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ABSTRACT 

Demand planning in the semiconductor industry is typically divided into different planning horizons, mid-

term and short-term. Accurate demand forecasting is crucial because of long capacity installation times, 

long lead-times, short product life cycles, and constantly new technological advances. As demand forecast-

ing for short and mid-term horizons are often made on different product and time granularities using dif-

ferent planning tools, we may see demand fluctuations (on the same granularity) within individual horizons 

and at the intersections of different granularities. This paper discusses stability of demand forecasts depend-

ing on time and product granularity and introduces definitions of good and bad stability, using Symmetric 

Mean Absolute Percentage Error (SMAPE) as a measure for stability. We show that time and product 

granularities have a significant effect on the intra-horizon stability of a demand plan and that planning on 

different granularities can lead to artificial demand fluctuations at the intersections of planning horizons. 

1 INTRODUCTION 

Demand forecasting in the semiconductor industry faces several challenges. Due to innovative changes in 

technology and products, the product life cycle is short but the cycle time to produce the products is intrin-

sically long. Additionally, capacity installation times are long, and the tool costs are high  

(Swaminathan 2000). Other factors that make accurate demand planning crucial are complex product flows, 

random yields, long lead-times, and many uncertainty factors such as technology, market, and customer 

demand (Hughes and Shott 1986, Huh and Roundy 2005). 

 In order to overcome these challenges, the bridging of different planning horizons has to be well coor-

dinated. The planning landscape of the semiconductor company of choice is depicted in Figure 1. The 

company uses a two-stage planning horizon: mid-term tactical planning (Business Scenario) and short-term 

operational planning (Production Program). The planning landscape is divided into five planning pro-

cesses. The focus of this paper is on demand planning. In Business Scenario, demand planning is done on 

an aggregated level to prepare necessary capacity expansions and transfers of technology for month six to 

month 18. Production Program provides a detailed demand plan for the next 26 weeks on fine product and 

time granularity levels. Stock planning also belongs to the demand planning process but is not considered 
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in this paper. In capacity planning, supply chain recourses are identified and assessed in order to identify 

capacity constraints which are used for the demand supply match in supply planning. The available capacity 

is matched against the requested demand from the demand planning and necessary production requests and 

orders are generated. Production management is the interface to the production sites and its main purposes 

are to define weekly production requests, to balance production between sites, and to secure minimum stock 

levels and customer deliveries. Order management is the interface to the customer and confirms orders 

based on the supply plan. 

 

 

Figure 1: Planning landscape of the company of choice with focus on demand planning. 

 An important parameter in demand planning is the level of aggregation for each planning horizon, in 

terms of time buckets, set of items, and set of locations (Zotteri and Kalchschmidt 2007). The choice of the 

appropriate granularity level depends on the required information and time horizon of the underlying deci-

sion-making process (Zotteri, Kalchschmidt, and Caniato 2005). The purpose of aggregation is to reduce 

demand uncertainty, computational effort, and cost (Caplin 1985, Gelders and van  

Wassenhove 1982). 

 A significant problem of aggregation and disaggregation is that a plan which is feasible at a coarse level 

may not be feasible on a finer granularity (Axsäter 1986). Furthermore, planning on different horizons using 

different granularities and various tools can lead to a high demand discrepancy at the intersections of these 

planning horizons. These artificial fluctuations imply volatility and therefore low stability. Hence, the gran-

ularity level on which a forecast is made has a considerable impact on the stability of the demand plan. 

Especially in volatile industries like semiconductor manufacturing, the aim of forecasting is not to choose 

the granularity that minimizes the fluctuations of the demand plan but to identify and eliminate artificial 

fluctuations. Therefore, we differentiate between good and bad stability. 

In this paper, we introduce definitions of good and bad stability. For that purpose, we develop a sys-

tematic framework for the classification of stability depending on time and product granularity. We apply 

a measure for stability based on the Symmetric Mean Absolute Percentage Error (SMAPE 3) to a case study 

of the analyzed semiconductor company. We show that time and product granularities have a significant 

effect on the stability of a demand plan and analyze whether inter-horizon fluctuations are higher than intra-

horizon fluctuations. 

