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ABSTRACT 

We examine the problem of fitting clearing functions that estimate the expected output of a production 
resource as a function of its expected workload from empirical data. Unlike most regression problems, the 
independent variables are not directly controllable due to the presence of a planning model that controls 
releases to the production system, and the release decisions made by the planning model are themselves 
dependent on the estimated clearing function. We propose an iterative refinement procedure that uses 
simulation experiments to resample data from the production system as the parameters of the clearing 
function are iteratively updated. We compare the iterative procedure to previously used approaches with 
promising results. 

1 INTRODUCTION 

The release planning problem is that of determining the timing and quantity of releases of raw materials 
into the production system to ensure that output matches demand in an optimal or near-optimal manner. 
This requires modeling the cycle times, the delay between work being released into the production system 
and its emergence as finished product that can be used to meet demand. Both queueing theory (Buzacott 
and Shanthikumar 1993) and simulation models (Atherton and Atherton 1995) have demonstrated a 
nonlinear relation between mean cycle time and mean resource utilization. In general, the cycle time of a 
job through a production system is a random variable whose distribution depends on the level of resource 
utilization, among other factors. However, resource utilization is determined by the workload, the amount 
of work available to a resource in a planning period, which is, in turn, determined by the release 
decisions. This circularity, where the cycle time depends on release decisions that themselves require 
knowledge of the cycle times, has been a persistent issue in production planning for several decades.
 There have been three different approaches to this issue in the literature to date. By far the most 
common is to represent cycle times as a workload-independent, exogenous parameter, or lead time. This 
approach is used in the widely used Material Requirements Planning (MRP) procedure (Vollmann et al. 
2005) and the majority of linear (LP) and mixed integer (MIP) models in the literature (Missbauer and 
Uzsoy 2011). This approach yields computationally tractable models, but fails to capture the workload-
dependent behavior of cycle times, particularly when resource utilization varies significantly over time. A 
second approach has been to decompose the problem into two subproblems, one that determines optimal 
releases for given cycle time estimates and another that estimates the cycle times that will be realized 
under given releases (Hung and Leachman 1996; Kim and Kim 2001; Byrne and Hossain 2005), and 
iterate between the two models until convergence is achieved. The first model is usually a LP, while 
simulation, queueing or regression models can be used for the latter (Hung and Hou 2001). However, the 
computational requirements of these procedures are high due to their use of a detailed simulation model, 
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and their convergence is not yet well understood (Irdem et al. 2010). The third approach, which motivates 
this paper, models production resources using nonlinear clearing functions (CFs) that represent the 
expected output of a production resource in a planning period as a function of the planned workload at the 
resource during that period (Missbauer and Uzsoy 2011). Hence the CF can be viewed as a metamodel of 
the queueing system describing the production resource. Most previous work has focused on developing 
CFs that can be incorporated into LP formulations of the release planning problem, generally using a 
single state variable, the total workload of all products at the resource in the planning period, as the 
independent variable. The use of a single state variable resulted in difficulties representing production 
systems with multiple products, which are largely, though not completely, resolved by the Allocated 
Clearing Function model of Asmundsson et al.(2009) in the absence of setups between products. A 
growing body of research has shown that when appropriately parameterized planning models using CFs 
can yield improved production plans over both fixed lead time and iterative multi-model approaches, 
especially when resource utilization varies over time (Asmundsson et al. 2009; Kacar et al. 2013, 2016). 
 The use of CFs has several advantages. If a suitable functional form is used, the resulting planning 
models can be solved using commercial software without requiring any time-consuming simulation runs, 
in contrast to simulation optimization or iterative multi-model approaches. The computationally intensive 
work of fitting the CF can be performed offline, outside the planning model. Finally, planning models 
using CFs yield dual prices for resources with utilization below 1, which LP models using exogenous, 
workload-independent lead times cannot do (Kefeli and Uzsoy 2016).  
 However, a satisfactory, general formulation of the problem of estimating CFs from data has not yet 
been developed. The most common approach in the literature is to fit CFs to all resources in the 
production system using data collected from direct observations of the production system or, much more 
commonly, a simulation model. However, there appears to be quite considerable room for improvement 
over current approaches: the simulation optimization approach of Kacar and Uzsoy (2015) resulted in 
improvements of up to 30% in the performance of the production system. Hence the improvement in 
production plans from better estimation of the CFs may be quite considerable. Various functional forms 
have been proposed, none of which has proved entirely satisfactory; there is also little agreement on what 
state variables (independent variables in regression terminology) should be included. This results in a 
highly unsatisfactory state of affairs, where it is hard to give practitioners a clearly stated, reliable 
procedure for fitting CFs that can be automated with minimal manual intervention. 

