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ABSTRACT

We consider an engineer-to-order production system with unknown yield. We model the yield as a random
variable which represents the percentage output obtained from one unit of production quantity. We develop
a beta-regression model in which the mean value of the yield depends on the unique attributes of the
engineer-to-order product. Assuming that the beta-regression parameters are unknown by the decision
maker, we investigate the problem of identifying the optimal production quantity. Adopting a Bayesian
approach for modeling the uncertainty in the beta-regression parameters, we use simulation to approximate
the posterior distributions of these parameters. We further quantify the increase in the expected cost due
to the so-called input uncertainty as a function of the size of the historical data set, the product attributes,
and economic parameters. We also introduce a sampling-based algorithm that reduces the average increase
in the expected cost due to input uncertainty.

1 INTRODUCTION

We consider an engineer-to-order batch manufacturing environment with random yield. In this problem
setting, each order represents a custom-engineered product that is uniquely designed for a specific client.
Furthermore, the client specifies some predetermined requirements on the product attributes or features. Due
to the engineer-to-order nature of the product, the production process consists of a series of development
runs which is then followed by a scale-up production run. During the development runs, the manufacturer
conducts several product-development experiments, and collects data to estimate the production yield
(i.e., the amount of products produced per batch) of the scale-up production run. The production yield
is represented with a beta-regression model where the yield is a beta-distributed random variable with
its mean value written as a function of the available product features as the explanatory variables. The
objective of the manufacturer is to use the beta regression as a predictive model to estimate the yield
distribution, and to identify the optimal production batch size in the scale-up production, which we refer
as the production-batch sizing problem. However, the amount of data collected during the development
experiments is limited because each experiment can be very costly and time consuming. This leads to an
uncertainty in the parameters of the beta-regression model, which is also referred as the problem of input
uncertainty in the stochastic simulation literature (Barton 2012). In this paper, we address the following
research questions: (i) What is the impact of the input uncertainty on the expected cost and the production
batch sizes? (ii) How can the batch-sizing decisions be improved by accounting for the input uncertainty
in the production-batch sizing problem?

We answer the first research question by building a Markov chain Monte Carlo (MCMC) based algorithm
that approximates the posterior distribution of the unknown beta-regression parameters. The increase in the
expected cost due to the impact of the input uncertainty is then quantified as a function of the size of the
historical data, number of the product features, and the economic parameters such as the production cost
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and the penalty cost of the unmet demand. To address the second question, we develop a sample average
approximation model that takes the posterior samples of the beta-regression parameters as inputs and aims
to reduce the expected increase in the expected cost due to the input uncertainty.

An example application of our problem setting is the development of new pharmaceutical drugs. For
example, consider a research and development (R&D) project conducted by a pharmaceutical company.
The R&D project could require a custom-engineered component which needs to be subcontracted to a
highly specialized contract biomanufacturer. In this setting, the custom-engineered product could be a
special type of protein or active ingredient that needs to satisfy some predetermined features, such as,
purity, hydrophobicity, etc. To produce the requested product, the contract biomanufacturer performs a
series of development runs followed by the larger scale production run subject to random yield. The
development run generates a limited amount of data to estimate the production outcomes. Therefore, the
contract biomanufacturer faces with the production-batch sizing problem under input uncertainty.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature. Section 3
presents the details of the beta-regression for modeling the production yield and the production-batch sizing
problem. Section 4 discusses the proposed solution approach. Section 5 presents our numerical analysis,
and Section 6 provides the concluding remarks.

2 LITERATURE REVIEW

We categorize the related literature into two research streams: (i) the production and inventory management
under yield uncertainty, and (ii) the quantification of the input uncertainty in simulation output-data analysis.