The rest of the paper is organized as follows. Section 2 presents the literature review focusing on ag-

gregation and disaggregation and on performance measures in demand planning. In Section 3, we present 

the stability framework to assess and classify stability, followed by definitions of good and bad stability. 

The statistical analysis of our case study is described in Section 4. The paper concludes with a summary of 

the results and recommendations for further research. 
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2 LITERATURE REVIEW AND RESEARCH BACKGROUND 

2.1 Aggregation and Disaggregation in Demand Planning 

In hierarchical production planning, each planning level is defined by a specific level of aggregation (Bitran 

and Hax 1977). One part of the literature on aggregation in forecasting addresses subsequent aggregation 

and disaggregation of the data. The data is aggregated to an appropriate level, a forecast is made based on 

this aggregated data, and it is then disaggregated back to the original level. This kind of aggregation is 

discussed in many publications, for example in Weiss (1984), Gonzalez (1992), and  

Chan (1993). Axsäter and Jönsson (1984) show that the hierarchical planning approach performs signifi-

cantly better than non-hierarchical planning in terms of total costs. The authors introduce and evaluate 

different aggregation and disaggregation procedures. Rogers et al. (1991) develop a framework for aggre-

gation and disaggregation methodologies.  

 Several authors compare the top-down to the bottom-up approach (Dangerfield and Morris 1992). In 

the top-down approach, forecasts are made on an aggregate level and are disaggregated to an item level. In 

the bottom-up approach, forecast are made on an item level and then aggregated. Dangerfield and  

Morris (1992) conclude that in most situations, the bottom-up approach produces more accurate forecasts. 

 However, many companies use both aggregation and disaggregation approaches for different decision-

making processes. Zotteri, Kalchschmidt, and Caniato (2005) emphasize that forecast accuracy depends on 

the appropriate choice of the aggregation level and that this issue requires further research. Ott, Heilmayer, 

and Sng (2013) analyze the effects of product granularity on forecast accuracy and conclude that forecast 

accuracy increases with coarser product granularities. The coarsest granularity has the highest overall ac-

curacy. Furthermore, the authors analyze the dependency of forecast accuracy over time in a rolling horizon. 

The shorter the forecast horizon the higher are the forecast accuracies of the product granularities. Most of 

the above findings in literature have been confirmed over the last years at the semiconductor company of 

choice. In addition, it was found out, that disaggregation is not always needed. In mid-term and long-term 

planning, when tactical and strategic decisions are made, planning on an aggregated level is sufficient in 

terms of planning effort and level of detail of the required information.   

2.2 Performance Measures in Demand Planning 

In addition to forecast accuracy, other performance measures are important for demand forecasting as well. 

Yokuma and Armstrong (1995) identify different criteria and analyze their importance for the selection and 

evaluation of forecasting techniques. The authors name ease of use, ease of interpretation, flexibility, and 

cost savings of improved decisions as important criteria. Chae (2009) expands the list by forecast volatility. 

This is also known as forecast stability, plan stability, or inter-plan stability. Generally, inter-plan stability 

is defined as the amount of difference between two consecutive plans in a rolling horizon procedure (see 

for example De Kok and Inderfurth 1997, Heisig and Fleischmann 2001). Herrera and Thomas (2010) use 

the term nervousness for inter-plan stability. In addition, their work is one of the very few which defines 

instability as the deviations between production quantities of different periods within one plan. This insta-

bility is referred to as intra-plan stability hereafter.  