After reviewing previous work in the next section, this paper explores the difficulties of the problem 
of fitting CFs to data from simulation models in Section 3, and suggests a heuristic solution analogous to 
the policy iteration algorithm used in stochastic optimization in Section 4. Section 5 presents 
computational results for some simple single-stage systems. We conclude the paper with a discussion of 
our principal findings and directions for future work. 

2 PREVIOUS RELATED WORK 

Clearing functions for capacitated production resources were first suggested by Graves (1986), Karmarkar 
(1989) and Srinivasan et al. (1988). These CFs use a single state variable, either the work in process 
inventory (WIP) at the resource at the start of period t, denoted by Wt-1, or the workload Λt, in units of 
time, available to the resource over the planning period. The workload Λt denotes the total amount of 
work, measured in time units, that becomes available to the resource in period t, and is given by Λt = Wt-1 

+ Rt, where Rt denotes the amount of material released to the resource in period t, again in units of time. 
The CF of Graves (1986) differs somewhat from the others in that it assumes the production resource will 
be able to convert a constant fraction of its available workload into output in any period, implying that the 
rate of production can be varied. Motivated by steady-state queueing models, Karmarkar (1989) suggests 
the functional form   
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 f (t ) 
K1t

K2  t

 , t  0   (1) 

where K1 and K2 are parameters to be estimated from data. Motivated by results from traffic modeling 
(Carey and Bowers 2012), Srinivasan et al. (1988) suggest the form 

 f (Wt )  K3(1 eK4Wt ) , Wt  0  (2) 
where K3 and K4 denote parameters to be estimated. Missbauer (2002) proposes the form 

 f (t ) 
1

2
C  k  t  C 2  2Ck  2Ct  2kt  t

2



   (3) 

