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ABSTRACT 

Real-time job shop scheduling is a sequential decision making problem. The main task is to decide which 

job in a queue should be processed next. The problem can be modeled as a Markov decision process. Jobs 

in the queue form an action set. Selecting one job to process is regarded as taking an action from the set. 

A dummy action, which means no job will be selected and the machine will keep idle, is also contained in 

the set. This removes the no-delay restriction from the problem. The reward function comprises the 

critical ratio of the selected job and the global job holding cost. Two algorithms, simulation-based value 

iteration and simulation-based Q-learning, are introduced to solve the scheduling problem from the 

perspective of a Markov decision process. The simulation explores the state space and accomplishes state 

transitions. The value function is parameterized and estimated by using a feedforward neural network. 

1 INTRODUCTION 

In job shops, when a machine becomes idle and several jobs are waiting in front of it, we will decide 

which job should be processed next. This is a real-time job shop scheduling problem. The decisions are 

made in real time based on up-to-date information regarding the state of the system. When the level of 

disturbances in job shops is always high, the real-time scheduling becomes very important. Due to the 

constraints on the response time, one cannot expect for an optimal or near-optimal decision (Sabuncuoglu 

and Bayız 2000). Obviously, during the manufacturing process we have to make a huge number of such 

decisions. These decisions make up a sequence of decisions. Generally, dispatching rules, such as First In 

First Out (FIFO), Shortest Processing Time (SPT) and Earliest Due Date (EDD), are a simple way to 

make such decisions (Blackstone, Phillips, and Hogg 1982). However, these dispatching rules are very 

rough methods and cannot adapt to the changing situation in the manufacturing line (Zhang and Rose 

2013). Most times, the sequential decision problem can be described as a Markov decision process (MDP) 

(Littman 1996). Some applications are already reported (Patrick 2012). For example, Yih and Thesen 

(1991) formulated the scheduling problem as semi-Markov decision problems and used a non-intrusive 

‘knowledge acquisition’ method to reduce the size of the state space; Gabel and Riedmiller (2007) 

modeled the job shop scheduling problem by means of a multi-agent reinforcement learning and attached 

to each resource an adaptive agent that makes its job dispatching decisions independently of the other 

agents and improves its dispatching behavior by trial and error employing a reinforcement learning 

algorithm.  

However, the applications of Markov decision process in real-time job shop scheduling problems still 

lack theoretical support. Even for a single agent Markov decision process, lots of issues are still unsolved, 

for example, how to describe the state of job shops and when to observe the state. The basic principle to 
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determine the state variables is that the state must be memoryless. For the observation issue, the states at 

observation points must make up an embedded Markov chain. To possess these properties, some extra 

constraints may need to be added to the scheduling problems. For example, sometimes the processing 

times must be subject to exponential distributions. Gabel and Riedmiller (2007) gave some suggestions of 

state feature selection, but did not consider whether these features are memoryless. The embedded 

Markov chain is also not mentioned in their work. It is hard to determine whether the job shop scheduling 

problem was correctly converted into a Markov decision process. Thus, in our study we will simplify the 

problem and consider only one agent in the Markov decision process. The decision epoch and the state 

will be explicitly defined. We will also prove that the Markovian property is held in the Markov decision 

process built from the job shop scheduling problem. Because the state space is very huge, a simulation 

model is introduced to explore the state space and accomplish the state transitions. 

The paper is structured as follows: Markov decision processes are introduced in detail in Section 2. 

Section 3 shows how we model the scheduling problem as a Markov decision process. Two simulation-

based algorithms are proposed in Section 4. An experiment and its results are reported in Section 5. The 

paper is concluded in the last section.  

2 MARKOV DECISION PROCESS 

The Markov decision process has two components: a decision maker and its environment. The 

decision maker observes the state of the environment at some discrete points in time (decision epochs) 

and meanwhile makes decisions, i.e., takes an action based on the state. The decisions made by the 

decision maker are then executed in the environment which will find itself in a new state later. As a 

response to the decision maker, the environment also returns a reward to the decision maker. The goal of 

the decision maker is to find an optimal way to make decisions so as to maximize the long-term 

cumulative rewards.  

