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ABSTRACT

In semiconductor manufacturing, new technologies impose more and more time constraints in product
routes, i.e. a maximum time between two (often non-consecutive) operations. The management of Time
Constraint Tunnels (TCTs, combining multiple time constraints) in high-mix facilities is becoming more
and more challenging. This paper first recalls an approach for estimating the probability that a lot at the
entrance of a TCT will leave the TCT on time. This approach relies on a list scheduling algorithm using
a dispatching policy with random components. Three dispatching policies are presented. Computational
experiments on industrial data comparing these policies are discussed. Perspectives are drawn to extend
the approach and support decision making.

1 INTRODUCTION

In semiconductor manufacturing, the last twenty years have been governed by Moore’s law. New challenges
arise that make decreasing chips in size less and less cost-effective. Maintaining a consistent yield is one of
the main challenges. The yield of a wafer corresponds to the percentage of functional chips. To maintain
high yield rates, Time Constraints (TCs) are defined between various process steps. A TC has a start step,
an end step and a time limit that should not be exceeded in order for the wafers to retain expected physical
and chemical properties. With the increase of the density of integration in products, the number of time
constraints per product tends to increase exponentially. TCs often follow each other in close succession
and overlap to the point where they start forming Time Constraint Tunnels (TCTs) (cf. Figure 1). In the
complex context of semiconductor manufacturing, managing TCTs turns out to be very difficult.

In the wafer fabrication facility under study, whilst lots are handled automatically once they enter a
TC or a TCT, their release within tunnels is managed by humans. The entrance of each tunnel is regulated
like a toll i.e. opened or closed depending on whether there is enough capacity to process lots in time
within the tunnel. Defining what enough capacity is, however, a hard question. As of now, it is mostly
done by hand with simplistic throughput estimates, and is overall time consuming and very stressful for
the operators managing TCTs.

The content of this paper is structured as follows. The next section summarizes the state-of-the-art
related to TCT management. Section 3 details the problem statement and recalls the existing probability
estimation approach. Three dispatching policies are presented in Section 4. Extensive computational
experiments are conducted and discussed in Section 5. Finally, the paper ends with some concluding
remarks including an outline of topics for future research.
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Figure 1: Schematic representation of successive TCTs.

2 LITERATURE REVIEW

A simple industrial solution to the problem would be to set up regulatory approaches based on Work-In-
Process levels allowed in a tunnel i.e. to define a tunnel capacity. This might even give decent results in
“linear” facilities running few product routes with medium to large chip pattern sizes. However, the overall
cycle time variability often encountered in semiconductor plants, associated in particular to re-entrant flows
and a High-Mix Low Volume context, makes this kind of approaches difficult to implement if not unfeasible.

The problem of TCT management in semiconductor manufacturing can most notably be modeled as
a flexible job-shop scheduling problem with multiple overlapping time windows. While the industrial
problems raised by queue times or time constraints have gathered increasing interest over the last few
years, for topics ranging from predictive maintenance planning (Kalir and Tirkel 2016) to reentrant flow
modeling and robust dispatching rule determination (Arima, Kobayashi, Wang, Sakurai, and Monma 2015),
real-time oriented scheduling solutions to the problem have to the best of our knowledge seldom been
covered in the literature without at least some modifications. As a matter of fact, we have not restricted
our search to this specific problem, but broadened it to include flexible flow-shop scheduling problems as
well, such as (Attar, Mohammadi, Tavakkoli-Moghaddam, and Yaghoubi 2014, Attar, Mohammadi, and
Tavakkoli-Moghaddam 2013, Chen and Yang 2006, Fondrevelle, Oulamara, and Portmann 2008). Time
constraint modeling varies greatly between publications but the most frequent hypothesis is that a time
constraint cannot span over more than two consecutive steps and cannot overlap, as in (Attar, Mohammadi,
Tavakkoli-Moghaddam, and Yaghoubi 2014, Chen and Yang 2006, Chien and Chen 2007, Fondrevelle,
Oulamara, and Portmann 2008, Sun, Choung, Lee, and Jang 2005). This restriction is not present in (Attar,
Mohammadi, and Tavakkoli-Moghaddam 2013, Kalir and Tirkel 2016), but overlapping is not taken into
account either. Only (Sadeghi, Dauzère-Pérès, Yugma, and Lepelletier 2015), (Klemmt and Mönch 2012),
(Arima, Kobayashi, Wang, Sakurai, and Monma 2015) and (Zhou and Wu 2017) propose models where
time constraint can both span more than two consecutive steps and can overlap. This modeling better suits
the way time constraints are defined in the semiconductor industry.

