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ABSTRACT

Although production planning models using nonlinear CFs have shown promising results for semi-
conductor wafer fabrication facilities, the lack of an effective methodology for estimating the CFsis a
significant obstacle to their implementation. Current practice focuses on developing point estimates
using least-squares regression approaches. This paper compares the performance of a production
planning model using a multi-dimensional CF and its robust counterpart under several experimental
settings. As expected, as the level of uncertainty is increased, the resulting production plan deviates
from the optimal solution of the deterministic model. On the other hand, production plans found
using the robust counterpart are less vulnerable to parameter estimation errors.

1 INTRODUCTION

The production release planning problem (PRP) seeks to match the output of a production system to
its demand in an optimal or near-optimal way by determining the quantity of each product released
into the system in any time period. This requires PRP models to anticipate the impact of their
release decisions on the output and costs of the production system, which is difficult because the
production system operates in continuous time while planning is carried out periodically. Queueing
models , simulation models and industrial observation all show that the throughput of a production
system is a complex, nonlinear function of the workload state of the system, including product mix
(Karmarkar 1989). The workload in any planning period, in turn, is determined by the release
plan developed by the production planning system. This mutual dependency between throughput
and the planned release quantities is referred to as the planning circularity (Asmundsson, Rardin,
Turkseven, and Uzsoy 2009).

The planning circularity is of particular interest to semiconductor manufacturers since the
high capital cost of manufacturing facilities requires that they run at high utilization levels to be
economically viable. At high utilization, even small fluctuations in utilization can cause significant
variation in cycle time, adversely affecting on-time delivery and requiring higher safety stocks to
ensure high customer service. The cyclic nature of demand for many semiconductor devices requires
that these firms either maintain high output volumes by aggressively soliciting additional business
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at less rewarding prices, or reduce utilization to meet demand and try to compete on reduced cycle
times. A production planning system that can accurately account for the cycle time impacts of
resource utilization would provide a significant advantage in the latter case, although not necessarily
in the former. Foundries, on the other hand, must maintain high on-time delivery performance with
a diverse and ever-changing product mix, which again suggests that a planning model capable of
accounting for queueing behavior may yield meaningful advantage. Another important issue is the
effective planning of safety stocks throughout the semiconductor supply chain. Decades of research
on inventory theory (Axséter 2010, Zipkin 2000) has shown that the amount of safety stock needed
to maintain a specified level of customer service, however defined, is determined to a large extent
by the probability distribution of the lead time demand, the amount of demand arriving over the
time required to replenish the inventory. The need to produce additional material to replenish
safety stocks results in increased resource utilization which, in turn, increases the cycle time of
the production facility and alters the lead time demand distribution. Hence the development of
production planning models that comprehend the relation between resource utilization and cycle
time holds out the possibility of an integrated approach to planning releases to maintain safety stocks
in the face of uncertain supply and demand.

Two principal approaches have been proposed to address the planning circularity. The first of
these decomposes the PRP problem into two subproblems: an optimization problem that determines
the optimal releases for a given set of cycle time estimates, and an estimation problem that uses a
simulation or queueing model to estimate the cycle times implied by a given release schedule. The
planning procedure iterates between these two subproblems until convergence is achieved (Albey
and Bilge 2011, Bang and Kim 2010, Hung and Leachman 1996). However, these procedures are
time-consuming (Irdem, Kacar, and Uzsoy 2010) and their convergence behaviour is unclear (Kacar,
Irdem, and Uzsoy 2012). The second class of approaches use nonlinear clearing functions (CFs),
which formulate a mathematical relationship between the expected throughput of a machine in a
planning period and its workload in that period (Albey and Uzsoy 2015, Albey, Bilge, and Uzsoy
2014, Asmundsson, Rardin, Turkseven, and Uzsoy 2009, Kang, Albey, Hwang, and Uzsoy 2014,
Karmarkar 1989, Missbauer 2002, Srinivasan, Carey, Morton, et al. 1988). Most of these use a single
aggregate state variable that does not distinguish different products. Extensive testing has shown
that these models perform well under a wide range of conditions (Asmundsson, Rardin, Turkseven,
and Uzsoy 2009, Kacar, Irdem, and Uzsoy 2012). However, when product mix affects the ability of
the resource to produce output, as in the presence of setup times, this approach performs poorly,
motivating the development of multi-dimensional CFs (MDCFs) for multi-product systems (Albey,
Bilge, and Uzsoy 2014). (Albey, Bilge, and Uzsoy 2017) introduce several new product based MDCFs
that show promising performance although their computational burden increases with instance size.