The impact of yield uncertainty on the lot sizing decisions has been extensively analyzed in the literature.
A comprehensive overview of the inventory optimization models under yield uncertainty is provided by
Yano and Lee (1995) and Grosfeld-Nir and Gerchak (2004). In the context of engineer-to-order production
settings, Wein (1992) and Martagan, Krishnamurthy, and Maravelias (2016) consider a multistage batch
manufacturing environment with random yield, and develops a Markov decision process model to optimize
production decisions. Similarly, Grosfeld-Nir, Gerchak, and He (2000) build analytic models to optimize
the inspection and lot sizing decisions when the production yield is distributed based on the binomial,
discrete uniform or interrupted geometric distributions. In addition, several heuristics have been developed
to address lot sizing decisions in serial production systems with random yield (Bollapragada and Morton
1999; Ben-Zvi and Grosfeld-Nir 2007). In the context of supply chain management, several studies
consider the yield uncertainty. For example, Dada, Petruzzi, and Schwarz (2007) analyze the optimal
procurement decisions in a newsvendor setting with unreliable suppliers. Also, Schmitt and Snyder (2012)
develop an optimization model to simultaneously manage the yield uncertainty and supply disruptions.
However, the aforementioned studies assume perfect information on the yield distribution. When there is
incomplete information, Tomlin (2009) is the first to analyze a supply learning mechanism to optimize
sourcing decisions. More specifically, Tomlin (2009) considers a Bayesian model of supply learning to
characterize the optimal sourcing and inventory strategies. Subsequently, different learning mechanisms
for yield uncertainty and the corresponding procurement decisions are analyzed in Pun and Heese (2014),
Saghafian and Tomlin (2016) and Silbermayr and Minner (2016). As a contribution to this research stream,
we analyze the impact of input uncertainty in an engineer-to-order batch production setting with random
yield. To this end, we introduce a sampling-based algorithm to determine the optimal production batch
sizes in the presence of input uncertainty.

The simulation literature involves several different approaches to capture the impact of input uncertainty
on the design and analysis of stochastic simulation experiments. For example, the Bayesian approach (e.g.,
Chick 2001; Biller and Corlu 2011) or the frequentist approach (e.g., Xie, Nelson, and Barton 2014a; Lin,
Song, and Nelson 2015) have been most commonly adopted to address the problem of input uncertainty.
Studies also differ in terms of whether the sampled values of the unknown input model components are fed
into the simulation directly (e.g., Ankenman and Nelson 2012, Song and Nelson 2015; Akcay and Biller
2017; Akcay and Corlu 2017) or by means of a simulation metamodel (e.g., Barton, Nelson, and Xie 2014;
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Xie, Nelson, and Barton 2014b). We position our work as a Bayesian approach, and contribute to the
literature of stochastic simulation under input-model uncertainty by direct resampling from the posterior
distributions of the unknown parameters of a predictive model.

3 MODEL

We consider a manufacturer which performs the development experiments of an engineer-to-order product
followed by its scale-up production. In the development phase, the manufacturer conducts n experiments
to estimate the yield of the production. We denote the yield with Y and model it as a beta-distributed
random variable, representing the percentage output obtained from one unit of production quantity. The
beta distribution is a commonly used stochastic model to incorporate the random yield in many production
processes (Yano and Lee 1995, Lee and Lu 2015, Inderfurth and Kiesmüller 2015). In contrary to the
common notation where the beta distribution is parameterized with its two shape parameters α1 > 0 and
α2 > 0, we parameterize the beta distribution with its mean µ ∈ (0,1) and standard deviation σ ; i.e., there
is a one-to-one relation between the parameters (α1,α2) and (µ,σ):

µ =
α1

α1 +α2
(1)

σ
2 =

α1α2

(α1 +α2)2(α1 +α2 +1)
, (2)

where it can be shown that σ2 < µ(1−µ). We let fY (·; µ,σ) and FY (·; µ,σ) denote the probability density
function (pdf) and the cumulative distribution function (cdf) of the yield random variable Y , respectively.

In an engineer-to-order production system, it is often the case that the realized value of the production
yield is influenced by certain product attributes. For instance, the percentage output of an artificial protein
obtained from a production batch may depend on the temperature and size of the bioreactor used in the
production as well as the unique features of the product such as hydrophobicity and endotoxicity (Akcay
and Martagan 2016). Motivated by the engineer-to-order characteristics of the product, we model the
mean value of the yield random variable as a function of a finite set of explanatory variables (i.e., product
attributes). The so-called beta-regression model is widely used in situations where the variable of interest is
continuous and restricted to the unit interval and is related to other variables through a regression structure
Ferrari and Cribari-Neto (2004). In Section 3.1, we provide the details of the beta-regression model to
capture the uncertainty in the production yield of the engineer-to-order products.

