SCHEDULING OF DRONE-BASED MATERIAL TRANSFER SYSTEM IN SEMICONDUCTOR MANUFACTURING

Andy Ham
Industrial and Systems Engineering
Liberty University
1971 University Blvd.
Lynchburg, VA 24515, USA

DJ Kim
Central Operations Team
Micron Technology Inc,
9600 Godwin Dr.
Manassas, VA 20110, USA

ABSTRACT
The idea of deploying unmanned aerial vehicles, also known as drones, for delivery in logistics operations has inspired this research. One conceivable scenario is to use a drone to transfer jobs between locations in a future semiconductor factory. Each job might be characterized by origin, destination, priority, and precedence-relationship. In particular, the precedence-relationship occurs when drones are competing for limited number of ports (similar to helicopter landing platform). The objective is to minimize the maximum completion time of all delivery jobs performed by a fleet of drones. Two exact approaches are presented: a mixed integer programming and a constraint programming, and tested for real-time perspective with problem instances up to 50-drone and 100-job.

1 INTRODUCTION
A semiconductor fabrication line (fab hereafter) has been always emphasizing a cycle time reduction in order to cope with a rapidly changing market demand. The efforts include deploying advanced scheduling/dispatching systems, merging processing steps, eliminating unnecessary steps, adjusting batching size, utilizing chamber machines, designing efficient fab layout, and so on. Now, material handling (or transfer) system (MHS or MTS), once considered as non-critical, has started receiving an intensive attention since a job travels several miles to visit hundreds of machine in a fab, relying on MTS. Furthermore, a fab, where its expensive clean-room facilities demand a zero footprint, has been motivated to utilize an air-space for MTS. Therefore, overhead transfer system (OHT), wherein vehicles travel on the rail mounted near the ceiling to transfer jobs, was devised. Ironically speaking, OHT already utilizes an air-space to transfer jobs, just like drone will do. Replacing OHT with drone would create many benefits. One of obvious is tearing down rails and vehicles, which opens up an whole new way of designing a fab. A high tower-like fab can be foreseen when drone replaces OHT. Another is a faster delivery time since drone flies.

Regarding vehicle allocation problem, industries have used simple dispatching approaches (Wang et al. 2016; Lin et al. 2001). Considering AMHS as a supporting mechanical system for main production machines in a fab seems to contribute to the reason. However, in this coming drone era, simple dispatching approaches will lose its ground. Instead, a detailed scheduling system, that simultaneously orchestras a fleet of drones and a set of jobs in real-time, will be demanded.

2 MATERIAL TRANSFER DRONE SCHEDULING PROBLEM IN FAB
Inspired by Amazon’s significant expansion of its army of warehouse robots and the adaptation of drones for final-mile small parcel delivery, Ham (2017) mixed these two emerging technologies and proposed a drone-powered material transfer system in a warehouse, wherein jobs could be picked up by drone,
transferred, and dropped off directly to shipping cartons. Ham termed this the material transfer drone scheduling problem (MTDSP). This paper applies his proposed model in a similar problem encountered in a fab.

The problem may be formally defined as follows (Ham, 2017). Let J represent the set of jobs $\{1, \ldots, n\}$ where n denote the number of jobs (lots to deliver). Let M represent the set of locations $\{1, \ldots, m\}$, where m denotes numbers of collective locations including machines and stockers. Then let D represent the set of drones $\{1, \ldots, k^d\}$, where k^d denotes numbers of parallel drones. Let i^d represent the last known location of each drone d. Also, let $pkup_j(droop_j)$ denote the pickup (drop) locations of job j.