However, practical use of CFs has been hampered by the lack of effective methods for estimating
them. While steady-state queueing models can be used to develop analytic expressions for CFs
(Asmundsson, Rardin, Turkseven, and Uzsoy 2009, Karmarkar 1989, Missbauer 2002), the finite
length of planning periods calls their validity into question. It has been shown that the functional
form of the CF must take into account the transient behavior of the underlying queueing system,
but this results in intractable optimization models (Missbauer 2009). The prevalent approach in
the literature is to use least-squares regression to fit a postulated functional form to empirical
data. However, the performance of this approach has been found to be lacking. This approach is
subject to three types of errors (Stinstra and Den Hertog 2008, also see): 1) simulation error, due to
discrepancies between reality and the computer model (e.g., distributional assumptions used in the
simulation experiment), 2) metamodelling error, due to the difference between the “true” relation
of the inputs (or factors) to the outputs (or response) and the relation imposed by the metamodel
(e.g., estimating a CF using a linear function of workload when the actual relation is nonlinear), and,
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3) implementation error which arises when the optimal solution for the computed model cannot be
implemented with the same precision in a physical setting.

In this paper we postulate a functional form for the CF whose parameters are random variables
with support in a specified uncertainty set, and incorporate it as a constraint in the PRP model,
thus formulating the production planning problem as an optimization model with stochastic data.
We adopt the robust optimization (RO) approach (Ben-Tal, El Ghaoui, and Nemirovski 2009, Ben-
Tal and Nemirovski 2008, Bertsimas, Brown, and Caramanis 2011, Gorissen, Yanikoglu, and den
Hertog 2015) which yields tractable optimization models that do not require specific distributional
assumptions on the uncertain parameters. The model seeks release schedules that are immunized
against the errors above, which will combine to result in errors in the estimated values of the CF
parameters.

The following section reviews previous related work on optimization under uncertainty and the
estimation of CFs. Section 3 briefly reviews the CF idea and presents the deterministic MDCF
based PRP model. Section 4 reformulates the MDCF in a RO framework assuming an ellipsoidal
uncertainty set assumption. Section 5 demonstrates how level of uncertainty affects the performance
of robust counterpart, and tests how deterministic model and the robust counterpart perform when
the underlying uncertainty set assumption is changed. Section 6 concludes the work and presents
possible future research directions.

2 PREVIOUS RELATED WORK

Clearing functions (CFs) for production planning models were suggested by several authors in the
late 1980s. One of the first forms is a linear CF under which a production resource converts a specified
fraction of the work available to it at the start of a period into output during the period (Graves
1986). Concave CFs using a single state variable were introduced later (Karmarkar 1989, Srinivasan,
Carey, Morton, et al. 1988). (Missbauer 2002) suggests a different concave saturating CF based
on modeling the production resource as a steady-state M/G/1 queue. These functional forms are
based on steady-state queueing models, with the exception of that of (Srinivasan, Carey, Morton,
et al. 1988). (Missbauer 2009) uses transient analysis of the M /M /1 queue to show that the form of
the CF of a transient queue is substantially different from that obtained in steady state. However,
explicit representation of transient behavior results in nonlinear integer optimization models that are
computationally challenging. (Kang, Albey, Hwang, and Uzsoy 2014) derive multiproduct CFs from
steady-state queueing models to capture the impacts of lot sizing decisions, which yield promising
results.