where C denotes the length of the planning period and k  0.5( 2 / t  t) , where t and σ denote the mean 
and variance of the processing time, respectively. All three functional forms are concave non-decreasing 
in Λt for positive values of the estimated parameters.  
 These functional forms are all based on steady state queueing models. However, the CF seeks to 
represent the behavior of the production resource during a finite planning period, over which the system 
may not attain steady state. Missbauer (2009, 2011) shows that the shape of the CF for a given value of  
Λt changes as a function of Rt and Wt-1, demonstrating that the shape of the CF can vary over time based 
on system state. The incorporation of transient CFs results in nonlinear integer optimization models that 
are difficult to solve, and remains the subject of ongoing research. 
 Given the difficulty of obtaining tractable CFs from queueing analysis, the prevalent approach in the 
literature has been to postulate a functional form, usually one of (1) - (3) above, and estimate its 
parameters from data, usually obtained from a simulation model of the production system, using linear 
regression (LR). The CF thus obtained is assumed to represent the expected behavior of the production 
system at any point in time. However, this approach has encountered unexpected difficulties. 
Asmundsson et al. (2009) found that using LR with a single state variable representing the aggregate 
workload systematically underestimated the CFs; a heuristic percentile fit yielded much improved results. 
Kacar and Uzsoy (2015) used simulation optimization to estimate the CF that optimized the performance 
of the production system, instead of the fit to the data; they obtained substantial improvements in 
performance over a piecewise linearized LS fit. Kacar et al. (2012; 2013; 2015; 2016) visually partition 
the range of data into two segments containing approximately equal numbers of data points, and then use 
linear regression to fit linear functions of the workload in each partition. They then add a third segment 
with slope of zero representing the estimated maximum output of the resource in a period. This approach 
produces a CF that is a piecewise linear function of a single state variable, and thus ideal for use in the 
Allocated Clearing Function formulation (Asmundsson et al. 2009). However, the improved results from 
simulation optimization (Kacar and Uzsoy 2015) show that this approach will not always lead to the best 
possible fit. It is important to note that Kacar et al. do not consider the impact of the planning model on 
the CF; the CF is fit to data collected by setting the releases in each period equal to that period's demand.  
 Missbauer's (2009, 2011) results on transient CFs suggest that a single state variable such as the 
workload Λt may not be sufficient to describe the behavior of the production resource accurately. Kacar 
and Uzsoy (2014) compared a number of LR  models for fitting workload-based CFs, again without 
considering the impact of the planning model on the simulation data collected. They experiment with a 
range of independent variables in their regression models including releases Rt, the entering WIP Wt-1 and 
the same quantities for earlier time periods. They find that at high utilization including state variables 
from earlier periods improves performance, but no single model yields consistently higher performance 
across all experimental conditions. Haeussler and Missbauer (2014) present extensive regression analyses 
using both simulation and empirical data obtained from a manufacturer of optical storage media. They 
find that incorporating additional independent variables leads to better fits, noting substantial differences 
in results between empirical and simulation data. For bottleneck machines they find that incorporating 
simple quadratic terms of a single workload variable yields marked improvements in fit, as measured by 
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adjusted R2. Multidimensional CFs have been proposed for systems with setups and lot-sizing decisions 
(Albey et al. 2014; Kang et al. 2014; Albey et al. 2017), but lead to non-convex optimization models. 
    The picture that emerges from this body of work is far from clear, except that simple linear regression 
with a single state variable leaves considerable room for improvement. The choice of an appropriate 
functional form remains, largely, open; the state of the art in traffic modeling, where very similar 
functions relate the flow of traffic through a road segment to the number of vehicles on the segment in 
each period suggests that this is a difficult problem in its own right (Carey and Bowers 2012). We give 
some evidence below that functional forms derived from steady state queueing analysis may not be 
appropriate, while those based on transient analysis yield intractable planning models. In the following 
section we discuss a number of issues that we believe render the problem of fitting CFs difficult even 
when the functional form is specified: the selection of an appropriate fitting technique, and the fact that 
the independent variables in the regression are not directly controllable in simulation experiments since 
the planning model determines the releases, introducing a circularity into the problem.  

3 ISSUES IN FITTING CLEARING FUNCTIONS  

In this section we first propose a simple formulation of the problem of fitting a CF to data from a 
production system, specifying the data to which the fitting procedure will be applied, how the CF is used 
in the production planning model, and then addressing some difficulties that arise. For simplicity of 
exposition we consider a single production resource producing a single product whose behavior can be 
described as a queueing system. We seek to fit the functional form (1) of Karmarkar (1989); the issues we 
raise remain valid regardless of the specific functional form we seek to fit. We also assume that we have 
access to a simulation model of the system that represents its behavior to the desired degree of accuracy. 

3.1 Planning Model 

Releases into the system are computed by a planning model that seeks to determine the amount of 
material Rt released to the resource at the start of period t over a planning horizon of T periods such that 
the sum of WIP holding, finished inventory holding and backorder costs are minimized over all periods. 
The decision variables are It, the amount of finished inventory on hand at the end of period t; Bt, the 
number of backlogged units at the end of period t; Wt, the WIP at the end of period t; and Xt, the output of 
the resource in period t. Demand for the product in period t is denoted by Dt, treated as a deterministic 
parameter in the planning model, which can be written as the following convex optimization problem: 

 min wtWt  ht It  bt Bt 
t1

t

   (4) 

subject to 
 It  Bt  It1  Bt1  Xt  Dt  , t  1,...,T   (5) 

