area is much higher for the GPS-reliant UGV.
The RAMM highlights the performance differences between manned and unmanned vehicles and allows
decision makers to better plan when and where to deploy autonomous UGVs within this environment. Due
to the lack of real-world UGV performance measures, it is not possible at this time to generate a true
speed-made-good for this environment. Rather, this example serves to show the general RAMM workflow
and performance measuring outputs.

Moreover, the RAMM enables developers to better design their vehicles. The RAMM shows how
the GPS sensor accuracy affects mission-level performance. Using the RAMM, a sensor tradeoff study
could be performed to observe how changing the inertial navigation solution for the UGV affected UGV
performance within the urban environment. A similar study could be performed based on the navigation
algorithms used by the UGV. Much as characteristics such as tire inflation and suspension type could be
varied to study mission-level performance using the NRMM, characteristics such as sensors and algorithms
can be varied using the RAMM.
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Figure 8: The shortest possible path between the start and goal points within the scene. This path represents
the base-case optimal path in the case of zero sensor errors or mobility hazards.
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Figure 9: The path between the start and goal points with the lowest total cumulative GPS output errors.
From a mobility standpoint, this path is sub-optimal.
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6 CONCLUSIONS

Ground vehicle mobility modeling has played a critical role in the vehicle acquisition process. Modeling
tools that capture vehicle performance at an operational level are integral in the design, development,
testing, evaluation, and fielding of ground vehicles. Since the 1970s, one of the primary vehicle modeling
tools in use has been the NRMM. By providing speed-made-good predictions for ground vehicles, the
NRMM has provided important information on mission-level performance to both users and developers.

However, NRMM cannot model the mobility of autonomous ground vehicles. Its focus is on mechanical
mobility and driver-based concerns. Recognizing the need for a new mobility modeling tool, this paper
presented the RAMM, which is the first mobility modeling tool proposed for measuring autonomous
mobility. The final outputs of the RAMM is a marriage of the mechanical and perceptive mobility of the
UGV.

Like the NRMM, the RAMM will be used for two primary purposes, i.e. showing the impacts of
design changes on mission performance and helping mission planners understand the capabilities of an
autonomous UGV. The main factors influencing mission performance are sensor and autonomy algorithm
performance. The test case presented illustrates how the RAMM can be used in an autonomous urban
routing example. By attributing the environment with sensor performance data, a GO/NOGO map for an
urban terrain was built using perception data. This analysis showed the performance differences between a
manned and unmanned vehicle and also showed the operational performances capabilities of an autonomous
UGV that was reliant on high-quality GPS data.

The presented example was created using the VANE. The core operation of the RAMM is to compare
autonomy algorithm performances measured using the VANE with the fidelity of sensor data available to
these autonomy algorithms across the simulation environment’s terrain. Future RAMM development will
focus on integrating autonomy algorithms with the VANE and developing the analysis techniques needed
to accurately predict autonomous mobility. Once completed, the RAMM will provide the community with
the mobility modeling tool it needs as part of the UGV acquisition process.

REFERENCES

Ahlvin, R. B., and P. W. Haley. 1992. Nato Reference Mobility Model: Edition II. NRMM User’s Guide.
U.S. Army Engineer Waterways Experiment Station.

Bird, R. E., and C. Riordan. 1986. “Simple Solar Spectral Model for Direct and Diffuse Irradiance on
Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres”. Journal of Climate
and Applied Meteorology 25 (1): 87–97.

Cummins, C. 2008. “Virtual Autonomous Navigation Environment”. Technical report, DTIC Document.
Goodin, C., R. Kala, A. Carrrillo, and L. Y. Liu. 2009. “Sensor Modeling for the Virtual Autonomous

Navigation Environment”. In Sensors, 2009 IEEE, 1588–1592. IEEE.
Goodin, Chris, e. a. 2010. “High fidelity Sensor Simulations for the Virtual Autonomous Navigation

Environment”. In International Conference on Simulation, Modeling, and Programming for Autonomous
Robots, 75–86. Springer.