We denote the demand for the product with d and assume that the manufacturer knows the demand size
before the production is initiated. The objective of the manufacturer is to choose the production batch size q
such that the demand is satisfied at minimum cost under the beta-distributed yield. The economic parameters
of the decision problem are given as follows. One unit of production costs c, and the manufacturer incurs a
penalty cost s for each unit of unsatisfied demand, and the customer agrees to buy the amount that exceeds
the prespecified demand size d at k100% discount as long as it is no more than M units.

Let π(q;y) denote the cost incurred by the manufacturer as a function of y, which denotes the realized
value of the yield random variable Y . We assume that the manufacturer is risk neutral and sets its objective
as the minimization of the expected cost

min
q≥0

Π(q; µ,σ),
∫ 1

y=0
π(q;y) fY (y; µ,σ)dy. (3)

In general, the expected cost function in Equation (3) may not be written in closed form, and stochastic
simulation is necessary to approximate the expected cost with its sample average ∑

M
m=1 π(q;ym)/M after

generating the realizations of the yield random variable {ym,m = 1, . . . ,M}; we refer the reader to Kim,
Pasupathy, and Henderson (2015) for a recent survey on the optimization via simulation by sample average
approximation. An important practical problem is that the manufacturer cannot directly generate the
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realizations of the yield random variable because the input parameters µ and σ are unknown. Traditionally,
the input parameters are first estimated from historical data (i.e., the past realizations of the production yield).
However, the finiteness of the historical data leads to an uncertainty in the estimates of the input parameters,
and the so-called input uncertainty is often ignored in simulation optimization (Zhou and Xie 2015); i.e.,
the simulation is driven by the realizations of the input random variables Y generated from the estimated
input parameters as if they were the correct input parameters. In Section 3.2, we provide an algorithm that
solves the production batch-sizing problem in Equation (3) by addressing the input-uncertainty problem
caused by the unknown parameters of the beta-regression model.

3.1 Beta Regression for Modeling the Production Yield

In this section, we present the details of the beta-regression model used by the manufacturer to assess the
production yield for a specific engineer-to-order product. We assume that each development experiment is
independent of each other, and represent the mean value of the yield in the development experiment i as a
function of the K-dimensional explanatory variables xi = (1,xi1,xi2, . . . ,xiK) as follows:

log
(

µi

1−µi

)
= β0 +β1xi1 + · · ·+βKxiK (4)

where we refer β = (β0,β1, . . . ,βK) ∈ RK+1 as the mean parameters of the beta-regression model. We
follow the convention in Ferrari and Cribari-Neto (2004) and capture the dispersion of the yield random
variable with a precision parameter φ > 0. In particular, φ is defined as α1 +α2 for the beta-distribution
with shape parameters α1 and α2. It follows from Equations (1)-(2) that the variance σ2 of the beta
distribution with mean µ is equal to µ(1−µ)/(φ +1); i.e., α1 = µφ and α2 = (1−µ)φ . This is why φ is
interpreted as a precision parameter: for fixed mean µ , the larger the value of φ , the smaller the variance
of the yield random variable.

3.2 Accounting for the Input Uncertainty in Production Batch Sizing

We note that the parameters β and φ of the beta regression model are unknown to the manufacturer,
and hence, there is an inherent uncertainty in choosing the input model from which the random samples
{ym,m = 1, . . . ,M} of the yield variable are generated while solving the simulation-optimization problem
in Equation (3). Traditionally, a point-estimate of β and φ (e.g., maximum likelihood estimate) is plugged
into the input model and used as if it were equal to their true values. However, this approach ignores
the input uncertainty in the simulation output data. Instead, we adopt a Bayesian approach to capture the
uncertainty in the unknown parameters β and φ . In particular, we pick a prior π(β ) that represents the
initial belief of the manufacturer about the mean parameters β in Equation (4). Likewise, we pick a prior
π(γ) where γ is log(φ); i.e., γ is the transformed value of φ such that γ ∈ R.