The most common approach to estimating CFs to postulate a functional form and estimate its
parameters from data using least- squares regression. This approach is followed by (Asmundsson,
Rardin, Turkseven, and Uzsoy 2009), who fit the functional form of (Srinivasan, Carey, Morton,
et al. 1988) to data using least-squares regression, and then piecewise linearize the resulting concave
function in their Allocated Clearing Function (ACF) formulation. However, they find that this
approach yields poor fits, and use a percentile fit to obtain better results. (Missbauer 2011) argues
that in order to represent the transient behavior of the resource the CF must incorporate additional
independent variables. (Haeussler and Missbauer 2014) experiment with additional independent
variables and functional forms using linear regression using data from simulation models and empirical
data from a manufacturer of optical media. Similarly, (Albey, Bilge, and Uzsoy 2014) postulate
several multi-dimensional CFs that are effective in the presence of setup times. (Kacar and Uzsoy
2014) use simulation data from a scaled-down semiconductor wafer fabrication facility and perform
a similar analysis. These studies find that additional independent variables improve the fits of the
CFs as measured by the adjusted R? value. In these studies the CFs are fit to data obtained without
using a planning model, which creates concerns as the behavior of a queue with controlled releases
is likely to be quite different from that of an open queueing system. Gopalswamy and Uzsoy (2017)
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propose an Iterative Refinement approach that obtains improved results at high utilization levels.
(Kacar and Uzsoy 2015) use simulation optimization to obtain CF fits that optimize the performance
of the production system, as opposed to the fit of the CF to the data, again obtaining substantially
improved results. A significant fraction of the literature on CFs (Asmundsson, Rardin, and Uzsoy
2006, Kacar, Irdem, and Uzsoy 2012, Kacar, Monch, and Uzsoy 2013, Kacar, Monch, and Uzsoy
2016) has focused on the wafer fabrication environment.

While improved statistical models for fitting CFs to empirical data remain an active area of
research, this paper treats the parameters of the CF as random variables and embeds them in a
stochastic formulation of the production planning problem. There are several alternative methods to
address data uncertainty in optimization, including stochastic programming (SP), simulation based
optimization (SO) and robust optimization (RO). SP (Prékopa 1995, Birge and Louveaux 2011,
Ruszczynski and Shapiro 2003) assumes that the probability distribution (or its moments) of any
uncertain data is known and the deterministic counterpart of the stochastic problem is tractable. In
contrast to SP, RO does not require distributional assumptions, but instead assumes that the support
of the uncertain data (its uncertainty se) is known, yielding a distribution-free tractable approach
(Ben-Tal, El Ghaoui, and Nemirovski 2009, Ben-Tal and Nemirovski 2008, Bertsimas, Brown, and
Caramanis 2011, Gorissen, Yanikoglu, and den Hertog 2015). Although RO has been successfully
applied in a number of fields (Lobo 2000, Fredriksson, Forsgren, and Hardemark 2011), applications
in manufacturing are relatively scarce. Some examples are (Hood, Bermon, and Barahona 2003),
(Barahona, Bermon, Gunluk, and Hood 2005), and (Chien and Zheng 2012), which focus on capacity
planning or expansion in semiconductor manufacturing under demand uncertainty. (Aouam and
Uzsoy 2015) compare SP and RO for a simple production system subject to stochastic demand
and find that RO yields an effective approach although parameter values must be selected with
care. (Bertsimas and Thiele 2006) apply RO to inventory management problems, while applications
to production planning problems include (Lasserre and Mercé 1990), (Leung and Wu 2004), and
(Verderame and Floudas 2009).

3 MULTI-DIMENSIONAL CF BASED PRODUCTION PLANNING MODEL

The single-variable CF of (Karmarkar 1989) shown in (1) has been shown empirically to perform
well for both a single product and the aggregate output of a multiple product system in the absence
of setups.