 Wt Wt1  Rt  Xt  , t  1,...,T   (6) 

 Xt 
K1(Rt Wt1)

K2  (Rt Wt1)
 , t  1,...,T   (7) 

 Rt , It , Xt ,Wt  0  (8) 
where wt, ht and bt denote unit WIP holding, inventory holding and backordering costs, respectively.  
 The use of the CF within this model raises some interesting questions. When the model is run, the 
only parameters known with certainty are the initial WIP and finished goods inventory levels W0 and I0 

and the cost parameters. The optimal values R̂t , X̂t ,  Ît   and Ŵt of the decision variables obtained from the 
model (4) - (8) thus represent planned, or predicted, values of the quantities they represent, which are 
random variables whose distribution depends, potentially, on the entire history of the production system 
up to the time they are observed as well as the distribution of the processing times, the dispatching or 
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scheduling procedures used on the shop floor, and other work practices that are abstracted away in the 
model. Thus the workloads t  Rt Wt1 that form the argument of the CF, and hence the independent 
variables in the regression model used to estimate the parameters of the CF, are not directly controllable 
in an experimental design.  

It should also be noted that the model (4) - (8) assumes the same CF for all periods in the planning 
horizon. The distribution of the demand Dt represents the state of the world in which the production 
resource must operate. Hence the CF we fit seeks to represent the behavior of the production system 
aimed at meeting this demand, and depends on the distributions of processing times and failures, the 
manner in which work is released into the system over time, shop floor scheduling and staffing policies, 
and so on. The use of the planning model to determine release schedules results in a dependency of the 
CF on the demand distribution, since the planning model will produce different release patterns, and 
hence different patterns of workload over time, under different demand distributions. Thus the CF we 
seek represents the expectation of output in a planning period over all these random variables. If we 
denote the random variables representing workload over time by Λ, those representing demand by D and 
all internal random variables such as processing times and failures as P, the CF we seek can be written as  

 X  E,D,P X |, D,P    (9) 

It is immediately apparent that this very aggregate formulation of the CF may result in substantial 
inaccuracies when estimating output for  a particular system state in a particular time period, especially 
when the arguments of the CF used in the planning model represent predictions of random variables that 
will be realized some number of periods in the future. The work on multivariate CFs (Haeussler and 
Missbauer 2014; Kacar and Uzsoy 2014) attempts to address this issue by including additional state 
variables in the functional form. However, whatever functional form is used, the presence of the planning 
model prevents direct control of the independent variables in the regression. 

3.2 Sampling Issues 

The process by which we obtain the data required to fit the CF is in principle unremarkable. We perform a 
number of simulation replications g = 1,...,G that simulate the operation of the production resource over a 
time horizon of T discrete periods. This yields TG observations (Xgt, Λgt) denoting the observed output Xgt 
and workload Λgt of the resource in period t in replication g, to which the CF can be fitted. The question is 
how to obtain these observations in an appropriate manner.  

In order to obtain data from the simulation model to which we can fit the CF, we must sample from 
the distributions of Λ, D and P. Although sampling from the distributions of D and P is straightforward, 
the presence of the planning model prevents us from sampling from the distribution of Λ directly. This 
creates a circularity in that the planning model uses the estimated CF to determine releases, but the 
releases determine the workloads Λt used as the independent variables from which the CF is estimated.  

In much previous research (Kacar et al. 2012; Kacar et al. 2013; Kacar and Uzsoy 2014, 2015; Kacar 
et al. 2016), CFs were fit using data obtained by simulating the system without any planning model, 
simply setting releases equal to demand in each period to obtain the observations (Xgt, Λgt). However, 
ignoring the presence of the planning model in this way is likely to distort the sample of observations 
obtained. In periods of high demand, the  planning model will not  release all of a period's demand in the 
period it is needed, since this will cause high resource utilization and long cycle times; it will release 
some of this material earlier, building finished goods inventory from which demand can be met later.  