 The literature review shows that granularities have an impact on forecast accuracy and can lead to 

stability problems. The literature on performance measures mainly concentrates on forecast accuracy and 

inter-plan stability. However, the granularity level on which the forecast is made has a significant impact 

on forecast fluctuations within one plan, and therefore on the intra-plan stability, which has not received 

much attention in the literature up to now. Demand forecasting for different planning horizons is made on 

different granularities, and this results in forecast fluctuations at the intersections between horizons, hence 

within the same granularity level and between different granularities. Consequently, intra-plan stability is 

an important factor for the choice of an appropriate granularity level and deserves more attention in future 

research. This paper aims to close this gap by providing a framework for the assessment and classification 

of stability. We analyze the appropriate level of intra-plan stability and the impact of the granularity level. 
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3 DISCUSSION OF FORECAST STABILITY 

3.1 Framework for Stability 

Insufficient coordination and different granularities of the planning horizons can lead to artificial fluctua-

tions within one plan and therefore to an intra-plan stability problem. In order to encounter the different 

dimensions of volatility, we need to differentiate between good and bad intra-plan stability. For that pur-

pose, we introduce a systematic framework for the assessment and classification of stability. We define 

three dimensions as depicted in Figure 2. Based on these dimensions, we derive a stability matrix that 

enables demand planners to investigate the impact of product and time granularities on a specific type of 

stability and draw conclusions about the appropriate granularity level. 

 

Figure 2: Framework of stability. 

 As first dimension in our framework, we distinguish several types of stability. Inter-plan stability (In-

terPS) represents the deviations of the same time period from one plan to the next plan as illustrated by the 

vertical arrows in Figure 3. Intra-plan stability (IntraPS) measures the deviations from one period to the 

next period within one plan. We further classify two different subtypes of intra-plan stability. Inter-horizon 

stability (InterHS) defines the fluctuations at the intersection of different planning horizons (dashed arrows 

in Figure 3). In contrast, intra-horizon stability (IntraHS) measures the volatility within one planning hori-

zon (solid arrows in Figure 3). Furthermore, forecasts can be generated on different aggregation levels, 

depending on the need of detail of the underlying decision-making process and the available information at 

the planning point in time. In our stability framework, we differentiate between time and product granular-

ities. Other dimensions like location granularities are possible and could extend the framework. The second 

dimension covers the impact of time buckets on the stability. In mid-term and short-term demand planning, 

forecasts are typically made on a daily (D), weekly (W), or monthly (M) basis. The third dimension refers 

to the product granularity. We narrow the wide field of possible product granularities down to three levels: 

product family (PF), sales product (SP), and stock keeping unit (SKU). For example, when we consider 

the product family “power supply”, possible sales products could be 12 V and 24 V variants, and stock 

keeping units represent different manufacturing routes and storage locations. The above mentioned time 

and product granularities are the most important representatives from our point of view but can be adjusted 

to the specific use case.  

 

Dimensions for assessing and classifying stability

Granularity

1. Type of stability

Inter-plan stability 
(InterPS)

Intra-plan stability 
(IntraPS)

2. Time 
granularity

3. Product 
granularity

Day (D)

Week (W)

Month (M)

Product family 
(PF)

Sales product 
(SP)

Stock keeping 
unit (SKU)Inter-horizon 

stability (InterHS)

Intra-horizon 
stability (IntraHS)
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Figure 3: Stability types. 

The stability matrix shown in Table 1 summarizes all different combinations. For example,  

SIntraHS,W,SP represents the intra-horizon stability on weekly time buckets for sales products. In this paper, we 

focus on intra-plan stability, i.e. inter- and intra-horizon stability. Using this framework, we evaluate the 

impact of time and product granularity on the forecast stability and draw conclusions about the definition 

of good and bad stability. 

Table 1: Stability matrix. 

   Type of Stability 

   InterPS IntraPS 

   InterPS InterHS IntraHS 

G
ra

n
u

la
ri

ty
 

PF 

D SInterPS,D,PF SInterHS,D,PF SIntraHS,D,PF 

W SInterPS,W,PF SInterHS,W,PF SIntraHS,W,PF 

M SInterPS,M,PF SInterHS,M,PF SIntraHS,M,PF 

SP 

D SInterPS,D,SP SInterHS,D,SP SIntraHS,D,SP 

W SInterPS,W,SP SInterHS,W,SP SIntraHS,W,SP 

M SInterPS,M,SP SInterHS,M,SP SIntraHS,M,SP 

SKU 

D SInterPS,D,SKU SInterHS,D,SKU SIntraHS,D,SKU 

W SInterPS,W,SKU SInterHS,W,SKU SIntraHS,W,SKU 

M SInterPS,M,SKU SInterHS,M,SKU SIntraHS,M,SKU 

3.2 Definition of Good and Bad Stability 

The aim of forecasting is not to choose the granularities that minimize the fluctuations of the demand plan. 