The MTDSP for the fab can be defined on a directed graph $G = (M, A)$, where $M = \{1, \ldots, m\}$ is the set of nodes and A is the set of arcs. For $pkup_j, drop_j \in M$, the arc exists between them. The time required for the drone to travel between nodes is given by $\tau_{\text{m,m}}^t$. The travel-time is assumed to be given with a high accuracy. A time window $[w_j, \bar{w}_j]$ is associated with each job j, where w_j and \bar{w}_j represent the earliest start (EST) and the latest completion time (LCT), respectively, which indirectly reflect the job priority. Further, a set of jobs could have a precedence-relationship because some of ports of machine permit drone’s access one at a time due to limited space (similar to helicopter landing platform). Therefore, a pickup (unloading) must occur prior to a drop (loading) when a job preoccupies the port. The objective is to schedule parallel drones to minimize the maximum completion time of all jobs, while satisfying both precedence-relationship and job-priority expressed as time-window.

Table 1 represents a sample problem with 6-job. Each job has origin, destination, precedence-relationship, and time-window. For instance, j_1 is currently located at m_1, and must be delivered to m_2, within the given time-window. Also, j_1 must complete after j_2 completes since j_2 must be first picked up since m_2 has only one port. Also, there are two parallel drones, which are hovering over m_3 and m_2, respectively. Figure 1 pictures such a system with the transfer-time between locations.

<table>
<thead>
<tr>
<th>Job</th>
<th>from-loc(pkup)</th>
<th>to-loc (drop)</th>
<th>Precedence</th>
<th>ECT</th>
<th>LCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>j_1</td>
<td>m_1</td>
<td>m_2</td>
<td>after j_2</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>j_2</td>
<td>m_2</td>
<td>stk</td>
<td>0</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>j_3</td>
<td>m_3</td>
<td>m_1</td>
<td>30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>j_4</td>
<td>m_4</td>
<td>stk</td>
<td>0</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>j_5</td>
<td>stk</td>
<td>m_3</td>
<td>after j_3</td>
<td>0</td>
<td>180</td>
</tr>
<tr>
<td>j_6</td>
<td>stk</td>
<td>m_4</td>
<td>after j_4</td>
<td>0</td>
<td>240</td>
</tr>
</tbody>
</table>

Two exact approaches are proposed by Ham (2017): a mixed integer programming and a constraint programming. This paper only contains the proposed CP formulation. For the MIP formulation, refer to his paper. It is worth mentioning that CP formulation is very different with MIP formulation. Furthermore, there is no standard in CP formulation. Namely, it varies to each CP package, unlike a similar MIP formulation (Ham and Cakici, 2016). Therefore, this paper will try to formulate the model using generic keywords and syntaxes as we refer to the CP formulations by Laborie 2009, Ghédira 2013, Goel et al. 2015, and IBM ILOG CPOptimizer (IBM, 2015).

The proposed model is built upon the following three decision variables:

- Itv_j \textbf{interval} variable representing the j-th job with the size of $\tau_{pkup_j, drop_j}^t$.
- $ItvAlt_{j,d}$ \textbf{optional interval} variable representing the j-th job of drone d.
- Seq_d \textbf{collection} of interval variables (Itv_j) assigned to drone d.

3727
An interval variable represents an interval of time during which, for example, a task occurs. An interval variable can represent optional tasks to be scheduled. The domain of an interval variable \(x \) is a subset of \(\{\text{Absent}\} \cup \{(s, e) | s, e \in \mathbb{Z}, s \leq e\} \). As any decision variable in an optimization problem, an interval variable \(x \) is said to be fixed if its domain is reduced to a singleton. When an interval is present, \(s \) represents the start time, and \(e \) the end time. Note each job interval \((I_{tv_j}) \) has the size of its transfer-time between \(p_{kup_j} \) and \(d_{rop_j} \). Then, the MTDSP is concisely modeled in CP by Ham (2017) as follows:

\[
\text{minimize } \max\{\text{endOf}(I_{tv_j})\} \tag{1}
\]

\[
\text{Alternative}(I_{tv_j}, I_{tvAlt_{j,d}}): I_{tv_j} \rightarrow j \leftarrow I_{tvAlt_{j,d}} \tag{2}
\]

\[
\text{noOverlap}(Seq_d, \tau^{m,n}_m) \forall d \in D \tag{3}
\]