We let Dn denote the accumulated historical data {(yi,xi) : i = 1, . . . ,n} after the nth development
experiment, where yi is the realized value of the yield random variable at the explanatory variables xi in
the ith experiment. By Bayesian updating, the posterior distribution of β and γ can be obtained as

π(β ,θ |Dn) ∝

n

∏
i=1

(
Γ(φ)

Γ(µiφ)Γ((1−µi)φ)
yµiφ−1

i (1− yi)
(1−µi)φ−1

)
π(β )π(γ), (5)

with µi defined so that Equation (4) holds and the notation ∝ denoting the equivalence up to a normalization
constant. The normalization constant for the posterior in this model is analytically intractable. However,
even without computing the posterior distribution analytically, it is possible to generate a random sample
of β and φ from their posterior distribution (see Section 4.1).
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The posterior distribution π(β ,θ |Dn) represents the current belief of the manufacturer about the input-
model parameters β and φ , and can be incorporated in the production batch-sizing problem as follows:

min
q≥0

∫ 1

µ=0

∫ √
µ(1−µ)

σ=0
Π(q; µ,σ)π(µ,σ |Dn)dσdµ. (6)

We note that this formulation is neutral to the risk stemming from the uncertainty in the input-model
parameters β and φ (i.e., the input uncertainty) as well as to the risk due to uncertainty in the stochastic
simulation if the expected cost function Π(q; µ,σ) is estimated via sample average approximation (i.e.,
intrinsic simulation uncertainty). The ‘expectation’ formulation in (6) has been used in the Bayesian
input-uncertainty modeling literature in stochastic simulations; e.g., Chick (2001), Zouaoui and Wilson
(2003), Zouaoui and Wilson (2004), and Akcay and Martagan (2016). Zhou and Xie (2015) show that as the
size of the historical input data increases, the simulation-based optimization formulation in (6) converges
to the original simulation-optimization problem under the true input model.

4 SOLUTION APPROACH

In Section 4.1, we present a simulation-based algorithm to generate random samples from the posterior
distribution of the beta-regression parameters β and γ in the presence of the historical data Dn. In Section 4.2,
we discuss how to solve the problem in (6) by using these posterior samples.

4.1 Sampling from the Posterior Distribution of the Beta-Regression Parameters

We capture the uncertainty in the beta-regression parameters β and γ via the posterior distribution π(β ,γ|Dn).
It is known that this cannot be done exactly since there is no convenient conjugate prior for the beta
regression parameters. Therefore, we use a MCMC (Markov chain Monte Carlo) approach to approximate
the posterior distribution π(β ,γ|Dn). More specifically, even though we cannot compute the posterior
distribution π(β ,γ|Dn) analytically, we can generate random samples from this posterior distribution, and
then use the posterior samples of β and γ to approximate the posterior distribution of the mean and the
standard of the beta-distribution; i.e., π(µ,σ |Dn) in the production batch-sizing problem in (6).

As in line with the idea of MCMC simulation, we aim to generate a sequence of realizations of β and
γ whose stationary distribution is the posterior distribution π(β ,γ|Dn); we refer the reader to Andrieu et al.
(2003) for a survey on the MCMC algorithms. In particular, we build on the Bayesian beta-regression
algorithm in Cuervo and Lopera (2015) and Cepeda-Cuervo et al. (2016) which sample the parameters β

and γ from the posterior conditional distributions π(β |γ,Dn) and π(γ|β ,Dn), respectively, in an iteratively
alternating process. However, these two distributions are analytically intractable (so the possibility of Gibbs
sampling is ruled out) and a Metropolis Hastings algorithm (see Murphy 2012, Section 24.3) is needed to
sample β from π(β |γ,Dn) and to sample γ from π(γ|β ,Dn). Thus, it is required to develop a proposal
distribution (also called the kernel) for both conditional posterior distributions.

We use the proposal distribution of β to sample where the value of β can move from the current state
β

s in the the Markov chain simulation. In order to build a multivariate normal proposal distribution to
determine the next move of β from its current state, we (i) transform the yield realizations {y1, . . . ,yn}
in the historical data into {ỹ1, . . . , ỹn} such that they can be modelled as normally distributed, and (ii)
assume a conditional normal prior distribution β |γ ∼N (β 0,Σ0) with (K +1)-dimensional mean β 0 and
(K +1)× (K +1) covariance matrix Σ0. In particular, the first-order Taylor approximation of the function
log(yi/(1− yi)) around the neighborhood µs