A similar problem arises in our context due to the presence of the planning model. For a given sample 
q from the distributions of D and P, the observed output and workload (Xqt, Λqt) are determined by the 
releases Rqt which, in turn, are determined by the parameters K1 and K2 of the estimated CF. Errors in the 
estimates of K1 and K2 can lead to release patterns that would not occur with the correct CF, resulting in 
observations (Xqt, Λqt) that are unlikely to occur with the correct CF. We seek to address this circularity 
using the iterative refinement procedure discussed in the next section.  
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3.3 Impact of the Functional Form 

Another set of issues arises from the choice of a functional form derived from a steady state queuing 
model. Our adoption of the CF (1) in constraint (7) implies a regression model of the form 

 Xt  f (R̂t ,Ŵt1)  t 
K1(R̂t  Ŵt1)

K2  (R̂t  Ŵt1)
  t   (10) 

where  t  is, ideally, normally distributed with a mean of zero and standard deviation  . The time 

independence of   assumes the absence of heteroscedasticity, which is often not the case. The queueing 
analysis leading to the functional form makes a different statement, which is that 

 E Xt   f (E[Rt ],E[Wt1]) 
K1(E[Rt ] E[Wt1])

K2  (E[Rt ] E[Wt1])
  (11) 

Taking the expectation of (10) and assuming that the optimal values of the decision variables 
represent unbiased estimators of the realized quantities - a highly questionable assumption - we obtain 

 X̂t  E[Xt ] E f (E[Rt ],E[Wt1])   f (E[Rt ],E[Wt1])   (12) 

by Jensen's inequality and the observation that (1) is concave in both variables. This suggests the distinct 
possibility that, even under the highly idealized condition that the optimal values of the decision variables 
yield unbiased estimates of the random variables they represent and the variance of the residuals is time 
stationary, the regression model implied by the use of (10) may underestimate the expected output in a 
planning period. This argument remains valid for any functional form derived from steady-state queueing 
analysis that relates the expected output to the expected value of some workload-related random variable. 
This again calls into question the desirability of using functional forms derived from steady-state 
queueing models, suggesting the need for an alternative approach. 

4 AN ITERATIVE REFINEMENT PROCEDURE 

The previous section has raised three specific issues regarding the use of least squares regression to 
estimate clearing functions from simulation data: the inability to observe the independent variables 
directly due to the use of the planning model to compute releases; the dependence between the data 
required for fitting the CF and the CF itself; and the possibility of systematic underestimation when using 
functional forms whose arguments are expectations of an underlying random variable. The work in this 
paper addresses the first two issues by proposing an iterative approach that explicitly considers the 
planning model in the data collection process, beginning with an initial estimate of the CF which is then 
iteratively refined until convergence in the CF parameters is achieved. Since the iterative approach retains 
the functional form (1), the possibility of biased estimates resulting from the particular functional form is 
not addressed in this work. 
 The circularity described in Section 3.2 suggests viewing the sampling problem as that of learning the 
correct values of the CF parameters K1 and K2. The Iterative Refinement procedure develops an initial 
estimate of the CF parameters following Kacar et al. (2012), which we shall refer as the Unplanned 
Estimation, since it does not use a planning model in developing the release schedules.  

 
Unplanned Estimation: 
 Step 1: Identify a set of target mean utilization levels  j , j = 1,...,J that span the range of utilizations 

the system is expected to experience under its routine operating conditions. 
Step 2: For each value of  j , generate M independent realizations of demand that yield a mean 

utilization level of  j . This yields a total of JM independent demand realizations 
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Step 3: For each demand realization, set releases in each period equal to demand in that period, i.e., 
Rt = Dt, and simulate the execution of this release plan for G independent replications, yielding a total of 
MGT observations (Xgt, Λgt). 

Step 4: Use the MGT observations obtained in Step 3 to obtain initial estimates of the CF parameters 
estimates KU  (K1

U ,K2
U ) using least-squares regression. 