\[
\text{type function } \theta(\{Seq_d, I_{tvAlt_{j,d}} : Seq_d \rightarrow d \leftarrow I_{tvAlt_{j,d}}\}) \tag{4}
\]

\[
\text{initialize } \theta(\{Seq_d, I_{tvAlt_{j,d}}\}) = \alpha^d, \forall d \tag{4}
\]

\[
\text{endBeforeEnd}(I_{tv_j}, I_{tv_j^b}) \forall j, j = e_{be_j} \tag{5}
\]

\[
\omega_j \leq \text{startOf}(I_{tv_j}) \forall j \in J \tag{6}
\]

\[
\text{endOf}(I_{tv_j}) \leq \overline{w_j} \forall j \in J \tag{7}
\]

The integer expression \(\text{endOf}(j) \) represents the end of interval variable \(j \) whenever the interval variable is present (otherwise, its value is 0 by default). Now, the objective function (1) seeks to minimize the maximum completion time of all jobs. Let \(\text{alternative}(J, \{D\}) \) constraint prescribe an exclusive alternative relationship among \(\{D\} \). Namely, if interval \(J \) is present then exactly one of intervals \(\{D\} \) is present and it is synchronized together with this chosen one (same start/end value). Constraint (2) ensures that each job is assigned to exactly one drone in our model. Next, let \(\text{noOverlap}[Seq, \Delta] \) constraint on a sequence variable \(Seq \) state that the sequence defines a chain of non-overlapping intervals, and any
interval in the chain is constrained to end before the start of the next interval in the chain with the minimal distance Δ. Constraint (3) requires drone to observe the sequence-dependent transfer-time between locations. Note each job interval (Itv_j) already considers the size of its transfer-time between $pkup_j$ and $drop_j$. However, there is another transfer, flying to origin location ($pkup_j$), which is equivalent to $\tau_{drop_j, pkup_j}^t$ when j is immediately preceding \tilde{j} in the sequence of drone. Constraint (4) links the last-known location of drone to the beginning of sequence variable in order to consider the initial location of drone. Constraint (5) ensures the precedence-relationship between jobs. The parameter, ebe_j, holds the precedence-relationship. Finally, Constraints (6) and (7) ensure the time-window: earliest start time and latest completion time.

Figure 2 represents an optimal schedule for the earlier sample problem with 6-job and 2-drone. The drone 1 starts its tour with j_3. Note there is no initial transfer time for the drone since the drone is currently hovering over m_3 where j_3 is located. After the drone delivers j_3 from m_3 to m_1 at 50, the done next picks up j_1 at the same location, drops j_1 at m_2 at 81, then flies to stocker for picking up j_6 at 106, and finally delivers j_6 to m_4 at 127. The drone 2 follows a similar tour.

Although CP has excelled most notably in scheduling applications (Baptiste et al., 2012), the performance of the original CP formulation can be further improved by using variable orderings heuristics (VOH). In the CP search strategy, the order of the search phases in the array is important. The variables will be instantiated phase by phase starting by the first phase of the array. There are some models where giving such an order can have a dramatic impact on the solution time. Beck et al. (2004) discussed that the “likelihood of finding a solution” could be treated probabilistically. For a given decision there is some probability over all possible subsequent decisions that the choice will lead to a solution. They demonstrated that different variable ordering heuristics do exhibit different levels of promise, wherein the promise is the ability to make choices that lead to a solution.

For the purposes of our investigation, we implement instantiation orderings over variable groups defined as: $\mathcal{V} = \{ItvAlt_{j,d}, Seq_d\}$, similar to the method proposed by Booth et al. (2016). Within these variable groups we investigate orderings on the sets. Problem variables not included in the selected subset will be instantiated after those selected. For instance, the variables Seq_d will be firstly instantiated when
searchPhase(SEQ_d) is added in CP model. In experiments, $CP_{default}^{voh}(CP_{jd}^{voh}, CP_{seq}^{voh})$ represent the CP search with the variable instantiation strategy for default, ItempAlt_j,d, and SEQ_d, respectively.