i = 1/(1+ exp(−x>i β
s)) leads to

ỹi ≈ x>i β
s +

yi−µs
i

µs
i (1−µs

i )
, i = 1, . . . ,n, (7)

which in turn allows us to identify the mean and the variance of the transformed random variable as x>i β
s

and 1/(µs
i (1− µs

i )φ
s), respectively, where φ s = exp(γs) is the precision parameter associated with the
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current value of γ in the simulated Markov chain; i.e., ỹi ∼N (x>i β
s,1/(µs

i (1−µs
i )(1+φ s))). Given that

the prior of β is normal and the observations {ỹ1, . . . , ỹn} are also normal, the posterior distribution of β

(conditional on the current values β
s and γs in the Markov chain) can be shown to be also normal such

that q1(β |β s,γs)∼N (v,V) where

V =
(

Σ
−1
0 +X>ϒ

−1X
)−1

, v = V
(

Σ
−1
0 β 0 +X>ϒ

−1Ỹ
)
,

and X = (x1, . . . ,xn) is (K + 1)× n matrix including the historical realizations of the product features,
Ỹ = (ỹ1, . . . , ỹn) is the n× 1 vector including the transformed values of the historical yield realizations
in accordance with the approximation in (7), and ϒ is a n× n diagonal matrix with diagonal entries
1/(µs

i (1−µs
i )φ

s) for i = 1, . . . ,n. For the derivation of the values of v and V provided above, we refer the
reader to Section 7.6 in Murphy (2012). We take the distribution q1(β |β s,γs) as the proposal distribution
of β , from which we sample the next candidate value to move in the Markov chain.

To obtain posterior samples of γ , we similarly derive a transformation of the observed yield realizations
so that they can be regarded as normally distributed. Let τi , (φ/µi)Yi such that E(τi) = φ . Applying a
first-order Taylor approximation to the function log(τi) around φ then leads to

ŷi ≈ γ +
ti
φ
−1, i = 1, . . . ,n. (8)

Notice that the mean and the variance of this transformed random variable is γs and (1−µs
i )/(µ

s
i (1+φ s)),

respectively. Assuming that the transformed variables in (8) have independent normal distributions (i.e., ỹi∼
N (γs,(1−µs

i )/(µ
s
i (1+φ s)))) and the conditional prior distribution is also normal (i.e., γ|β ∼N (γ0,σ

2
0,γ)),

the posterior distribution of γ (conditional on the current values β
s and γs in the Markov chain) is also

normal. We denote this distribution with q2(γ|β s,γs)∼N (w,W ), where the mean and the variance are as
follows:

w =

γ0
σ2

0,γ
+∑

n
i=1

µs
i (1+φ s)
1−µs

i
ŷi

∑
n
i=1

µs
i (1+φ s)
1−µs

i

W =

(
1

σ2
0,γ

+
n

∑
i=1

µs
i (1+φ s)

1−µs
i

)−1

.

We remark that the observations (i.e., the transformed realizations {ŷ1, . . . , ŷn} are independent normal
with different means and variances due to different beta-regression covariates at each data point. If the
covariates were the same in all the data points (i.e., x1 = . . .= xn), then w and W reduce to the well-known
posterior distribution of the unknown mean value associated with a normally distributed random variable
with known variance (Gelman et al. 2014).

Given the proposal distributions q1(β |β s,γs) and q2(γ|β s,γs), Algorithm 1 outlines how we generate
random samples from the posterior distribution of the beta-regression parameters β and γ iteratively. An
important feature of this algorithm is that, when evaluating the acceptance probability of these samples, it
is sufficient to know the target density up to a normalization constant. That is why we use the unnormalized
posterior distribution π(·, ·|Dn) characterized in (5) for the evalulation of the acceptance probabilities.

In our implementation of Algorithm 1, we choose the initial points β
0 and γ0 equal to the mean values

of the prior distributions of β and γ . It is also critical to verify that the Markov Chain {(β s,γs) : s = 1,2, . . .}
simulated via Algorithm 1 converges to its stationary distribution. In our numerical experiments in Section 5,
we observe in the marginal trace plots that the stationary distribution is typically achieved for s equal to
2,000, which we consider as the end of the burn-in period; i.e., the samples during the burn-in period are
discarded. We set the thinning parameter equal to 10 (i.e., we collect the samples at every 10 iterations of
Algorithm 1); we find 10 is large enough to assure independence in the sampled values but at the same
time small enough to achieve efficiency.