Most of the publications are focused on solving the problem for rather small instances, usually up
to two or three processing tools and small subsets of operations, especially compared with the reality of
industrial instances (Attar, Mohammadi, Tavakkoli-Moghaddam, and Yaghoubi 2014, Attar, Mohammadi,
and Tavakkoli-Moghaddam 2013, Fondrevelle, Oulamara, and Portmann 2008, Sun, Choung, Lee, and Jang
2005). It is also noteworthy that, in these publications, executions times are most often too long to be
put in practice in a production context. There has been a specific coverage of the diffusion area for this
problem as in (Chien and Chen 2007, Yugma, Dauzere-Péres, Artigues, Derreumaux, and Sibille 2012,
Jung, Pabst, Ham, Stehli, and Rothe 2014, Zhou and Wu 2017, Kalir and Tirkel 2016). This is most likely
explained by the fact that the processes involved in this work area are among the most sensitive to physical
phenomena. They also involve a wide variety of complex batching tools with very long process times that
further complicate the management of time constraints.

From a methodological point of view, the most common solution approaches can be found in the
literature, such as integer programming in (Chen and Yang 2006, Chien and Chen 2007, Jung, Pabst, Ham,
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Stehli, and Rothe 2014, Kalir and Tirkel 2016). While population based meta-heuristic are also frequently
found in the form of genetic algorithms (Chien and Chen 2007), particle swarm (Attar, Mohammadi,
Tavakkoli-Moghaddam, and Yaghoubi 2014), geography based optimization (Attar, Mohammadi, and
Tavakkoli-Moghaddam 2013) or cross entropy genetic algorithms (Kalir and Tirkel 2016) and tend to
provide high quality results, they also offer some of the worst execution times. These traits are also shared
by exact resolution methods such as branch and bound (Fondrevelle, Oulamara, and Portmann 2008) whose
computational times are prohibitive and not applicable to large industrial instances. However, simpler list
based scheduling heuristic (Sadeghi, Dauzère-Pérès, Yugma, and Lepelletier 2015, Klemmt and Mönch
2012) offer an interesting compromise between solution quality and scalability and do not limit the way time
constraints are modeled. Note that more recent heuristic approaches proposed in (Knopp, Dauzère-Pérès,
and Yugma 2017) and (Zhou and Wu 2017) provide excellent results in rather short execution times for
the specific case of batching in the diffusion area. In the light of the above background, the aim of this
paper is to contribute to the state of the art in this direction.

3 PROBLEM DESCRIPTION

In order to prevent wafer scraps or reworking, we propose to control lots before they enter a TCT by an
approach that estimates the probability that a lot will leave the TCT on time. As proposed in (Sadeghi,
Dauzère-Pérès, Yugma, and Lepelletier 2015), a disjunctive graph representation is used to determine the
completion time of a specific lot, by considering all relevant information for a given TCT, at a given point in
time, such as Work In Process (WIP), status and qualification of tools, process times, etc. The probability
of respecting each time constraint is then estimated by replicating a fast list scheduling algorithm.