CxWIP

TH= M+WIP’ M)
C in (1) represents the maximum possible output in a period; M is a user-specified parameter
controlling the curvature of the CF; WIP denotes the expected work-in-process (WIP) level or
workload aggregated over products during the planning period; and T'H the expected throughput in
the period. In the multi-product case, given the machine capacity dedicated to products j # i, the
remaining capacity is consumed by product ¢ in a manner dependent on only the average WIP level
of product i. Therefore, in determining the throughput of a given product, the capacity consumed
by other products should be explicitly accounted for in the functional form. (Albey, Bilge, and Uzsoy
2014) propose several product-based disaggregated MDCFs for a single machine based on this logic

with the form shown in (2).

TH; < f(WIP,TH) Viel. (2)

T H; in (2) denotes the expected throughput of product 4, WP the vector of average WIP levels

of all products during the planning period, and TH the vector of throughput values of products
j #i. WIP-based MDCFs generalize (1), and take the form
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Zj aij WIPjM)g
o M+ by WIP™

TH; Viel, (3)

where C represents the maximum possible output and M; controls the curvature of the CF for
product i. WIP" denotes the average WIP of product i during the planning period; and T H;
the expected throughput of product i. The a;j, b;; in (3) are parameters estimated by curve fitting
techniques (Albey, Bilge, and Uzsoy 2014).

(Albey, Bilge, and Uzsoy 2014) try several families of functions (ratios of polynomials, logarithmic
transformations, several Taylor series and sigmoidals) and found that form in (3) performs well
compared to others.

There are several motivations for MDCFs of this type for semiconductor manufacturing. The
presence of multiple products with different processing and failure characteristics results in a more
variable effective service time distribution, making it difficult for a single-variable CF to accurately
estimate system output under different operating conditions. The output of a given tool group may
depend on batching policies, sequencing decisions, and require setups and test wafers, rendering the
output dependent on not only the aggregate workload but the mix of products available to the tool
group during a planning period. These factors result in a situation where the output of a tool group
can vary significantly over time due to a range of factors which are difficult to isolate. This paper
acknowledges this situation by treating the parameters of the estimated MDCFs as random variables
over a specified uncertainty set in a single-stage multi-product system. We define the following
notation:

Indices:
1,7 = product index, i,j € I, where I is the set of products
t = period indices, t € T', where T is the set of planning periods
Parameters:
€; = unit processing time of product ¢
ct = available processing time of machine in period ¢
dit = demand of product ¢ at period ¢
o; = unit production cost of product 7
w; = unit WIP holding cost of product ¢
Pi = unit release cost of product 4
e = unit finished goods inventory holding cost of product ¢
Bi = unit backorder cost of product i
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Decision Variables:

BOy; = amount of product ¢ backordered at the end of period ¢

Ry = amount of product i released in period ¢

TH; = amount of product ¢ that is produced in period ¢

WPy = amount of work in process (WIP) of product ¢ at the end of period ¢

FGI; = amount of finished goods inventory (FGI) of product i at the end of period ¢

The MDCF based PRP model (MDCF-PRP) can now be stated as follows:

min» > " (¢;THy +mi FG Iy +wiWIPy + pi Ri + 8; BOy)

iel teT

s.t.

FGIly1+THy+ BOj — BOy—1 — FGIy = dyy VicINVteT (4)
WIPy =WIPy 1 —THy+ Ry VieIVteT (5)
WIPG" = 0.5¢;(WIPit—1+ Rt + WI1Py) VielVteT (6)

Z-aijWIP%vg

&TH;y < d J Viel,VteT 7
=y, +2; bijWI_Pj%vg (7)
ZeiTHit <c VieT (8)
Rit,TH;t, FGI;t,WIP;,BOj; > 0 Viel¥teT.