Therefore, the Markov decision process can be described by a five-tuple , , ( ), ( ' | , ),MDP T S A s P s s a   

( ' | , )R s s a  , where T is a set of decision epochs at which the decision maker makes decisions; S is a set 

of all possible states of the environment; ( )A s  is a set of possible actions (alternatives) while the state is 

,s s S ; ( ' | , )P s s a  is a set of the probabilities that the state of the environment changes from state s to 

state s’ after action a is taken, which satisfies 
'

( ' | , ) 1
s S

p s s a


 . ( ' | , )R s s a  is a set of rewards that the 

decision maker obtains after taking action a and the state of the environment changes from state s to state 

s’. At each decision epoch ,t t T , the decision maker selects an action , ( )a a A s  according to the 

environment's state ,s s S . As a consequence of its action a, the decision maker receives a numerical 

reward ,t tr r   from the environment, and the state of the environment changes to ', 's s S . A very 

common goal is that the decision maker tries to find a policy to make decisions so that the sum of the 

discounted rewards it receives in the future is maximized. The expected discounted reward is (Sutton and 

Barto 1998), 

1

0

k

t t k

k

R r


 



 , 

where r  is a parameter, 0 1   , called the discount rate. 

MDPs can be solved by dynamic programming. Suppose we know ( ' | , )P s s a and ( ' | , )R s s a  

, ( ), 's S a A s s S     and we wish to calculate an optimal policy   that maximizes the expected 

discounted reward, where ( ) ( )s A s  is the action to be taken in state s suggested by policy  . If we 
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define ( , )Q s a as the value of action a taken in state s and let  ( , ) ( | )t tQ s a R S s  , the following two 

equations can be derived, 

'

'

( , ) ( ' | , )[ ( ' | , ) max ( ', ')]a

s

Q s a p s s a r s s a Q s a   

( ) argmax ( , )as Q s a  , 

To solve the first Bellman equation, we can calculate the optimal value function. The optimal policy can 

be obtained through the second equation which means that the action with the greatest value ( , )Q s a  will 

be taken. 

3 MDP VIEW OF REAL-TIME JOB SHOP SCHEDULING 

Real-time job shop scheduling is known as a semi-Markov decision process. As we mentioned before, the 

main concern of the real-time job shop scheduling is to decide which job in the queue should be processed 

first. This type of decisions has to be made again and again by operators during the manufacturing 

process. Decisions made now have both immediate and long term effects, and determine the later decision 

epoch. Obviously, the operators are the decision makers and the job shop is the environment. Selecting 

one job in a queue to process next corresponds to taking an action in an action set. The goal of the real-

time job shop scheduling is not to make good decision at every decision epoch, but to ensure that all 

decisions together result in a good performance of the job shop. 

In order to make the process Markovian, we assume job interarrival times, processing times, and 

travel times at a machine m are all exponentially distributed with mean 1/ m , ,m p , and 
,m t . And the 

state of system is observed only 1) when a job is released, or 2) a job arrives at an machine, or 3) a 

machine becomes idle. The five tuple of MDP of job shop scheduling is given as follows. 

3.1 Decision epoch and non-decision epoch 

Decisions are made while 1) a job arrives at an idle machine; 2) a machine with a non-empty queue 

becomes idle. We call these points of time decision epochs. Contrarily, when a job is released or arrives at 

an occupied machine or a machine with an empty queue becomes idle, no decisions are made. We call 

these moments non-decision epochs. The time between two successive epochs is random. 

3.2 State space 

The most important art in applying Markov processes is to choose state variables such that the Markovian 

property holds. Based on queueing network theory, a state of job shops is defined by a set 

{ }, , ( , , )m m m m ms s m M s x y z    , where M is a set of machines; , ,m m mx y z  respectively denote number 

of jobs being travelling to, being waiting in front of, and being processed on machine m. Thus, state space 

{ }S s . As the exponential assumption about the times and observation at special events, the process 

1 2 3{ , , , }s s s can be proved to be a Markov process as follows. 