We therefore have to differentiate between good and bad intra-plan stability. Good intra-plan stability re-

flects fluctuations of the real customer demand. Bad intra-plan stability results from artificial demand fluc-

tuations that are caused by an inappropriate choice of time and product granularities. 

 In order to differentiate between good and bad intra-plan stability and to determine the optimal level of 

good stability, we propose a three-step approach: Step 1: Specification of granularity range; Step 2: Impact 

on intra-horizon stability; Step 3: Impact on inter-horizon stability. A summary of these steps is visualized 

in Figure 4. 

1 2 … 6 7 8 … 18

1 2 … 6 7 8 … 18

Plan 1

Plan 2

Intra-horizon stability of 

short-term planning of plan 1

Inter-plan stability from 

plan 1 to plan 2

Short-term operational planning 

horizon

Mid-term tactical planning horizon

Intra-horizon stability of 

mid-term planning of plan 1

Intra-horizon stability of short-

term planning of plan 2

Intra-horizon stability of mid-

term planning of plan 2

Inter-horizon stability of plan 1

Inter-horizon stability of plan 2

Periods  

Plans
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Figure 4: Three-step approach to differentiate between good and bad intra-plan stability. 

 In the first step, the minimum and maximum product granularities have to be specified which provide 

the information on the required level of detail for the specific decision making process. Forecasts for short-

term planning provide more detailed information than for mid-term planning. Hence, the forecast has to be 

made on a finer granularity level. Another factor that has to be taken into account is the planning effort. For 

mid-term tactical planning for example, forecasting on the finest granularities would firstly be subject to 

high uncertainty and secondly, the planning effort would be inappropriate for the scope of the planning 

horizon. All granularities that are outside of this specified range lead to fluctuations caused by an inappro-

priate granularity choice and therefore to bad stability. After the minimum and maximum granularity levels 

have been decided, we use the stability matrix to investigate the impact of time and product granularity on 

the stability of the forecast within this specified range. It is advisable to choose the granularity that mini-

mizes the intra-horizon fluctuations and therefore maximizes the intra-horizon stability. The production has 

to be able to meet requested volumes which requires careful capacity planning in advance. Mid-term ca-

pacity planning in turn is much easier for stable demand plans. In the third step, we evaluate the impact of 

time and product granularity on the demand fluctuations at the intersections of different planning horizons. 

If forecasts on these horizons are made on different granularities, artificial discrepancies can occur and lead 

to instability at the intersections. The aggregation levels have to be aligned so that the planning horizons 

are optimally harmonized to one another and the inter-horizon stability is maximized. There might be arti-

ficial discrepancies as well that have other reasons apart from granularity, like inherent algorithms in dif-

ferent tools, but they are not further discussed in this paper. 

 To sum up, the individual granularity levels have to be chosen so that they remain in the range specified 

in the first step, and that the intra-horizon fluctuations as well as the inter-horizon fluctuations are mini-

mized. These granularity levels lead to the optimal degree of good intra-plan stability.  

3.3 Application of SMAPE 3 as Volatility Measure 

In order to apply the stability framework on real data and to calculate the impact of granularity levels on 

the stability, we introduce a stability measure for intra-plan stability based on the Symmetric Mean Absolute 

Percentage Error 3 (SMAPE 3). Originally, SMAPE 3 is a measure for forecast accuracy. The basic formula 

is shown in Equation 1. SMAPE 3 has several advantages compared to other forecast accuracy measures. 

Firstly, by summing up forecasts Ft and orders Ot of a period t, SMAPE 3 eliminates the chance of having 

zero denominators. Furthermore, compared to the exact average, SMAPE 3 is less sensitive to outliers and 

errors caused by small scale data (Jing 2011).  