For a given TCT at a given point in time, let L = {1, . . . ,L} be the set of lots of wafers to be processed.
Each lot l ∈L has a sequence of Nl operations J l = ( jl

1, . . . , jl
Nl ) (route of the job) to complete. Operations

in J l have to be performed in succession, i.e. there is a precedence constraint between operations jl
k and

jl
k+1, ∀k ∈ {1, . . . ,Nl−1}. Each operation jl

k can be performed on a subset of tools M l
k ⊆M , where M

is the set of all tools, and has associated machine dependent process times pl
km, ∀m ∈M l

k .
Let us introduce a fictitious lot lF that needs to enter the TCT, and thus has a set T of time constraints to

respect. Time Constraint tk1,k2 ∈T , where k1 < k2, starts at the beginning of operation jF
k1 and ends when

operation jF
k2 is completed. TCs follow each other in close succession and can overlap, i.e. ∃(k1,k2,k3,k4)

such that tk1,k2 ∈T , tk3,k4 ∈T , k1 < k3 and k3 < k2.

S
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3

j2
1 j2
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Figure 2: Conjunctive graph representation. Conjunctive arcs are plain for the routes, and dotted for the
sequence on machines.

Let us model the sequence of lots via a classical disjunctive graph G = (N ,C ,D). The set of nodes
N includes the set of all operations J of the lots L ∪{lF}, and two fictitious start and end nodes S and
E. C is the set of conjunctive arcs between the nodes, which ensure the precedence constraints between
every two consecutive operations. D is the set of disjunctive arcs modeling the disjunctive constraints
between operations that can be processed on the same tool.
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Once a sequence is defined (cf. Figure 2), each arc can be labeled with the processing time of the
start node. Recall that processing times are machine dependent. The minimum time between two nodes is
equal to the longest path between these nodes. If there is a time constraint between two nodes, computing
the minimum time between the start and end nodes of the TC allows us to check if the corresponding lot
has exceeded the TC. In order to evaluate time constraints, a large number N of conjunctive graphs are
randomly generated from a single disjunctive graph using a list scheduling algorithm with a randomized
dispatching policy. The number of generations is determined by a convergence based criterion, used as a
stopping rule in the proposed approach. Once the generations are completed, the number of times that the
fictitious lot lF verifies its time constraints is calculated. Since calculations are only performed a posteriori,
this approach emphasizes the dispatching policy. In the next sections, three randomized dispatching policies
are introduced and discussed.

4 DISPATCHING POLICIES

4.1 Pure random policy

Based on both disjunctive and conjunctive graphs, the list scheduling algorithm 1 introduced in (Sadeghi,
Dauzère-Pérès, Yugma, and Lepelletier 2015) provides a realistic and feasible schedule. It originally relies
on a pure random dispatching policy, used to generate a great number of schedules. In order to estimate
the probability that a lot lF satisfies each time constraint of a given TCT, the above procedure is ran N
times. Let CF

k1 and CF
k2 be the completion times of operations jF

k1 and jF
k2. Let us denote by CF

k2− cF
k1 the

cycle time of lF between its k1th and k2th operations. After each run, the value of the following logic
expression is calculated:

Ck2−Ck1 ≤ tk1,k2, ∀tk1,k2 ∈T (1)

Let countk1,k2 be the number of times that the logic expression (1) is true. Following (Sadeghi,
Dauzère-Pérès, Yugma, and Lepelletier 2015), the probability of satisfying TC tk1,k2 ∈T is determined by:

P̂(Ck2−Ck1 ≤ tk1,k2) =
countk1,k2

N
, ∀tk1,k2 ∈T (2)

This approach heavily relies on the law of large number and thus requires a large number of iterations
N to be effective. From an industrial standpoint, it has however some notable drawbacks that we aimed to
improve with new dispatching policies.