The MDCF-PRP model minimizes the sum of production, release, backorder, finished goods
inventory and WIP holding costs over all periods. Constraints (4) and (5) are the balance constraints
for finished goods inventory and WIP, respectively. Since the model tracks WIP levels at period
boundaries but the MDCF uses the time-average WIP over the period, the time-average WIP is
estimated by (6). The MDCF in constraint (7) limits the throughput of each product in each period.
Constraint (8) ensures that the processing time required by all products completed in a period does
not exceed the nominal capacity of the machine. WIP; s and F'GI; o represent the initial WIP and
FGI of product ¢ at the beginning of the planning horizon.

4 ROBUST REFORMULATION OF MDCF BASED PRODUCTION PLANNING
MODEL

The MDCEF in (7) can be reformulated as

> agWIP" —eTHy(M;+Y byWIP?) >0 VielVteT. 9)
i j

We assume that the regressors a; € R™ and b; € R™ are uncertain in that they reside in uncertainty sets
whose center points are given by the nominal data (ay € R, bY € R") obtained by regression. Formally,
a; :=a) + Q;( and b; := by + W,;£ where Q,; € R"*"(:=diag(q;)) and W; € R"*"(:=diag(q;)), and
the support of the primitive uncertainty parameters ¢ € R™ and & € R™ are assumed to reside in
a unit box, i.e, Z ={(¢:[|(]|o <1} and X ={&:||€]|,, < 1}, where the infinity norm is given by

3536



Albey, Yanikoglu and Uzsoy

[1€]]o := > |&i|. Correlation of uncertainties among different product types is assumed to be zero,
and the uncertain vectors a; and b; are assumed to be independent, i.e., { and £ are independent
from each other. More precisely, the off-diagonal elements of W; and Q; are zero, and a; and b; are
defined in different uncertainty sets Z and X (which shall be extended later).

Consequently, the intractable semi-infinite representation of the robust constraint is

J ij
J
—eiTHit y wiGWIPY >0 V(e ZVEe X, Vie L VteT.
j

> a;WIP — e TH;(M;+Y b WIP)+Y " qi;GWIPS™

To remove the universal (V) quantifiers in (10), we minimize the left-hand side of the constraint over
& € X and ¢ € Z for fixed values of W T Pﬁvg and T H;; and later take the dual and remove the “max”
term. The ‘tractable’ robust counterpart (RC) of (10) thus obtained is:

|4 WP

! (11)
>0 VielVtel.

Za?jWI-Pthvg — GzTHzt(Mz + Zb?jWI-Pﬁgvg) _ Z
7 J

—&THy Y [wi WP
J

Under box uncertainty, the RC reformulation has the same complexity as (9), even though (11)
requires additional variables to linearize the absolute values. Details on deriving the RC are given
in (Gorissen, Yanikoglu, and den Hertog 2015, §2).

Alternatively, we can extend the independence assumption of a; and b; by defining them in the same
ellipsoidal uncertainty set:

Z={CeR™:|[(ll2 <1},
where & :=[¢; €] (“;” operator concatenates two column vectors in the one with increased dimension)

and the Euclidean norm is given by [|{||2 := /2, ¢ Using the same notation, the uncertainty can
be modeled as

[a;;bs] = [af; bY] + [Qs, Wi][(: €]
and the ‘tractable’ RC becomes

17 %

> a;WIP;" —e;THy(M;+Y b WIP;™)
j j

(12)

$ > (%WIP;I;’Q)2 +(6TH)?Y (wijWIPJ‘-lt”g)Q >0 VielVteT,
J J

which can be efficiently solved by second-order cone programming (SOCP) solvers when T Hj; is
fixed.