1. Specification of granularity range

 Specification of minimum and maximum granularities which provide information on the required level of 

detail for the specific decision-making process

 All granularities outside of this specified range lead to bad stability

2. Impact on intra-horizon stability

 Specification of granularity that minimizes intra-horizon fluctuations

 Maximization of intra-horizon stability

3. Impact on inter-horizon stability

 Investigation of the impact on the inter-horizon fluctuation

 Alignment of the aggregation levels so that the planning horizons are optimally harmonized to one another

 Maximization of inter-horizon stability
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 In this paper, we introduce the SMAPE 3 formula as a measure for volatility over a planning horizon 

from period 1 to period n. Instead of forecasts and orders, we consider the forecasts of each period Ft and 

the succeeding period Ft+1, as shown in Equation 2. In the numerator, we sum up all absolute deviations 

from one period to its successor. In the denominator, we calculate the sum of the forecast of all periods and 

its following period. As we want to measure the impact of both time and product granularity, we extend the 

formula by a second summation from product 1 to product m. 
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 In order to introduce a measure for intra-plan stability, we take the complement of the volatility formula. 

This is reasonable because volatility and stability are inversely related: the higher the volatility, the lower 

is the stability. Therefore, we establish the formula shown in Equation 3 as a measure for intra-plan stability, 

depending on time and product granularity. 

 

VolatilityStability 1       (3) 

 

 The formulas shown in Equation 2 and 3 are applicable to both intra- and inter-horizon stability. For 

the latter, we only consider the last period of the short-term planning and the first period of the mid-term 

planning, instead of the whole planning horizon.  

4 CASE STUDY: STATISTICAL ANALYSIS OF DEMAND FLUCTUATIONS 

4.1 Design of Experiment 

The theory developed in the previous section is applied to a case study provided by the semiconductor 

company of choice. The demand planning landscape is divided into multiple planning levels. We consider 

the operational short-term Production Program (PP) and tactical mid-term Business Scenario (BS). PP 

provides a detailed plan for the next 26 weeks on a weekly granularity. BS covers the time horizon from 

week 26 (hence month 6) to month 18 on a monthly granularity. The relationship of PP and BS is shown in 

Figure 5. 

 

Figure 5: Demand planning horizons of the company of choice. 
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At the company of choice, a forecast can be made on different product granularities. From coarsest to 

finest, these are PPOS, RfP, SP, FP, and SKU. For our case, we choose RfP, SP, and SKU as it can be seen 

in Figure 6. They correspond to the product granularity levels of the stability framework introduced in 

Section 3. Forecasts in the mid-term BS, which are mainly used to prepare budget decisions regarding ca-

pacity investment, are made on RfP and coarser granularities. In PP, forecasts are available on all product 

granularities. A higher level forecast can be disaggregated to a lower level forecast by means of defined 

disaggregation rules. 

 

Figure 6: Overview of granularities. 

The statistical analysis is divided into two parts. In the first part, we analyze the PP planning horizon 

in detail and measure the impact of time and product granularities on intra-horizon stability, using the vol-

atility measure developed in Section 3. We use the latest available dataset from the 21st of February 2017. 

The data set contains demand forecast numbers on weekly time granularity and all product granularities for 

the next 26 weeks, composed of 6,000 RfPs, 7,000 SPs, and 13,000 SKUs. The weekly forecasts are aggre-

gated in two steps to derive monthly numbers. In the first step, the weekly value is split equally to the seven 

days of the week. The aggregation from day to month is then the sum of the values from the days belonging 

to the month. In order to determine the number of days in a specific month, a method similar to the Ac-

tual/Actual Method known from day count convention in finance is used in demand planning at the com-

pany of choice. 