4.2 Extension to a random priority based dispatching policy

Pure randomness is not a faithful representation of the wafer fabrication reality. Lots are not randomly
assigned to a tool, but actually have to respect a large set of rules, known as dispatching rules. In practice,
these rules mostly revolve around a priority system. A base priority is assigned to each lot at the beginning
of its product route. This base priority depends on different factors such as due date, importance of the
original order, whether or not the lot is a prototype lot or an engineering lot, etc. While this base priority
cannot change, the total priority is actually influenced by several factors including whether or not the lot
has entered a TCT, and how long it has been waiting at an operation. This total priority can also be
manually changed, albeit temporarily, in order to catch up with delays or release the necessary capacity of
some tools, etc. Lots are sorted by their total priority so that the one with the highest priority will always
be queued up first in front of the machines on which it can be processed. Machine selection also has its
own rules, but for the sake of simplicity, let us assume an arbitrary selection rule. Besides, the priority
gained by lots waiting at an operation also depends on the corresponding work area. Since there are many
heterogeneous factors to take into account, it is not possible to easily consider all of them in an algorithm
without trading off heavily in terms of execution times. This is why we decided to settle for the dispatching
rule that accounts for about 75% of the situation in the fabrication facility. We also assume that increase
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ReadyList: Shuffled list of nodes ready to process
ProcessingList: List of nodes already processing sorted by their completion times
CurrentTime: Current time in the algorithm
Idlem ∈ {0,1},m ∈M : state of machine m, i.e. Idlem = 0 if m is busy, and Idlem = 1 otherwise

Step 0 :
CurrentTime = 0;
ReadyList is initialized with all nodes ready to process;
Shuffle ReadyList;
ProcessingList is initialized with all nodes being processed by tools;
Sort ProcessingList;
Initialize Idlem, ∀m ∈M , to its current state;
while all nodes have not been scheduled do

Step 1 :
for all nodes jl

k ∈ ReadyList do
Step 1.1 :
for all machines m ∈M l

k do
if idlem = 0 and m is the first such machine then

Cl
k =CurrentTime+ pl

km;
idlem = 1;
Add and sort jl

k in ProcessingList;
Remove jl

k from ReadyList;
end

end
end
Step 2 :
Select first node jl

k from ProcessingList;
CurrentTime =Cl

k;
Step 3 :
for all nodes jl

k ∈ ProcessingList do
if Cl

k ≤CurrentTime then
Remove jl

k from ProcessingList;
Randomly insert jl

k+1 in Readylist;
Retrieve m, that was processing jl

k;
idlem = 0

end
end

end

Algorithm 1: List scheduling algorithm.

of priority when a lot enters a time constraint is fixed and included in the base priority, as only lots within
time constraint tunnels are studied in this paper.

The chosen rule, called standard dispatching rule is frequently encountered in semiconductor manu-
facturing as it is simple, but effective. It faithfully models the total priority as a function of a base priority
factor and the waiting time at each operation. Let π l

base be the base priority of lot l ∈L and π l
total the total
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priority, then:
π

l
total(π

l
base,DASl) = π

l
base(1+DASl),

where DASl stands for Day at Step and corresponds to the time spent by the lot l waiting to be processed
in its given operation. This rule aims at minimizing the total tardiness of lots per unit of base priority.

Based on this dispatching rule, let us take Algorithm 1 one step further, by uniformly drawing the lots
available to be scheduled in accordance with their total priority at the current time, instead of pure random
drawing. More precisely, the probability of selection π l

select of a lot l ∈L is computed as follows:

Pl
select =

π l
total(π

l
base,DASl)

∑k∈Lavailable
πk

total(π
k
base,DASl)

.

This policy can be implemented by modifying Step 0 and 1 of Algorithm 1:

Step 0:
Compute πTotal = ∑ jl

k∈ReadyList π l
total;

Step 1:
while all nodes in ReadyList have not been checked do

Initialize LocalSum = 0 ;
Draw a random integer Rand between 0 and πTotal;
for all unchecked nodes jl

k in ReadyList do
Compute LocalSum = LocalSum+π l

total;
if Rand ≤ LocalSum then

Do Step 1.1 of Algorithm 1;
mark jl

k as checked;
πTotal = πTotal−π l

total;
Break out of loop

end
end

end

Algorithm 2: List scheduling algorithm based on priority.

Algorithm 2 takes into account the wafer fab priority system without neglecting the overall variability.
The most critical lots will have a higher probability of being selected. This is particularly true towards the
end of an iteration when fewer lots remain. One drawback of this approach is that it requires to constantly
update the priority of lots, which consequently increases the execution time compared to Algorithm 1.