Replacing (7) with either (11) or (12) yields different robust counterparts of the MDCF based
production release planning model. In the next section, we demonstrate how uncertainty levels affect
the different components of the PRP cost. In a second experiment, we compare the “vulnerability”
(robustness) of the robust counterpart to that of deterministic model by sampling different values
for estimated function parameters and comparing the frequency of infeasibility encountered in the
models.
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5 COMPUTATIONAL EXPERIMENTS

We briefly review the approach of (Albey, Bilge, and Uzsoy 2014) used to fit the MDCFs, and
then present the computational experiments evaluating the performance of the robust formulation.
We consider a single machine producing four products over a planning horizon of T'= 20 planning
periods. The total workload (i.e. demand) in each period is created to yield an average utilization
of 95%, and then disaggregated to individual products by using randomly generated product mix
vectors. Individual products, whose processing times follow lognormal distributions, are released
to the shop floor after sequencing in a periodic pattern (Albey, Bilge, and Uzsoy 2014). Table 1
presents unit backorder, WIP holding, FGI holding, release, and production costs; the mean u of
the corresponding normal distribution and the coefficient of variation of the processing times for
each product.

Simulations of the production system are performed to observe the output of the system under
different product mix and workload levels. Using this data, parameters for the MDCFs are estimated
using curve fitting techniques. A full factorial experimental design is run for multiple levels of each
of these factors. The product mixes are chosen such that ratio of each product in the mix takes
values of 0, 1, 2, 3 or 4, and the actual mix ratios are obtained by normalizing this combination
vector. Hence a mix combination of {1,2,4,1}, whose mix ratios sum to 8, corresponds to a product
mix of {1/8,2/8,4/8,1/8} = {0.125,0.250,0.500,0.125}. Since each product has five different levels
for the mix factors this yields a total of 54 = 625 combinations. However, some combinations such
as {1,1,1,1} and {2,2,2,2} correspond to the same (in this case, equal) allocation of demand among
products. Therefore to avoid unnecessary weighting of combinations in the experimental design, the
96 duplicate mixes are removed. The final number of mix combinations is therefore 625 — 96 = 529.
For each product mix, the system is simulated for 1000 periods, for a total of 529,000 periods of
simulation. The data collection phase is followed by a fitting procedure to estimate the parameters of
the MDCEF. Once the MDCF has been obtained, the planning models are solved using the KNITRO
solver through the GAMS interface. We consider two different robust optimization models, Robust-
v1 and Robust-v2, which are obtained by replacing MDCF constraint (7) in deterministic model by
(11) and (12), respectively.

Our first experiment, whose results are presented in Table 2, compares the objective function
value of the deterministic and robust models to validate the behavior of the latter. As the robust
model becomes more conservative, it releases less work and backorders more than the deterministic
model, yielding higher total costs. This is expected since the robust solution is immunized against
uncertainty, i.e., its feasible space is tighter than that of the deterministic model.

A direct comparison of the objective function values of the deterministic and robust models
may be misleading because they use different definitions of feasibility. In particular, a deterministic
solution may be infeasible for some (or all) realizations of the uncertain parameter that differ from
the nominal data. To examine this issue we run a Monte Carlo simulation experiment by sampling
uncertain data from two box uncertainty sets whose box limits are set 10% and 20% away from the
point estimates of the uncertain parameters. Experiments are run for 100 random pairs (g;, w;;) for
each uncertainty scenario and the feasibility of (7) for the deterministic and the robust solution are
compared. In the second experiment, we give both models a recovery option by allowing outsourcing
at an additional cost when initial plans are not met. The unit outsourcing cost is set to 150% of
unit backorder cost.

Results are presented in Table 3. The third column shows the percentage of infeasible instances
before introducing the recovery option, while the fourth column shows the percent of MDCEF con-
straints that are infeasible for the sampled uncertainty realizations (out of all constraints over all
periods). The fifth column lists the expected outsourcing cost with the recovery option. A significant
fraction of the deterministic solutions become infeasible in the presence of uncertainty in the MDCF
parameters. The fraction of periods with an infeasibility in the MDCF constraint increases with the
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degree of uncertainty, as would be expected. The robust model reduces the number of infeasibilities
by an order of magnitude, and the number of infeasibilities does not increase with the level of
uncertainty.