 In the second part, we conduct an analysis of the whole planning horizon, including PP and BS. The 

aim of this analysis is to investigate whether artificial fluctuations at the intersection of these planning 

horizons exist and therefore lead to a stability problem. For that purpose, we evaluate whether inter-horizon 

fluctuations are higher than intra-horizon fluctuations. We use eight quarterly datasets from June 2015 until 

March 2017. The datasets are composed of the unconstraint demand of PP and the uncapped demand of 

BS. Both describe a demand request without considering any capacity constraints and represent the output 

of the demand forecasting process. The timeframe of each dataset includes five months PP and further 

twelve months BS. The data of the first month of PP is incomplete because it overlaps with already actual 

data due to the data extraction logic. Therefore, it is excluded from our analysis. The forecast numbers are 

on monthly time granularity and RfP product granularity. 

4.2 Influence of Granularities on Intra-Horizon Stability 

Ott, Heilmayer, and Sng (2013) already analyzed the influence of product granularities on forecast accuracy 

and identified that forecast accuracy increases with coarser product levels. In this paper, we analyze the 

impact of product and time granularities on forecast intra-horizon stability.  

 Figure 7 shows the average weekly and monthly volatilities of the three product granularities. We have 

normalized the SKU monthly volatility to 20% to protect the privacy of the company’s data. 

 The bars illustrate that there is a negative correlation between product granularity and volatility: the 

coarser the product granularity, the lower is the volatility. The coarsest product granularity RfP has the 

lowest overall volatility. This relationship is mathematically explainable. To calculate the intra-horizon 

volatility, all absolute fluctuations are summed up to derive the overall absolute deviation, i.e. the numerator 

of the volatility formula. If the intra-horizon volatility is calculated for a coarser product granularity, the 

information about fluctuations on finer granularities are lost. Therefore, the numerator of the volatility for-

mula on a coarser product granularity is lower or equal compared to the numerator on a finer product gran-

ularity. This leads to a lower volatility. 

 

PPOS
(Plan Position)

RfP
(Required for 

Planning)

SP
(Sales Product)

FP
(Finished Product)

SKU
(Stock Keeping 

Unit)
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Figure 7: Average weekly and monthly volatility of the product granularities (normalized to 20 % monthly 

SKU volatility). 

 Concerning the relationship between weekly and monthly volatility, the results of Figure 7 show that 

the weekly volatility is higher than the monthly volatility for all product granularities. Consequently, time 

aggregation to months smoothens weekly fluctuations in our case. However, we realize that the volatility 

measured with SMAPE 3 is influenced by the underlying distribution of the data. We have seen that a trend 

results in a higher monthly than weekly volatility. Other factors like seasonality may play a role as well, 

but are not observed in our data sample.  

4.3 Analysis of Inter-Horizon Stability 

The goal of the second part of the statistical analysis is to verify whether there is a fluctuation at the inter-

section of PP and BS that is higher than a normal forecast fluctuation, thus whether there is an artificial 

inter-horizon fluctuation that is caused by inappropriate planning and alignment of the different planning 

horizons. Figure 8 depicts the intra-horizon and inter-horizon volatility of PP and BS, from one month to 

the next. The fluctuations are average numbers for all eight datasets from June 2015 to March 2017. The 

first fluctuation of the PP horizon is distinctly higher than all other fluctuations because of backlog which 

has to be depleted.  

 

 

Figure 8: Intra-horizon and inter-horizon fluctuations of PP and BS planning horizon (average across all 

datasets; normalized). 
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 We derive three volatility measures. The PP intra-horizon volatility reflects the average forecast fluc-

tuation of the five planning periods of PP. Analogously, the BS intra-horizon volatility reflects the average 

forecast fluctuation of the twelve planning periods of BS. The inter-horizon volatility represents the possibly 

artificial fluctuation at the intersection of PP and BS. Using these volatility measures, inter-horizon and 

intra-horizon volatilities can be compared against one another. We realize that the intra-horizon volatility 

of PP is significantly higher than of BS, as it is visualized in Figure 8. The reason is that PP forecasts partly 

rely on real volatile customer demand, whereas BS planning merely relies on stable mid-term forecasts. In 

order to draw a conclusion about the artificiality of the inter-horizon volatility, we compare it to the intra-

horizon volatility of the PP horizon. Merely, if the inter-horizon fluctuation is higher than an average PP 

intra-horizon fluctuation, a stability problem exists. Figure 9 shows the average intra-horizon and inter-

horizon volatility measures of the semiconductor company of choice at three different time periods, i.e. 