 
The Iterative Refinement procedure starts with the parameter estimates KU obtained by the Unplanned 

CF Estimation procedure and refines it iteratively as follows: 
 

Iterative Refinement Procedure: 
 Step 1: Identify a set of target mean utilization levels  j , j = 1,...,J that span the range of utilizations 

the system is expected to experience under its routine operating conditions. 
Step 2: For each value of  j , generate M independent realizations of demand that yield a mean 

utilization level of  j , for a total of JM independent demand realizations. 

Step 3: Set i = 0, Ki = KU. 
Step 4: For each demand realization, solve the planning model (4) - (8), augmented with the 

following constraints which we have found improve the fit: 
 Xt  Ct  , t  1,...,T   (13) 

 Xt  Rt Wt1  , t  1,...,T   (14) 
Constraint (13) ensures that expected output (in units of time)  does not exceed the expected capacity of 
the system, given by the expected time the resource is available during the planning period, while (14) 
ensures that the output in any period cannot exceed the planned workload. Simulate the execution of each 
release plan for G independent replications, obtaining a total of MGT observations (Xgt, Λgt). 

Step 4: Use the MGT observations obtained in Step 3 to obtain revised estimates K i1  (K1
i1,K2

i1)  
using least-squares regression. 

Step 5: If i > maxIter or 0 
K i1  K i

K i
  , stop and return Ki+1. Otherwise set i = i+1, go to Step 3. 

 The intuition behind the Iterative Refinement procedure is to progressively refine the sample of 
observations used to fit the CF. The Unplanned Estimation procedure does not consider the effects of the 
planning model on releases, and hence may well create release schedules, and hence workload 
trajectories, that are unlikely to be encountered when the planning model is used. Use of the planning 
model will result in the elimination of workload trajectories that the planning model will not generate, 
resulting in a sample that better represents he behavior of the system under the planning model. 

5 COMPUTATIONAL EXPERIMENTS 

We examined the performance of the Iterative Refinement procedure on four simple single-state single-
item production systems whose characteristics are summarized in Table 1. All times are given in minutes. 
External demand was assumed to follow a binomial distribution whose parameters were adjusted to yield 
the desired mean utilization levels and coefficient of variation in the table. We considered a planning 
horizon of T = 26 periods, each of length 1440 minutes. Separate, independent data sets were used to fit 
the CFs and to evaluate their performance. Demand follows a binomial distribution with n = 100 and p 
chosen to yield the desired mean utilization level. Hence the variability of demand is not constant across 
all utilization levels. 
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Table 1: Experimental Design. 

Factor Values Levels
Service Time Distribution Exponential(20), Erlang(4) 2 

Failure Distribution None; 
Time to Failure: Gamma(14400,1) 
Time to Repair: Gamma(2400,1.5)  

2 

Mean Utilization Level  0.3, 0.45, 0.7, 0.9 4 
Independent Demand Replications   5 

Simulation Replications per Release Plan  5 
 
We compare the performance of three different release planning procedures. The first two use the 

planning model (4) - (8) with the CFs obtained from the Unplanned Estimation and Iterative Refinement 
procedures. The final procedure, included as a benchmark, simply sets releases equal to demand for each 
period. As in Section 5, we generate 5 independent demand realizations for each level of mean utilization; 
a release schedule is generated for each demand replication, and its execution then simulated for 5 
independent replications to estimate the realized costs of each planning procedure. The planning model 
assumes a unit backordering cost of b = 50, a unit WIP holding cost of w = 6, and a finished goods 
inventory holding cost of h = 5. The values of these cost parameters will affect the releases produced by 
the planning model, and hence the fitting of the CF in the Iterative Refinement approach. 