5 EXPERIMENTAL RESULTS

5.1 Instances description

Industrial instances have been selected over an horizon of four consecutive months, with a gap of one
month between the second and third selected months. In each month, two instances were selected spread
at least one week apart. Five TCTs have been selected, that are representative of the wafer fab under study,
since they cover all the areas that are the most affected by time constraints. Each TCT covers a different
number of operations, and can include up to five time constraints. As shown in Table 1 (“N/A” means that
no data were available to build the instance), the sizes of the instances are very large with an average of
400 lots per instance and 20 000 operations to schedule, and between 30 and 200 tools.
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Instance
TCT 1 TCT 2 TCT 3 TCT 4 TCT 5

Oper. Lots Oper. Lots Oper. Lots Oper. Lots Oper. Lots
3 N/A N/A 22 009 427 21 214 474 26 208 336 17 308 348
4 4 531 224 N/A N/A 15 687 446 N/A N/A 19 768 424
8 6 467 392 26 744 514 22 208 550 26 477 373 19 305 402
9 N/A N/A N/A N/A 23 464 668 35 109 490 15 528 456

10 11 010 568 32 226 621 31 020 671 38 474 523 22 992 522
11 N/A N/A 31 003 598 11 963 269 5 628 501 22 437 469
14 9 638 485 N/A N/A N/A N/A 9 814 445 N/A N/A
15 N/A N/A N/A N/A N/A N/A 8 322 380 N/A N/A

Table 1: Description of instances.

5.2 Comparative analysis

In addition to the pure random dispatching policy (RAND) and the priority based dispatching policy (PIT)
presented earlier, we also investigated a variant of the latter, called WAIT, where only the priority induced
by waiting times is taken into account. This was achieved by assigning the same base priority to all lots.

The computational results are first analyzed globally in order to detect general trends and compare the
performance of each dispatching policy. Then, the results of each TCT are discussed to draw more specific
conclusions.

PIT is the policy that provides the highest success rates. While this is not always the case (e.g. instance
9 of TCT 4), it is consistent with the fact that the fictitious lot has a medium to high base priority. Such
a lot is thus most often scheduled before other lots (with PIT), which leads to higher success rates in
general. However, PIT provides some of the worst success rates in certain cases (e.g. instances 9 and 10
of TCT 4 instances and instances 10 and 11 of TCT 5), which means that the current WIP includes many
lots constrained by the TCT that have been waiting for a while. These lots have the same or higher base
priority than the fictitious lot.

On the other hand, WAIT persistently provides worse success rates than the other two policies. It may
seem counter-intuitive, since TCTs are all located at critical points of the product flow. More importantly,
because of how TCTs are managed, more lots tend to accumulate in front of a TCT when it is closed, and
then to be quickly flushed through the TCT when it is open. Since the fictitious lot is always the last one to
arrive at the TCT by construction, it is heavily penalized by only taking waiting times into consideration.

In most cases, when a TCT has a low (e.g. instance 4 of TC 32) or very high (e.g. most instances
of TCs 34 and 53) success rate, this is verified by all three dispatching policies. This means that, from a
pure decision support standpoint, it does not really matter which policy is adopted since they all provide
the same information for these cases.

In a number of instances, the three dispatching policies (in particular, WAIT and RAND) can have very
similar results (e.g. instances 10 and 11 of TC 21). This means that probabilities and process times are
mostly evenly distributed across the lots and that there are no particular critical points in the product flow.

These trends reveal a key point: PIT provides a better modeling of the reality than RAND. It highlights
the significant impact that priority settings have on the product flow and that they are not negligible as was
previously assumed. This is more acutely reflected by the discrepancies found between PIT, RAND, and
WAIT for instance 11 of TC 23 and instance 9 of TC 41.