June 2015, March 2016, and December 2016. 

 

 

Figure 9: Average intra-horizon and inter-horizon volatility of datasets 15/06, 16/03, and 16/12. 

 The results of Figure 9 show that, in all three time periods, the inter-horizon volatility is higher than an 

average intra-horizon fluctuation of the PP horizon. We can conclude that the inter-horizon fluctuation is 

at least partly artificial, caused by inappropriate granularity choices, and therefore, leads to a stability prob-

lem at the intersection of the different planning horizons. However, the PP intra-horizon and the inter-

horizon volatility are converging. In June 2015, the inter-horizon fluctuation is significantly higher than an 

average PP intra-horizon fluctuation, whereas in December 2016, the two measures are nearly on the same 

level. The results show that the individual forecasting processes and their alignment have significantly im-

proved over the last two years, although the granularities of PP and BS have not changed. Therefore, the 

inter-horizon volatility has other reasons as well, apart from the granularity level. 

5 CONCLUSION 

Demand forecasting in hierarchical planning systems is made on different planning horizons using different 

levels of product and time aggregation. The literature mainly focuses on inter-plan stability. However, the 

choice of granularity level also has a significant impact on the fluctuations within one planning horizon. In 

this paper, we introduced the concept of intra-plan stability. For that purpose, we developed a framework 

for assessing and classifying stability. We defined good and bad intra-plan stability by providing a guideline 

to differentiate between both types. The SMAPE 3 formula was applied as a measure for volatility and 

stability in order to calculate the impact of granularity levels. We applied the stability framework and the 

volatility measures to real-world data. 
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 The results show that there is a negative correlation between product granularity and volatility, hence 

the coarser the product granularity the higher the stability. However, additional factors not investigated in 

this study might have to be taken into consideration in order to give generalizable recommendations for the 

appropriate product granularity level. Concerning the time granularity, we found that the relationship be-

tween weekly and monthly fluctuations depends on the underlying distribution of the forecast data. We 

identified that SMAPE 3 generates unintuitive results when comparing the volatilities of different horizon 

lengths and when facing a trend in the forecast data. This weakness requires improvement in further re-

search. 

 We observed that, at the company of choice, the inter-horizon volatility has improved over the last 

years although the granularities have not changed. We conjecture that this is a learning effect over time 

with the tools and how to handle the intersection. Further research can extend this analysis and confirm 

these findings or identify underlying causes of inter-horizon fluctuations. A generic approach to quantify 

good and bad stability could be developed in order to provide a guideline for companies to determine the 

optimal level of intra-horizon stability for each planning horizon. A further step would be to define the 

appropriate granularity level of each planning horizon, also taking into account inter-plan stability.  

 In conclusion, the proposed stability framework and the conducted statistical analysis are a first step 

towards a systematic measurement of good and bad intra-plan and inter-plan stabilities. We consider this 

concept as novel and important as it should enable especially semiconductor companies, but also other 

companies, to investigate and improve the bridging and alignment of their planning horizons and analyze 

the impact of time and product granularity on intra-horizon and inter-horizon stability. 

REFERENCES 

Axsäter, S., and H. Jönsson. 1984. “Aggregation and Disaggregation in Hierarchical Production Planning”. 

European Journal of Operational Research 17(3): 338-350. 

Axsäter, S. 1986. “Technical Note – On the Feasibility of Aggregate Production Plans”. Operations Re-

search 34(5): 796-800. 

Bitran, G. R., and A. C. Hax. 1977. “On the Design of Hierarchical Production Planning Systems”. Decision 

Sciences 8(1): 28-55. 

Caplin, A. S. 1985. “The Variability of Aggregate Demand with (S, s) Inventory Policies”. Econometrica: 

Journal of the Econometric Society 53(6): 1395-1409. 

Chae, B. 2009. “Developing Key Performance Indicators for Supply Chain: An Industry Perspective”. Sup-

ply Chain Management: An International Journal 14(6): 422-428. 