3 COMPUTATIONAL EXPERIMENTS

In this section, the effectiveness of the proposed model is compared. MIP, CP and flow control models are all coded in IBM OPL 12.7.0 on a personal computer with an Intel Core i5-3537 @ 2.5 Ghz processor and 8 GB RAM.

For the MTDSP, a total of 60 test problem instances are randomly generated. The instances are divided into six different sizes: 5, 10, 25, 50, 75, and 100 customers, with 10 replications for each. Depending on job-size, different sizes of drones (1-50) are assumed. In particular, the 5 (10, 25, 50, 75, 100) jobs are tested with 1 and 2 (3 and 5, 6 and 13, 13 and 25, 18 and 38, 25 and 50) drones, configuring each drone handles 2 jobs, respectively, on average. Note each job contains two transfers: flying to origin and flying to destination, which makes a total of 4 transfers per drone, respectively, on average. Finally, each instance is tested with the five different models: $CP_{default}^{voh}, CP_{jd}^{voh}$ and CP_{seq}^{voh}, which leads to a total of 600 runs as shown in Table 2. In addition, best feasible solutions founded in 1, 3, 5, 10, and 15 s runtime are collected in order to understand the capability of the proposed model from the real-time scheduling perspective.

Table 2. Experimental Design for MTDSP in Fab.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Levels</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>6</td>
<td>5, 10, 25, 50, 75, 100</td>
</tr>
<tr>
<td>Models</td>
<td>3</td>
<td>$CP_{default}^{voh}, CP_{jd}^{voh}, CP_{seq}^{voh}$</td>
</tr>
<tr>
<td>Runs</td>
<td>$6\times3\times10$ reps.</td>
<td>180</td>
</tr>
</tbody>
</table>

The experiment assumes that every job has the precedence-relationship with another. All customers are distributed across an 80-meter square region. An initial location of each drone is set to be equal to its index for simplicity’s sake ($i^d = d$). All the test instances and CP log files are located at the following space: https://drive.google.com/open?id=0B85VSacgqRfTYUE5Q1BNemw0bE0.

Table 3 summarizes the computational results of test problem instances of MTDSP. The table reports count of feasible solution, proven optimality, and gap against best solution found, according to different job-size, models, and runtimes. Columns 1 (2) show different job-sizes and models. Columns 3-7 (8-12, 13-17) record the count of feasible solution, the count of proven optimality, and the gap against best solution found for the different runtimes, respectively. CP_{jd}^{voh} successfully proved optimality of all test instances (5, 10, 25, 50, 75, 100 jobs) within 5 s.

Table 3. Count of feasible solution, proven optimality, and gap against best solution found, according to different job-size, models, and runtimes.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>Models</td>
<td>1</td>
<td>s</td>
<td>3</td>
<td>s</td>
<td>5</td>
<td>s</td>
<td>10</td>
<td>s</td>
<td>15</td>
<td>s</td>
<td>1</td>
<td>s</td>
<td>3</td>
<td>s</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>$CP_{default}^{voh}$</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>CP_{seq}^{voh}</td>
<td>10</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>CP_{jd}^{voh}</td>
<td>10</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>10</td>
<td>$CP_{default}^{voh}$</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>CP_{seq}^{voh}</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>CP_{jd}^{voh}</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Ham and Kim