6 RESULTS OF EXPERIMENTS 

 The results of the experiments are summarized in Figures 1 through 8 below. Figures 1 through 4 
compare the planning models with the three different CFs: the Best Case CF of Hopp and Spearman 
(2008), which represents the expected throughput of a deterministic system; the Unplanned CF obtained 
using the Unplanned Estimation procedure, and the Iterative CF obtained from the Iterative Refinement 
procedure. A consistent pattern emerges in these figures: Unplanned Estimation yields CFs that 
overestimate output at low workloads, and significantly underestimate it at higher workloads. In contrast, 
Iterative Refinement appears to exhibit high accuracy at lower workloads but to overestimate quite 
drastically at higher workloads. However, this initial impression is misleading, because the planning 
model will not allow high workloads that fall in the region where the CF is relatively flat; the marginal 
increase in output cannot offset the additional WIP costs. Hence the planning model will eliminate the 
regions where the CF from Iterative Refinement appears to have very poor accuracy, causing the system 
to operate in the region where its accuracy is highest. 

 

 
Figure 1: Estimated CF for Exp(20), No Failures. Figure 2: Estimated CF for Exp(20), Failures. 
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Figure 3: Estimated CF for Erlang (4), No Failures. Figure 4: Estimated CF for Erlang (4), Failures. 
  

Figures 5 through 8 show the expected costs obtained using the Unplanned and Iterative CFs, with the 
cost of a naive release policy that sets releases equal to demand in each period included as a baseline. In 
the absence of failures, there is no significant different in costs at the lower utilization levels of 0.32 and 
0.45. At u = 0.7, the Unplanned CF yields worse performance than the naive release policy; Iterative 
Refinement significantly outperforms Unplanned Estimation, but is not quite as good as the naive policy. 
At high utilization, however, Iterative Refinement outperforms both its competitors by a wide margin. 
This behavior is due to the fact that the planning model plans releases that keep the system operating in 
the area where the Iterative Refinement procedure provides the best fitting CF.  

 

Figure 5: Cost Comparison for Exp(20), No 
Failures. 

Figure 6: Cost Comparison for Exp(20), Failures. 

Figure 7: Cost Comparison for Erlang(4), No 
Failures. 

Figure 8: Cost Comparison for Erlang(4), Failures. 
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7 CONCLUSIONS AND FUTURE DIRECTIONS 

The results presented above are limited in scope and exploratory in nature, and hence must be treated with 
some caution. However, they suggest that significant improvements over the Unplanned Estimation 
procedure used to fit CFs in the literature to date are possible, and give some insight into why this is the 
case. The use of the planning model allows the Iterative Refinement procedure to obtain better fits in the 
region in which the production system will operate, effectively weighting observations in that region 
more heavily than in the Unplanned Estimation procedure. The Iterative Refinement procedure yields 
little benefit at low workloads, but results in considerably better cost performance at high utilization. We 
conjecture that the benefits of the Iterative Refinement procedure may actually be greater at utilization 
levels between 0.7 and 0.93. At low utilization, the system is generally capable of processing all work 
released. At very high utilization the system is running at the maximum utilization compatible with 
meeting demand, so there is little scope for improved decision making in a single-product system where 
product mix is not a concern. Intermediate utilization levels correspond to the regions in Figures 1 - 4 
where the curvature of the CF is highest, and hence an accurate fit is most important.  Further experiments 
on both single and multiproduct systems are needed to further explore this issue. 
 Theoretical results for transient queues (Ingolfsson et al. 2007; Schwarz et al. 2016) suggest that 
different functional forms may be appropriate for different workload levels. The use of specialized fitting 
techniques for piecewise linear functions (Magnani and Boyd 2009; Toriello and Vielma 2012) offers a 
promising future direction in this regard; different segments can be fitted for different regions to improve 
the overall fit, and the resulting piecewise linear functions can be implemented directly in the ACF model 
of Asmundsson et al. (2009), which yields a straightforward, albeit large, LP formulation.  

Finally, the approach adopted in this paper uses classical least squares regression to fit the selected 
functional form to data. However, the success of the ad hoc percentile fitting approach adopted in 
Asmundsson et al. (2009) suggests that a data-driven, risk-averse approach using an asymmetric loss 
function may be appropriate. The examination of such techniques and the formulation of appropriate loss 
functions might address some of the issues of biased estimates due to specific functional forms raised in 
Section 3.3, suggesting another interesting direction for future work. 
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