In order to illustrate the posterior distributions obtained by using Algorithm 1, we generate n∈ {2,5,10}
historical data points including (i) two explanatory variables generated from Uniform(-1,1) distribution,
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Algorithm 1 Sampling from the posterior distribution of the beta-regression parameters β and γ .

1: Inputs: (i) The current values of β and γ in the Markov chain: β
s and γs, and (ii) the proposal

distributions q1(β |β s,γs) and q2(γ|β s,γs).
2: Output: The next values of β and γ in the Markov chain: β

s+1 and γs+1.

3: Step 1: Generate a random sample β
′ from the proposal distribution q1(·|β s,γs).

4: Step 2: Calculate the acceptance probability α1(β
′,β s) and decide where the chain moves next:

5: α1(β
′,β s)←min

{
1, π(β ′,φ s|Dn)

π(β s,φ s|Dn)

}
6: Generate a standard uniform random number u1.
7: β

s+1← β
′ if u1 < α1(β

′,β s); and β
s+1← β

s if u1 > α1(β
′,β s).

8: Step 3: Calculate the acceptance probability α2(γ
′,γs) and decide where the chain moves next:

9: Step 4: Generate a random sample γ ′ from the proposal distribution q2(·|β s+1,γs).
10: α2(γ

′,γs)←min
{

1, π(β s+1,exp(γ ′)|Dn)

π(β s+1,exp(γs)|Dn)

}
11: Generate a standard uniform random number u2.
12: γs+1← γ ′ if u2 < α2(γ

′,γs); and γs+1← γs if u2 > α2(γ
′,γs).

(ii) the yield realizations under the true parameters β
∗ = (0.275,−0.035,0.025) and γ∗ = 2.125. Under the

assumption of normal priors for β and γ (i.e. β ∼N (β 0,Σ0) where β 0 = (0,0,0) and Σ0 is a 3×3 identity
matrix, and γ ∼N (0,1)), Figure 1 illustrates the posterior distributions of the mean and the standard
deviation associated with the yield random variable for an engineer-to-order product with explanatory
variables x∗ = (1.000,0.870,−0.062). We note that the true value of the mean and standard deviation is
equal to µ∗ = 0.561 and σ∗ = 0.162 for these explanatory variables. Figure 1 shows that the prior belief
of the simulation practitioner on the true value of mean is not informative in the sense that it is equally
likely to take values anywhere on the unit interval (0,1). Likewise, the prior information implies the true
standard deviation is equally likely to take values on the interval (0.1,

√
µ(1−µ) for any given µ value

(see top-left plot in Figure 1 with n = 0). As the number of data points increase, we observe a concentration
of the posterior distribution on the true values of the mean and the standard deviation. For instance, the
mean and standard deviation is almost known with certainty after collecting n = 10 data points evidenced
by the support of the posterior distribution of the mean and the standard deviation taking values in close
proximity of the true values µ∗ = 0.561 and σ∗ = 0.162 (see bottom-right plot in Figure 1).

4.2 Minimization of the Posterior Expected Cost

In this section, we present the sample average approximation counterpart of the production batch sizing
problem in (6). In particular, we use the posterior samples {(β ω ,γw) : w = 1, . . . ,Ω} obtained from
Algorithm 1 to calculate the posterior samples of the mean and the standard deviation as

µω =
1

1+ exp(−β
>
ω x)

σω =

√
µω(1−µω)

1+ exp(γω)

for a specified vector x that represents the attributes of the engineer-to-order product to be produced.
Consequently, the objective of the sample average approximation problem is written as

min
q≥0

1
Ω

Ω

∑
ω=1

Π(q; µω ,σω) (9)

by approximating the expected posterior cost in the production batch-sizing problem in (6) with the average
of Ω number of posterior realizations of the expected cost. We refer to the optimization problem in (9)
as the Joint Estimation-Optimization (JEO) policy as it considers the complete posterior distribution of
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Figure 1: Posterior distribution of the beta-distribution parameters µ and σ .