Assuming current epoch is at the observation point shown in Figure 1 and current state is s. After an 

action a is taken, state becomes to s’. Obviously, s’ is only dependent on s, a, and the next event. If we 

can prove that the next occurrence of an event is memoryless, s’ is only dependent on s’ and a. Because 

we assume that all times are exponentially distributed, events that just occur at the observation point will 

occur independently in a memoryless way. For events that do not occur at observation points, we can 

prove that the remaining time to the next occurrence also has exactly the same exponential distribution as 

the original (Nelson 2012). So all possible events that may occur next in time have exponentially 

distributed recurrence times. The next occurred event will be the event with the smallest (remaining) time 
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to next occurrence, i.e., 1 2min( , , ...)X X , where X is the (remaining) time to the next occurrence. Because 

1 2min( , ,...)X X  is also exponential distributed, the memoryless property of the next occurrence is proved.  

 

event

Job release

Job arrival

Machine Idle

time

Point of time 
that an event 

occurs

Time to the next 
event occur

Remaining time to the 
next event occur

Observation point
 

Figure 1: Demonstration of the memoryless property of the next event. 

3.3 Action set 

Jobs in the related queue at a decision epoch make up an action set. Because our scheduling problem 

allows machines to be idle while their queues are not empty, a dummy action is also added to the action 

set. The dummy action means no job is selected to process and the machine keeps idle. At a non-decision 

epoch, either the related machine is occupied or its queue is empty, so no action is taken. To be consistent 

with decision epochs, the dummy action is considered to be taken at the non-decision epoch. 

3.4 Reward function 

The reward, '( ' | , ) (1 ) a sr s s a r r     , includes two parts, where 0 1   indicates the relative 

importance of the parts. The first part is the reward for the action selection. The second part is the reward 

for the state sojourning in a time period  , where  is the time between two successive decision epochs. 

In our study, ar adopts the critical ratio of the selected job, 0/ ( )a rest rawr t t      , where 0 is the 

release time;  is current time; rawt denotes the raw processing time; restt denotes the remaining raw 

processing time;  is a real number, 1  . For the dummy action, 0ar   . The second part is considered 

to be the cost of holding jobs in the system, ' ( )s m m m

m M

r x y z


    ,where  is the price of holding one 

job per time unit. 

3.5 Transition function 

First, let us consider one machine m from the network and analyze it for itself. Jobs entering the machine 

area are either from release sources or from its predecessors. The rates at which jobs enter the machine 

area from each source are ,1 2, , ..., m inN

m m m   , where 
,m inN is the number of the sources and predecessors. 

Assuming that current state of the machine is ( , , )m m mx y z , after an action is taken the state changes to a 

new state with a certain probability. At any epoch, three types of events may occur. Sometimes only one 

event occurs; sometimes two or more events may occur together. Different combinations of the events are 

related to different states. There are 7 possible states after an action is taken. The corresponding 

probabilities of the states will be the probabilities that the related events occur first. The probability that 

an event occurs before other events can be calculated through the rates 
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( min( , ,...)) / ( ...)k a b k a bP X X X       . For example, the probability that a job arrive event occurs 

first is 
, / ( , , )m m t m m my x y z  , where , ,( , , )m m m m m m t m m px y z y z      , ,1 2 ... m inN

m m m m       .The 

possible new states and their probabilities are listed in Table 1 in which 
m

i

m m

I A i I

 

 

  , where Am is a set 

of sets which contain any n numbers from 1 to 
,m inN . 

Table 1: New states and their probabilities after an action is taken in state ( , , )x y z . 

Action Next Events Next state Probability 

Dummy 

action 

n job released,

,0 m inn N   
(x+n,y,z) / ( , , )n

m x y z   

Job arrival (x-1,y+1,z) / ( , , )ty x y z   

Machine idle (x,y,z-1) / ( , , )pz x y z   

Job release & Job arrival (x+n-1,y+1,z) 1/ ( , , )n

m ty x y z     

Job release & Machine 

idle 
(x+n,y,z-1) 

1/ ( , , )n

m pz x y z   
 

Job arrival & Machine idle (x-1,y+1,z-1) 
2/ ( , , )t py z x y z    

Job release & Machine 

idle& Job arrival 
(x+n-1,y+1,z-1) 

2/ ( , , )n

m t py z x y z    
 

Non-

dummy 

action 

(z=0,y>0) 

 

n job released, 0 inn N   (x+n,y-1,z+1) / ( , 1, 1)n

m x y z     

Job arrival (x-1,y,z+1) ( 1) / ( , 1, 1)pz x y z     

Machine idle (x,y-1,z) ( 1) / ( , 1, 1)ty x y z     

Job release & Job arrival (x+n-1,y,z+1) 
1( 1) / ( , 1, 1)n

m ty x y z       

Job release & Machine 

idle 
(x+n,y-1,z) 