Hart, P. E., N. J. Nilsson, and B. Raphael. 1968. “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths”. IEEE transactions on Systems Science and Cybernetics 4 (2): 100–107.

He, X. D., K. E. Torrance, F. X. Sillion, and D. P. Greenberg. 1991. “A Comprehensive Physical Model
for Light Reflection”. In ACM SIGGRAPH computer graphics, Volume 25, 175–186. ACM.

Hosek, L., and A. Wilkie. 2012. “An Analytic Model for Full Spectral Sky-Dome Radiance”. ACM
Transactions on Graphics (TOG) 31 (4): 95.

4036



Durst, Goodin, Anderson, and Bethel

Jones, Randy, e. a. 2008. “Virtual Autonomous Navigation Environment (VANE)”. In Earth & Space 2008:
Engineering, Science, Construction, and Operations in Challenging Environments, 1–8.

Petrick, E., Z. Janosi, and P. Haley. 1981. “The Use of the NATO Reference Mobility Model in Military
Vehicle Procurement”. Technical report, SAE Technical Paper.

Poczter, S. L., and L. M. Jankovic. 2014. “The Google Car: Driving Toward A Better Future?”. Journal
of Business Case Studies (Online) 10 (1): 7.

Post, Douglass, e. a. 2016. “The Computational Research and Engineering Acquisition Tools and Environ-
ments (CREATE) Program”. Computing in Science & Engineering 18 (1): 10–13.

Tasora, Alessandro, e. a. 2015. “Chrono: An Open Source Multi-physics Dynamics Engine”. In International
Conference on High Performance Computing in Science and Engineering, 19–49. Springer.

Zimpfer, D., P. Kachmar, and S. Tuohy. 2005. “Autonomous Rendezvous, Capture and In-Space Assembly:
Past, Present and Future”. In 1st Space Exploration Conference: Continuing the Voyage of Discovery,
Volume 1, 234–245. Orlando, Florida, USA.

ACKNOWLEDGMENTS

Permission to publish was granted by Director, Geotechnical and Structures Laboratory.

AUTHOR BIOGRAPHIES

PHILLIP DURST is a Research Physicist with the U. S. Army Engineer and Research and Development
Center, where he has worked since 2009. He received his Master’s degree in Physics from Mississippi
State University in 2009. Since joining the ERDC, his primary research areas have been the development
of high-fidelity models and simulations of autonomous unmanned ground vehicles and vehicle-mounted
sensor systems. His e-mail address is phillip.j.durst@erdc.dren.mil.

CHRISTOPHER GOODIN is a Research Physicist with the U. S. Army Engineer Research and De-
velopment Center, where he has worked since 2008. He received his Ph.D. from Vanderbilt University
in 2008 in Physics. Since joining the ERDC, Dr. Goodin’s primary research interests include sensor
simulations, radiative transfer modeling, and vehicle-terrain interaction modeling. His email address is
christopher.t.goodin@erdc.dren.mil.

DEREK ANDERSON is an Assistant Professor in Electrical and Computer Engineering at Mississippi
State University (MSU). He received his Ph.D. in ECE from the University of Missouri, Columbia. His
research interests include signal/image processing, pattern recognition, and data/information fusion. His
email address is anderson@ece.msstate.edu.

CINDY BETHEL is an Assistant Professor in the Computer Science and Engineering Department at
Mississippi State University (MSU). She is the Director of the Social, Therapeutic, and Robotic Systems
(STaRS) lab and a Research Fellow with the MSU Center for Advanced Vehicular Systems Human Per-
formance Group. Dr. Bethel received her Ph.D in Computer Science and Engineering in August 2009
from the University of South Florida. Her research interests are in human-robot interaction, robotics, and
artificial intelligence. Her email address is cbethel@cse.msstate.edu.

4037