the beta-regression parameters to make the batch-sizing decision. An alternative practical approach is the
Point-Estimate (PE) policy which first estimates the beta-regression parameters and then plug the resulting
point estimates in the optimization model. Since the expected cost function Π in (3) can be exactly evaluated
and does not require stochastic simulation, the formulation in (9) does not include any intrinsic simulation
uncertainty while explicitly modelling the input uncertainty via simulation. That is, in the remainder of
the paper, we focus on quantifying the impact of input uncertainty in the absence of intrinsic simulation
uncertainty. The same approach has been adopted by Zhou and Xie (2015) and Akcay and Martagan
(2016) for simulation-based optimization problems facing input uncertainty. Notice that (9) is a nonlinear
objective function, and we solve it within seconds by using the GenSA (Generalized Simulated Annealing)
R-package developed by Gubian et al. (2012). In our numerical experiments, we observe that the optimal
solution converges when the value of Ω exceeds 1000, therefore, we fix the value of Ω to 1000 in the
remainder of the paper.

5 NUMERICAL INSIGHTS

In this section, we run a set of numerical experiments to answer the following questions: (i) what is the
impact of the penalty cost s and the production cost c on the performance of the PE and the JEO policies?
(ii) what is role of the length of the development experiments n and the number of product features K
in the performance of the PE and the JEO policies? (iii) when is the JEO most effective in reducing the
increase in the expected cost due to the input uncertainty? We perform our numerical analysis by sampling
the experimental parameters from the following sets: n = {5,10,15}, c = {1,2}, r = 5, s = {5,10,20,50},
k = {0.1,0.25,0.5}, M = {0,5,10}, d = 20. Table 1 and Table 2 summarize our results by presenting
the average cost and batch-size values from the simulation replications at specified values of s,c,N and
K. We choose the number of the simulation replications dynamically such that the half-width of the 95%
confidence intervals for the expected cost is no more than the 1% of the reported value. We consider that
the normal prior distributions for the mean-parameters and the precision parameter of the beta-regression
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model have mean 0 and variance equal to 1, implying no strong prior knowledge on the mean and standard
deviation; see top-left plot in Figure 1. In each simulation replication, we generate the true values of
the beta-regression parameters from these prior distributions, while the historical product features and the
features of the engineer-to-order product in production are generated from the Uniform(−1,1) distribution.

Table 1 assumes that there is no product feature available as an explanatory variable (K = 0); this
situation captures the situation where all the development experiments are done for one specific engineer-to
order product (i.e., product features are kept constant during the development experiments). In particular,
Table 1 compares the expected costs and batch sizes under the optimal policy with perfect information
(Opt), the PE policy, and the JEO policy for n = 5. In the optimal policy with perfect information, the
manufacturer knows the true values of the mean and the standard deviation of the beta-distribution that
represents the random yield variable. On the other hand, the PE policy uses the maximum likelihood
estimation to obtain the point-estimates of the unknown beta-regression parameters and treats them as if
they are the correct values.

We make two key observations from Table 1: (i) The increase in the expected cost due to the input
uncertainty increases as the penalty cost s increases; furthermore, the JEO policy becomes more effective
with increasing s. For instance, the average expected cost associated with the PE policy is only 1.2 units
(60.4−59.2) higher than the optimal policy under perfect information, and the JEO reduces the increase
in the expected cost from 1.2 units to 1.1 units (60.3−59.2) for the penalty cost s equal to 5 (i.e. when
the penalty cost is only the loss of revenue) and for the production cost c equal to 1. On the other hand,
when the penalty cost increases is equal to 50 (e.g., implied by a large loss of customer goodwill for agreed
but unmet demand), the average expected cost associated with the PE policy is 19.2 units (139.2−120.0)
higher than the optimal policy under perfect information, and the JEO reduces the increase in the expected
cost from 19.2 units to 8.9 units (139.2−130.3). This can be explained by the shape of the expected cost
function around the optimal batch-size quantity: If the per-unit penalty cost is larger than the revenue earned
from one unit of the product, the expected cost function has a sharp dive at the optimal batch quantity. On
the other hand, if the penalty cost and the revenue are close to each other, then the expected cost function
is rather flat around the optimal batch quantity. The flatness implies that choosing a sub-optimal batch
size due to incorrect estimation of the beta-regression parameters leads to an expected cost value that is
potentially still close to the minimum expected cost under the perfect information. However, the sharp
dive of the expected cost function around the optimal batch size implies that choosing a batch size that
this slightly different than the optimal one leads to a substantial increase in the expected cost. (ii) The
JEO policy adjusts the batch size under the PE policy in a way that balances the cost of underestimating
the yield realization and the cost of production. For instance, when the penalty cost s is 50, the JEO
policy increases the batch size of the PE policy (i.e., from 70.9 to 81.4) for the production cost equal to 1.