1( 1) / ( , 1, 1)n

m pz x y z       

Job arrival & Machine idle (x-1,y,z) 
2( 1) ( 1) / ( , 1, 1)t py z x y z       

Job release & Machine 

idle& Job arrival 
(x+n-1,y,z) 

2( 1) ( 1) / ( , 1, 1)n

m t py z x y z         

 

Now, we extend our focus to the whole network of machines. Since all machines are considered, at 

each epoch the possible events will be the observed events that may occur at all machines. To calculate 

the probability that one event occurs prior to all other events, we have to rewrite function 

1 1 1 2 2 2 1 1 1, 1 1,( , , , , , ,...) t px y z x y z y z       2 2 2, 2 2, ...t py z      . Thus the probability that, for 

example, a job will finish on machine m at the next epoch will be , 1 1 1 2 2 2/ ( , , , , , ,...)m m pz x y z x y z  . Other 

probabilities can be computed in a similar way. In addition, some events occuring at two successive 

machines may be identical, like an event that a machine becomes idle after a job finishes and the job 

release event at its successor. So in order to simplify the problem, only one of them should be considered. 

Note, that the number of possible events will become very large if the number of machines increases. 

Thus, it is impossible to predefine the transition function in this case. Even a problem with only 10 

machines is already very hard to be solved. 
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4 SIMULATION-BASED ALGORITHM 

Because the state space is quite large and sometimes the transition function is hard to be obtained, we use 

simulation to explore the state space and accomplish the state transitions. 

4.1 Parameterized value function 

The task of the MDP is to calculate optimal values of all state-action pairs. The optimal policy can be 

derived from these optimal values by means of any greedy algorithm. However, for the MDP with a large 

state space, only a part of the states is explored and their values are computed. In order to generalize the 

obtained values to unexplored states, a parameterized value function ( , )Q s a is introduced. Consequently, 

states and actions must be factorized. In our problem, the states are already well factorized. So, just for 

actions, three factors are adopted: waiting time wt , progress ratio , and processing time pt . For a dummy 

action, the values of these three factors are all set to -1. Thus 1 1 1 | | | | | |( , ) ( , , ,..., , , ,M M MQ s a Q x y z x y z , , )p wt t

. Moreover, feed forward networks can be used for any kind of input to output mapping. A feed forward 

network with one hidden layer and enough neurons in the hidden layers can fit any finite input-output 

mapping problem (Ilonen, Kamarainen, and Lampinen 2003). Hence, we use it to map the relationship 

between ( , )Q s a and ( , )s a . The factors of states and actions are inputs and the value of the state-action 

pairs are the output of the neural network. 

4.2 Simulation-based Value Iteration Algorithm 

Value iteration is a very common algorithm to compute ( , )Q s a (Puterman 2014). For our problem, we 

improved it with simulation and neural networks. Through simulation, we can find the most frequent 

states and their approximate probabilities of occurence after an action is taken. With this information, we 

will update the value of the state-action pair. The state, action, and updated value form a training pattern 

which is used to update the neural network. The algorithm is given in Figure 2. Note that once an action is 

taken at a state, we run sub-simulations many times so as to explore the state space. According to the 

times that a state appears, its probability is computed. Obviously, if the simulation runs long enough and 

the sub-simulations run enough times, a near optimal value function can be achieved. 
 

Initialize neural network Q arbitrarily 

Start simulation 

Once an arrival or completion event occurs, Do 

 Pause simulation 

 Select an action through the neural network, ( )* argmax ( , )a A sa Q s a  

 Carry out the action in the simulation 

 Run sub-simulations enough times from current state till the next event, Do  

  Build a set S’, which contains possible states after the action is taken 

  Build sets A(s’), which contain possible actions at state s’ 

  Calculate the probability ( ' | , )p s s a  for each state in S’ 

  Calculate the immediate reward ( ' | , )r s s a  for each state in S’ 

  

'

' ( ')

'

{ ( ' | , )[ ( ' | , ) max( ( ' ' },) ), ]a A s

s S

p s s a r s s a Q s aQ s a 


  

  Update neural network Q with pattern <s, a, Q(s, a)>  

 End Do 

 Resume simulation 

End simulation when a terminate condition is met 

Figure 2: Simulation-based value iteration algorithm. 
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4.3 Simulation-based Q-learning 

In the simulation-based value iteration algorithm, in order to calculate the probabilities, the sub-

simulations are very time-consuming. Q-learning avoids the probability estimation and explores only one 

state at a time. Therefore, we also tried Q-learning in our study. Like the previous algorithm, the Q-

learning algorithm is also improved with simulation and neural networks. The improvement algorithm is 

shown in Figure 3. 