Additionally, when considering each individual TCT, further elements of interest emerge:

• TCT 1: TC 11 proves to have the lowest success rates for all instances except instance 4. Instance
4 appears to be a classical case of product flow slowdown due to tool unavailability. Where all the
other instances of TC 12 have high success rates, instance 4 has low success rates. Conversely,
it has near 100% success rate for TC 11. This situation occurs when the tunnel is blocked and
manually regulated at the time. Then TC 11 would always be verified since the lots are being
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INST METHOD TCT 1

TC 11 TC 12 TC 13
4 RAND 1.00 0.55 1.00

WAIT 1.00 0.56 1.00
PIT 1.00 0.89 1.00

8 RAND 0.65 1.00 1.00
WAIT 0.69 1.00 1.00
PIT 0.97 1.00 1.00

10 RAND 0.87 0.97 1.00
WAIT 0.98 1.00 1.00
PIT 1.00 1.00 1.00

14 RAND 0.67 0.97 1.00
WAIT 0.57 1.00 1.00
PIT 0.98 1.00 1.00

Table 2: Results: TCT 1.

INST METHOD TCT 2

TC 21 TC 22 TC 23 TC 24
3 RAND 1.00 0.94 0.59 0.46

WAIT 1.00 0.98 0.34 0.27
PIT 1.00 1.00 0.75 0.44

8 RAND 1.00 0.96 0.57 0.45
WAIT 1.00 1.00 0.38 0.15
PIT 1.00 1.00 0.59 0.17

10 RAND 0.80 0.81 0.59 0.53
WAIT 0.80 0.71 0.43 0.27
PIT 0.75 0.90 0.72 0.57

11 RAND 0.83 0.82 0.56 0.49
WAIT 0.80 0.87 0.38 0.19
PIT 0.88 0.98 0.93 0.62

Table 3: Results: TCT 2.

INST METHOD TCT 4

TC 41
3 RAND 0.77

WAIT 0.78
PIT 0.85

8 RAND 0.87
WAIT 0.93
PIT 0.90

9 RAND 0.32
WAIT 0.05
PIT 0.15

10 RAND 0.56
WAIT 0.31
PIT 0.15

11 RAND 0.63
WAIT 0.43
PIT 0.42

14 RAND 0.22
WAIT 0.08
PIT 0.17

15 RAND 0.43
WAIT 0.25
PIT 0.75

Table 4: Results: TCT 4.

INST METHOD TCT 3

TC 31 TC 32 TC 33 TC 34
3 RAND 0.96 1.00 0.73 0.39

WAIT 0.98 1.00 0.86 0.21
PIT 1.00 1.00 1.00 0.92

4 RAND 0.40 0.04 1.00 1.00
WAIT 0.23 0.02 1.00 1.00
PIT 0.57 0.15 1.00 1.00

8 RAND 0.96 0.92 0.58 0.98
WAIT 1.00 0.97 0.81 0.93
PIT 1.00 1.00 1.00 1.00

9 RAND 0.97 0.80 0.17 1.00
WAIT 0.95 0.93 0.23 1.00
PIT 0.96 1.00 0.52 1.00

10 RAND 0.79 0.72 0.32 1.00
WAIT 0.58 0.80 0.54 1.00
PIT 0.83 0.98 0.94 1.00

11 RAND 0.50 0.78 0.24 1.00
WAIT 0.42 0.90 0.18 1.00
PIT 0.59 1.00 0.58 1.00

Table 5: Results: TCT 3.

INST METHOD TCT 5

TC 51 TC 52 TC 53 TC 54 TC 55
3 RAND 1.00 1.00 1.00 0.70 0.56

WAIT 1.00 1.00 1.00 0.73 0.15
PIT 1.00 1.00 1.00 1.00 0.55

4 RAND 1.00 0.33 1.00 0.97 1.00
WAIT 1.00 0.15 1.00 1.00 1.00
PIT 1.00 0.52 1.00 1.00 1.00

8 RAND 1.00 1.00 1.00 0.42 0.21
WAIT 1.00 1.00 1.00 0.48 0.05
PIT 1.00 1.00 1.00 0.89 0.27

9 RAND 1.00 0.72 1.00 1.00 0.97
WAIT 1.00 0.69 1.00 1.00 0.98
PIT 1.00 0.98 1.00 1.00 1.00

10 RAND 1.00 0.95 1.00 0.56 0.50
WAIT 1.00 0.98 1.00 0.63 0.20
PIT 1.00 1.00 1.00 0.88 0.23

11 RAND 1.00 0.95 1.00 0.55 0.48
WAIT 1.00 0.98 1.00 0.45 0.27
PIT 1.00 1.00 1.00 0.92 0.32

Table 6: Results: TCT 5.