Table 1: Expected costs and batch sizes (in paranthesis) under the optimal policy with perfect information,
the PE policy, and the JEO policy; n = 5 and K = 0.

c = 1 c = 2

s Opt PE JEO Opt PE JEO
5 59.2 60.4 60.3 86.1 87.9 87.7

(37.8) (36.4) (32.5) (26.3) (20.7) (20.7)
10 71.6 73.4 73.4 111.0 113.8 112.7

(52.1) (53.7) (44.9) (38.1) (34.5) (33.1)
20 80.5 84.1 82.9 142.9 145.1 144.5

(58.7) (56.2) (57.7) (49.2) (47.8) (45.2)
50 120.0 139.2 130.3 192.2 202.4 196.0

(87.8) (70.9) (81.4) (67.2) (77.7) (72.3)
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Table 2: Expected costs and batch sizes (in paranthesis) under the optimal policy with perfect information,
the PE policy, and the JEO policy; c = 1 and s = 50.

K = 0 K = 1 K = 2

n Opt PE JEO Opt PE JEO Opt PE JEO
5 120.0 139.2 130.3 128.2 159.2 136.2 134.1 260.0 140.5

(87.8) (70.9) (81.4) (89.8) (99.8) (100.9) (91.8) (81.5) (89.4)
10 128.3 124.9 142.5 134.7 160.0 141.3

(76.0) (83.1) (79.3) (90.9) (84.4) (93.8)
15 123.7 123.2 129.3 131.1 148.5 140.5

(82.2) (86.1) (81.2) (90.2) (93.8) (98.2)

However, when the production cost is 2, the cost of underestimating the yield realization is dominated by
the higher production cost, and the JEO policy continues to decrease the batch size of the PE policy (i.e.,
from 77.7 to 72.3).

Table 2 assumes the availability of the product features as the explanatory variables for estimating
the mean of the beta-distributed yield random variable; i.e., K ∈ {0,1,2}. We make two key observations
from Table 2: (i) The increase in the expected cost due to the input uncertainty increases as the length
of the historical data decreases. For instance, when there are K = 2 covariates, we observe an increase
in the expected cost of the PE policy from 93.8 to 260.0 as the number of development experiments n
goes down from 15 to 5. That is, the input uncertainty problem is the most relevant when there is limited
data (e.g., often caused by expensive and time-consuming development experiments) to make an inference
about the yield random variable. (ii) The JEO policy typically becomes more effective in reducing the
input-uncertainty driven increase in the expected cost as the number of explanatory variables increases.
For example, when n is equal to 5, we observe that the JEO policy reduces the the average expected cost
of the PE policy about 11.6% (i.e., from 159.2 to 136.2) for K = 1 and about 46% (i.e., from 260.0 to
140.5) for K = 2.

6 CONCLUSION

We study the production batch-sizing decisions of a manufacturer who develops and manufactures an
engineer-to-order product with a predetermined set of attributes. The manufacturer has limited historical
data about the past yield realizations under different product attributes, and makes inferences about the
distribution of the yield distribution through a beta regression model. The manufacturer faces the problem
of input uncertainty due to unknown parameters of the beta regression model, affecting the performance of
the resulting production batch-sizing decisions. In this paper, we represent the uncertainty in the logistic-
regression parameters by approximating their joint posterior distribution via an MCMC algorithm, and
then investigate the impact of input uncertainty on the batch-sizing decisions and the expected cost of the
manufacturer. We further introduce a sample average approximation of the batch-sizing problem to reduce
the impact of input uncertainty on the expected cost of the manufacturer. Future research directions include
the production and batch sizing decisions in the context of multiple products and limited capacity.
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