<table>
<thead>
<tr>
<th>25</th>
<th>$C_P^{\text{voh}_{\text{default}}}$</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>9</th>
<th>9</th>
<th>9</th>
<th>9</th>
<th>10</th>
<th>10</th>
<th>0.8%</th>
<th>0.7%</th>
<th>0.3%</th>
<th>0.0%</th>
<th>0.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$C_P^{\text{voh}_{\text{seq}}}$</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1.4%</td>
<td>0.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_P^{\text{voh}_{\text{id}}}$</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0.9%</td>
<td>0.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>$C_P^{\text{voh}_{\text{default}}}$</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_P^{\text{voh}_{\text{seq}}}$</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>99.5%</td>
<td>1.2%</td>
<td>0.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_P^{\text{voh}_{\text{id}}}$</td>
<td>10</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>$C_P^{\text{voh}_{\text{default}}}$</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>nf</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>$C_P^{\text{voh}_{\text{seq}}}$</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>255.1%</td>
<td>61.6%</td>
<td>11.7%</td>
<td>0.3%</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_P^{\text{voh}_{\text{id}}}$</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>3.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>$C_P^{\text{voh}_{\text{default}}}$</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>nf</td>
<td>5.2%</td>
<td>0.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>$C_P^{\text{voh}_{\text{seq}}}$</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>nf</td>
<td>159.3%</td>
<td>77.1%</td>
<td>23.3%</td>
<td>3.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_P^{\text{voh}_{\text{id}}}$</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>nf</td>
<td>2.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
</tbody>
</table>

nf indicates no feasible solution was found in one of the instances at least.

4 CONCLUSION

Inspired by Amazon’s significant expansion of its army of warehouse robots and the adaptation of drones for final-mile small parcel delivery, this study has mixed these two emerging technologies and proposed a drone-powered material transfer system in a fab, wherein jobs could be picked up by drone, transferred, and dropped off. Contrary to OHT which utilizes rail mounted near the ceiling to transfer jobs via vehicles, this study proposes a delivery of jobs via drone, tearing down traditional rails and vehicles, and opens up an whole new way of designing a fab. A high tower-like fab can be foreseen when drone replaces OHT. For this coming drone era, a detailed scheduling system, that simultaneously orchestras a fleet of drones and a set of jobs in real-time, is studied. A job might be characterized by origin, destination, priority, and precedence-relationship. In particular, the precedence-relationship occurs when drones are competing for limited number of ports. The computational study demonstrates the proposed $C_P^{\text{voh}_{\text{id}}}$ impressively proved optimality of all test instances (5, 10, 25, 50, 75, 100 jobs) within 5 s when each drone is loaded with 4 transfers on average. As this is the first paper to address the use of a fleet of drones in a fab, several potential areas can be foreseen for future research:

Zone control: The zone control method, segmenting flow paths into zones (Berman et al., 2003) and dedicating a subset of drones to each zone, can be introduced to decompose the original problem, if the real-time performance of the proposed method becomes problematic, especially when there are very large number of jobs and drones, that must be concurrently scheduled.

Unrelated parallel drones: In this paper, identical parallel drones are assumed, but a drone might have its variants: one has only one carrier and another has two carriers. The drone equipped with two carriers will be able to greatly reduce a delivery-time, by picking up and dropping off jobs at one stop.

Simulation study: It will be very interesting to quantify the difference between a traditional OHT-based transfer and this drone-based transfer, in terms of delivery time and cost. A drone is obviously much faster than a OHT vehicle. Furthermore, OHT system costs multi-billion dollar capital investment, whereas a drone costs much less.

REFERENCES

Ham and Kim

AUTHOR BIOGRAPHIES

ANDY M. HAM is an Associate Professor of Industrial & Systems Engineering at Liberty University. He previously worked for Samsung Electronics, ILOG, and AMD/Globalfoundries. He holds a Ph.D. in Industrial Engineering from Arizona State University and Masters in Operations Research from University of Texas at Austin. His research focuses on real-time scheduling of drones, robots, vehicles, machines, and humans in the fields of smart factory focusing on semiconductor and logistics focusing on taxi and parcel-delivery industry, via constraint programming approach. His email address is mham@liberty.edu.

DJ KIM is a Senior Member of Technical Staff in Operations Central Team at Micron Technology Inc., He received MBA from Georgetown University and M.S. in Engineering Management from Queensland University of Technology, Australia and has performed about 19 years of semiconductor simulation, scheduling, and modeling experiences. His e-mail is djkim@micron.com.