 
Initialize neural networks Q arbitrarily 

Set previous state s null   and previous action a null   

Start simulation 

Once an arrival or completion event occurs, Do 

 s  current state, ( )A s  current action set  

 If s is not null Then 

 ' ( )[ ( | , ) max ( , ')( , ) ( , ) ( , )]a A sr s s a Q s aQ s a Q s a Q s a      



    , 

 where  is learning rate, 0 1   

 Update neural networks Q with pattern  ,  ,  ,  s a Q s a      

End If 

 Select and take an action through  -greedy derived from the neural 

networks,  

     
* ( )argmax ( , *)

( ( ))

a A s Q s a
a

random A s otherwise

  
 


 

s s  , a a   

End simulation when a terminate condition is met 

Figure 3: Simulation-based Q-learning. 

5 EXPERIMENTS 

The approach is applied in a small example manufacturing system, shown in Figure 4. The system 

contains 5 machines and produces 2 products (Pa and Pb) with 2 operation flows. The release interarrival 

times of Pa and Pb are exponentially distributed with mean 5 and 8 time units. The travel times and 

processing times also follow exponential distributions. The objective is to minimize the cycle time. 

 

M1 M2 M3 M4 M5

 
 

Figure 4: A job shop with two types of product. 

A discrete event simulation model is created. The model is used in both learning phase and validation 

phase. The simulation-based Q-learning algorithm is adopted. The learning rate and discount factor are set 

to 0.1, 0.1   . The parameters in the reward function have the following values: 

0.5, 2.5, 0.025     . A neural network is built with 18 inputs, 1 hidden layer, and 5 neurons in the 

hidden layer. Details of the neural network training are neglected here.  In the learning phase, the 

simulation runs for 10 hours of real time. In the validation phase, the simulation runs for 100000 time 
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units of simulation time. The trained neural network is simply used as a decision rule which calculates 

priority values of jobs in the queue. The decisions are made on the basis of the values, i.e., the job with 

the greatest value will be selected. If a dummy action has the greatest value, no job is selected and the 

machine will be kept idle. Several common dispatching rules including FIFO, Shortest Processing Time 

(SPT), Longest Processing Time (LPT), and Critical Ratio (CR) are also tested by the simulation and the 

results are compared with our results in the MDP column shown in Table 2. Our approach results in the 

shortest average cycle time and the lowest average WIP level. 

Table 2: Comparison between the proposed approach and some dispatching rules. 

Items                       
Approach

 FIFO SPT LPT 
CR

2.5   
MDP 

Avg. Cycle 

Time 

Pa 107.92 110.69 120.13 93.70 97.65 

Pb 107.74 114.73 110.04 124.45 110.42 

Summary 107.85 112.25 116.27 105.49 102.55 

Avg. WIP 

Pa 21.51 22.21 24.19 18.58 19.62 

Pb 13.37 14.41 13.75 15.44 13.80 

Summary 34.89 36.63 37.93 34.02 33.42 

Number of 

Finished 

Jobs 

Pa 19929 20051 20113 19828 20082 

Pb 12410 12563 12476 12386 12488 

Summary 32339 32614 32589 32224 32570 

6 CONCLUSIONS 

The real-time job shop scheduling problem is viewed as a Markov decision process. The decision maker 

learns the scheduling knowledge gradually through interacting with the job shop environment. We proved 

that the defined state process 1 2 3{ , , , }s s s is a Markov process. Because the state space is quite large, we 

introduced two simulation-based algorithms to solve the MDP: simulation-based value iteration algorithm 

and simulation-based Q-learning. In order to improve the generalization ability of our approach, a feed-

forward neural network is introduced to map state-action pairs to their values. The experimental results 

show that our approach performs better than some other decision rules.  
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