Chan, W. 1993. “Disaggregation of Annual Time-Series Data to Quarterly Figures: A Comparative Study”. 

Journal of Forecasting 12: 677-688. 

Dangerfield, B. J., and J. S. Morris. 1992. “Top-Down or Bottom-Up: Aggregate Versus Disaggregate Ex-

trapolations”. International Journal of Forecasting 8: 233-241. 

De Kok, T., and K. Inderfurth. 1997. “Nervousness in Inventory Management: Comparison of Basic Con-

trol Rules”. European Journal of Operational Research 103(1): 55-82. 

Gelders, L. F., and L. N. Van Wassenhove. 1982. “Hierarchical Integration in Production Planning: Theory 

and Practice”. Journal of Operations Management 3(1): 27-35. 

Gonzalez, P. 1992. “Temporal Aggregation and Systematic Sampling in Structural Time-Series Models”. 

Journal of Forecasting 11: 271-281. 

Heisig, G., and M. Fleischmann. 2001. ”Planning Stability in a Product Recovery System”. OR-Spektrum 

23(1): 25-50. 

Herrera, C., and A. Thomas. 2010. “Simulation of Less Master Production Schedule Nervousness Model”. 

IFAC Proceedings Volumes 42(4): 1585-1590. 

Hughes, R. A., and J. D. Shott. 1986. “The Future of Automation for High-Volume Wafer Fabrication and 

ASIC Manufacturing”. Proceedings of the IEEE 74(12): 1775-1793. 

3668



Schuster, Ehm, Hottenrott, and Lauer 

 

Huh, W. T., and R. O. Roundy. 2005. “A Continuous-Time Strategic Capacity Planning Model”. Naval 

Research Logistics (NRL) 52(4): 329-343. 

Jing, Z. 2011. SMAPE. “Symmetric Mean Absolute Percentage Error”. Internal Document – Infineon Tech-

nologies AG. 

Ott, H. C., S. Heilmayer, and C. S. Y. Sng. 2013. “Granularity Dependency of Forecast Accuracy in Sem-

iconductor Industry”. Research in Logistics & Production 3(1): 49-58. 

Rogers, D. F., R. D. Plante, R. T. Wong, and J. R. Evans. 1991. “Aggregation and Disaggregation Tech-

niques and Methodology in Optimization”. Operations Research 39(4): 553-582. 

Swaminathan, J. M. 2000. “Tool Capacity Planning for Semiconductor Fabrication Facilities Under De-

mand Uncertainty”. European Journal of Operational Research 120(3): 545-558. 

Weiss, A. A. 1984. “Systematic Sampling and Temporal Aggregation in Time-Series Models”. Journal of 

Econometrics 26: 271-281. 

Yokuma, J. T., and J. S. Armstrong. 1995. “Beyond Accuracy: Comparison of Criteria Used to Select Fore-

casting Methods”. International Journal of Forecasting 11(4): 591-597. 

Zotteri, G., and M. Kalchschmidt. 2007. “A Model for Selecting the Appropriate Level of Aggregation in 

Forecasting Processes”. International Journal of Production Economics 108(1): 74-83. 

Zotteri, G., M. Kalchschmidt, and F. Caniato. 2005. „The Impact of Aggregation Level on Forecasting 

Performance”. International Journal of Production Economics 93: 479-491. 

AUTHOR BIOGRAPHIES 

NICOLA SCHUSTER is a Master student at the Technical University of Munich. Her email is  

nicola.schuster@infineon.com. 

 

HANS EHM is Lead Principal Supply Chain heading the supply chain business innovation department at 

Infineon Technologies. His email is hans.ehm@infineon.com. 

 

ANDREAS HOTTENROTT is a PhD student at the Chair of Production and Supply Chain Management 

at Technical University of Munich. His email is andreas.hottenrott@tum.de. 

 

TIM LAUER Tim Lauer is a PhD student at Infineon Technologies in cooperation with the Fraunhofer 

Institute for Material Flow and Logistics. His email is tim.lauer@infineon.com. 

3669