Table 1: Cost and demand related parameter values.

Product Backorder WIP holding FGI holding Release Production pu  c.v.

1 15 1 1.5 ) 2 100 0.82
2 25 1 1.5 5 2 150 0.54
3 35 1 1.5 ) 2 200 041
4 50 1 1.5 5 2 300 0.27

Table 2: Comparison of deterministic and robust models at uncertainty levels 10% and 20%.

Deterministic Uncertainty level = 10% Uncertainty level = 20%

Robust-v1 Robust-v2 Robust-vl Robust-v2

Release Cost 11.636 11.126 10.865 11.182 10.336
FGI Holding Cost 628 594 450 598 712
WIP Holding Cost 2.039 1.191 4.302 1.195 695
BO Cost 118.341 166.026 156.093 166.857 161.993
Production Cost 4.601 4.402 4.058 4.424 4.111
Total Cost 137.244 183.341 175.769 184.256 177.846

Table 3: Results of Monte Carlo experiment

Uncertainty Model Infeasibility MDCF constraint infeasibility ~Outsourcing cost
10% Deterministic 49% 30% 1890
10% Robust-v2 10% 4% 121
20% Deterministic 52% 33% 4409
20% Robust-v2 10% 4% 161

6 CONCLUSIONS

Although nonlinear CFs have proven to be useful metamodels representing the behavior of production
resources, a satisfactory framework for estimating them for practical production systems remains
elusive. Current practice focuses on developing point estimates using conventional least-squares
regression approaches, which have not yet yielded satisfactory solutions. Some of the reasons for
these difficulties have been discussed by (Gopalswamy and Uzsoy 2017). This paper takes an
alternative approach which seeks to explicitly account for the uncertainties in the MDCF parameters
induced by estimation errors using robust optimization. We compare the performance of a production
planning model using a multi-dimensional CF and its robust counterpart under several experimental
settings. As expected, as the level of uncertainty in the function parameters in the robust counterpart
is increased, the resulting production plan deviates from the optimal solution of the deterministic
model. However, the production plans found by the robust counterpart are proven to be less
vulnerable to estimation errors, which are a natural consequence of fitting processes.

The application of these methods to support production planning models for semiconductor
manufacturing facilities poses a number of challenges, but also presents some unique opportunities.
The prevalence of real-time shop-floor data from manufacturing execution systems in wafer fabs
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provides potentially very large data sets to which these approaches can be applied. However, the
sources of uncertainty affecting output from the various tools groups in wafer fabs need to be better
characterized to determine the best representation of uncertainty sets to use with this approach. The
presence of timing constraints between certain steps in the wafer fabrication process may affect the
performance of such models by introducing strong dependencies between the output of different tool
groups, which it is not immediately clear how to model. Finally, an important issue remains the size
of the resulting formulations and their computational complexity. Even single-variable CFs require
the definition of decision variables and constraints fore ach operation of each product performed
on each tool group, which leads to a significant increase in model size over the linear programming
models with workload-independent lead times (Kacar, Monch, and Uzsoy 2016).

A number of interesting directions for future research are apparent. The first of these is to
compare the realized performance of the production system under the different planning models by
simulating the execution of the proposed release schedules. Based on our experience with using two
different models with different sets of assumptions for the same underlying problem, in this case
dynamic lot sizing (Kang, Albey, Hwang, and Uzsoy 2014), it is quite possible that although the
objective function value of the deterministic model may be better than those of the robust models,
the robust model may result in significantly better cost performance. Another interesting direction
would be to formulate the problem of fitting the MDCF to the data as a robust optimization problem,
instead of using the conventional minimization of the sum of squared errors. Finally, application of
this approach to fitting piecewise linear single-variable CFs that can be directly implemented in the
formulation of (Asmundsson, Rardin, Turkseven, and Uzsoy 2009) as well as other functional forms
would be of great interest.
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