introduced in order to respect it and TC 12 would cross the location of a tool breakdown and thus
be much harder to respect than when all possible tools are available.
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• TCT 2: A funnel effect occurs in TCT 2. The success rates seem to decrease the further along the
lot goes through the tunnel. This is due to the fact that this tunnel concerns a specific geometry
that requires unique single tools, most of which are located towards the end of the tunnel.

• TCT 3: All the constraints of this tunnel are notoriously short, but so are process times. This
induces high variability in the tunnel. Unlike other instances, there does not seem to be a pattern
where a particular TC is harder to complete in time. Throughout the instances, it clearly appears
that each TC has at some point low success rates (instance 11 of TC 31, instance 4 of TC 32,
instance 9 of TC 33, instance 3 of TC 34), and has otherwise very high success rates. It can be
shown that each drop in success rates is related to a specific tool breakdown in different parts of
the tunnel. As a matter of fact, this tunnel was considered very difficult to complete due to high
variability, and then modified. This is also why no data are available for instances 14 and 15.

• TCT 4: This single TC highlights most of the effects described above, such as lower success rates
for PIT than RAND (instances 11 and 14 of TC 41) or the other way around (instances 3 and 15
of TC 41).

• TCT 5: Low volumes passing through this tunnel mostly explain the high success rates for all TCs,
and drops in success rates are directly related to machine breakdowns as for TCT 3.

5.3 Convergence analysis

Both Algorithms 1 and 2 rely on repeated random sampling and converge by the law of large numbers. In
the light of this fact, the convergence criterion has been chosen to design the stopping rule in the numerical
experiments. The output of both algorithms is a vector of discrete probability distributions for each time
constraint. Each discrete probability distribution Dk (k ∈T ) has two events:

• Event 1: The lot successfully crosses the TC on time with probability P̂k.
• Event 0: The lot exceeds the TC with probability 1− P̂k.

Let V N = (P̂N
1 , . . . , P̂N

T ) be the output vector of the Nth iteration. The distance between two probability
distributions of each TC obtained in two successive iterations is measured in terms of the unitary euclidean
distance du

2 :

du
2(D

N−1
k ,DN

k ) = ‖(P̂N−1
k − P̂N

k ),((1− P̂N−1
k )− (1− P̂N

k ))‖u
2 =

=

√
(P̂N−1

k − P̂N
k )2 +[(1− P̂N−1

k )− (1− P̂N
k )]2

√
2

=
√
(P̂N−1

k − P̂N
k )2 = |P̂N−1

k − P̂N
k | (3)

Furthermore, a lot is considered to not satisfy a TCT if and only if it does not satisfy at least one of
the TCs in the TCT. Thus, it makes sense to measure the distance d between two successive output vectors
V N and V N−1 by taking the infinite norm as metrics:

d(V N ,V N−1) = ‖V N−V N−1‖∞ = maxk∈T

{
du

2(D
N−1
k ,DN

k )
}

(4)

An initial replication count RCinitial and a minimum increment MI are defined so that, for the Nth

iteration of the algorithm, the replication count RCN = RCN−1 +
d(DN ,DN−1)

ε
MI, RC0 = RCinitial and RC1 =

RCinitial +MI, where ε is the algorithm precision. The algorithms stop when d(V N ,V N−1)≤ ε . Hence, the
further away we are from convergence according to our criterion and precision, the faster the replication
count is increased. For the purpose of this study and based on the industrial requirements, RCinitial =MI = 30
and ε = 0.05.

Table 7 underlines some important facts. First of all, the convergence is overall achieved after a
smaller number of iterations with both WAIT and PIT for most instances and TCTs than with RAND.

3551



Lima, Borodin, Dauzère-Pérès, and Vialletelle

Instance TCT 1 TCT 2 TCT 3 TCT 4 TCT 5

RAND PIT WAIT RAND PIT WAIT RAND PIT WAIT RAND PIT WAIT RAND PIT WAIT
3 IT Count N/A N/A N/A 164 250 190 157 174 139 60 100 110 291 60 60

EXE(s) N/A N/A N/A 15 111 88 17 94 78 5 39 43 23 22 22
4 IT Count 161 120 109 N/A N/A N/A 200 100 263 N/A N/A N/A 60 212 231

EXE(s) 1 5 4 N/A N/A N/A 16 37 98 N/A N/A N/A 6 96 11
8 IT Count 329 110 60 259 60 289 166 226 60 60 60 99 149 60 181

EXE(s) 9 14 9 38 42 212 26 154 43 6 28 48 18 30 92
9 IT Count N/A N/A N/A N/A N/A N/A 278 60 149 222 60 60 60 120 60

EXE(s) N/A N/A N/A N/A N/A N/A 60 66 163 45 54 56 8 67 37
10 IT Count 60 60 60 247 388 327 187 248 110 299 119 60 221 60 159

EXE(s) 6 28 24 60 446 400 53 325 154 73 132 69 44 49 136
11 IT Count N/A N/A N/A 209 109 301 171 60 100 180 60 149 255 60 277

EXE(s) N/A N/A N/A 42 118 338 5 8 13 32 57 144 35 40 185
14 IT Count 60 60 60 N/A N/A N/A N/A N/A N/A 160 60 110 N/A N/A N/A

EXE(s) 4 15 16 N/A N/A N/A N/A N/A N/A 7 14 26 N/A N/A N/A
15 IT Count N/A N/A N/A N/A N/A N/A N/A N/A N/A 60 60 60 N/A N/A N/A

EXE(s) N/A N/A N/A N/A N/A N/A N/A N/A N/A 3 10 10 N/A N/A N/A

Table 7: Iteration count and execution time for all TCTs and instances.

This is not surprising since less variability is expected with random dispatching policies that take priorities
into account. Note also that execution times remain below the 5-minute limit that is set as an industrial
requirement. A second important fact is that both PIT and WAIT are considerably more computationally
intensive than RAND. Even though PIT better fits the industrial reality, a trade-off might be required in
terms of computational times. Hence, when RAND is able to provide the same information than PIT, it is
not necessary to use PIT to save time, in particular when the success rate is either 0% or 100%.

Finally, the table also shows that, in several cases, the number of iterations is 60 which is by design the
minimum number of iterations before the stopping criterion can be met. When crossing this information
with the one of the previous tables, it is interesting to note that most of these cases translate into a success
rate of 100% or 0%. In these cases, the TCs are so exceedingly violated or easily respected that only the
analysis of cycle time convergence can provide accurate and sound insights. However, from a pure decision
support point of view, these extreme cases are irrelevant because no additional information is necessary to
take decisions.

6 CONCLUSION

This paper deals with Time Constraint Tunnels (TCTs) between consecutive process steps in wafer fabrication,
the management of which becomes more and more intricate. Being written in the continuity of (Sadeghi,
Dauzère-Pérès, Yugma, and Lepelletier 2015), this paper investigates three dispatching policies for estimating
the probability that a lot successfully exits a TCT on time. By better representing the industrial reality, the
priority based dispatching policies provide more accurate results and better reflect TCTs intrinsic structure
than the original proposed policy, at the expense of an increase of computational times. However, from a
decision standpoint, the pure random policy remains viable for unequivocal cases, i.e. when TCs are either
always satisfied or not satisfied at all.

Future work will be dedicated to improving and expanding the decision support potential of the proposed
approach, by applying more thorough statistical analysis tools, in order to refine the convergence criterion,
and to more closely assess each of the parameters set a given in this paper, such as the value of epsilon,
the choice of norms and the iterative method to achieve convergence. The ultimate goal being to support
decisions for the management of TCTs, we intend to enhance and extend the approach to derive valuable
managerial insights, such as (i) cycle time improvement, (ii) detection of root causes of TC violations, etc.
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