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ABSTRACT

In this paper we develop a heteroscedastic t-process metamodeling approach (TP) for approximating the
mean response surface implied by a stochastic simulation and performing metamodel-based optimization.
We provide details on how to construct a TP metamodel, make inference and perform prediction based on
TP. We show that TP can retain the attractive properties of approaches that rely on Gaussian processes,
but it also enjoys enhanced flexibility, at no additional computational cost. We further provide a closed-
form expression for the TP-based expected improvement to perform metamodel-based optimization. We
compare the predictive performance of TP and stochastic kriging (SK) via an M/M/1 inspired example, and
demonstrate the performance of TP and SK-based algorithms for optimizing a simple periodic review (s,S)
inventory system. The preliminary numerical evaluations indicate that TP can serve as a promising simulation
analytics tool for solving problems encountered in production planning and supply chain management.

1 INTRODUCTION

Many complex stochastic systems can be accurately modeled and further analyzed by simulation experiments.
In some situations, however, simulation models can be very expensive to run; and if there are many scenarios
to evaluate, computational cost quickly becomes prohibitive. Due to the lack of efficiency of such simulation
experiments, a metamodel is often built from the outputs of the simulation runs at some selected design
points to “map” the performance response surface as a function of the controllable decision variables, or
uncontrollable environmental variables. This metamodel can be used as an accurate, drop-in replacement
for the simulation model as if the simulation can be run “on demand” to support decision making in a
timely manner. Successful applications of simulation metamodeling have been recorded in many areas,
such as inventory control, resource planning in the emergency departments, optimization of energy systems
and financial risk management.

Simulation metamodeling has been used to solve problems encountered in production planning of
manufacturing systems and supply chain management. For instance, Yang (2010) studied the use of neural
network metamodeling for estimation of cycle time-throughput profiles in manufacturing systems; Song, Li,
and Garcia-Diaz (2008) performed polynomial regression metamodel-based optimization of a multi-echelon
supply chain via simulation; Mortazavi and Arshadi Khamseh (2014) proposed a simulation metamodel-
based framework for multi-objective robust optimization of an inventory system; and Dellino, Kleijnen,
and Meloni (2012) proposed a Taguchian robust optimization approach based on kriging metamodels and
applied it to solve an inventory control problem. Our work will contribute to this line of research by
providing a new robust metamodeling tool.

Commonly used metamodeling methods include polynomial regression, splines, radial basis functions,
neural networks, and Gaussian process (GP) models, to name a few (Barton and Meckesheimer 2006).
Among them, GP models have been recognized as the most widely adopted analytics tool with impressive
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empirical performance in real-world applications. One primary reason for GP’s popularity is that it
unites sophisticated and consistent theoretical investigations with computational tractability (Rasmussen
and Williams 2006).

Recent literature has highlighted the benefits of using alternative models instead of GP models, e.g., to
achieve high robustness against outliers in both input and output spaces and heavy-tailed observation noise.
One of such early attempts is to use a Student-t observation model in GP regression (GPR) by Neal (1997).
Assuming that the observation noise terms have a joint multivariate Student-t distribution while using a
GP to model the underlying mean function, this line of work focuses on making the GP models more
robust with a Student-t likelihood (see, e.g., Jylänki, Vanhatalo, and Vehtari 2011). The main challenge,
however, is that the resulting inference is no longer analytically tractable and approximative inference
methods have to be used. Another stream of work assumes that not only observation noise/error terms
are multivariate t-distributed but the underlying mean function is generated by a t-process as well. Such a
modeling perspective is considered “perhaps not as exciting as one might have hoped” by Rasmussen and
Williams (2006) since the t distribution is not closed under addition, and nice properties of GPR models
such as analytically tractable inference are lost.

With a deeper understanding of properties of t distribution, t process and elliptical processes at large
(Arellano-Valle and Bolfarine 1995; Girón and del Castillo 2010; Kotz and Nadarajah 2004; Roth 2013),
research in the field has taken significant strides over the past decade—analytical and computational
tractability has been shown to hold for some t-process models that are constructed hierarchically (Zhang
and Yeung 2010; Shah, Wilson, and Ghahramani 2014; Wang, Shi, and Lee 2015). Inspired by the
extended t-process regression models developed by Wang, Shi, and Lee (2015), in this paper we propose
the heteroscedastic t-process metamodeling approach (TP) for stochastic simulation metamodeling. We
show that TP is closed under addition and it retains many desirable properties as GP models do. In particular,
the inference procedure for TP metamodels is relatively simple and a slight modification of the existing
algorithms for a GP model (e.g., stochastic kriging) would suffice. Furthermore, we derive closed-form
expressions that specify the predictive distributions and the expected improvement based on TP.

The remainder of this paper is organized as follows. Section 2 provides a detailed review of the extended
t-process regression models. Section 3 establishes the heteroscedastic t-process (TP) metamodeling approach,
by providing details on performing prediction, parameter estimation and metamodel-based optimization
using TP. Section 4 presents numerical examples that demonstrate the performance of TP relative to
stochastic kriging (Ankenman, Nelson, and Staum 2010) with respect to mean function estimation and
metamodel-based optimization. Section 5 concludes this paper.

2 A REVIEW ON EXTENDED T -PROCESS REGRESSION MODELS

Consider the following hierarchical process to model Y, a real-valued function such that Y : X ⊂Rd→R.

Y|r ∼ GP(µ,rRM), r ∼ IG(ν ,ω),

where GP(µ,rRM) represents a Gaussian process with mean function µ and covariance function rRM,
with RM denoting a kernel function which is equivalent to a covariance function used by, e.g., Santner,
Williams, and Notz (2003). For instance, RM(xi,x`) = τ2 exp

(
∑

d
j=1 θ j

(
xi j− x` j

)2
)

, with the θ j’s and τ2

being the hyperparameters. IG(ν ,ω) denotes an inverse gamma distribution parameterized by two positive
parameters ν and ω , and the corresponding density function is

g(r) =
ων

Γ(ν)
r−ν−1 exp

(
−ω

r

)
, r > 0

and Γ(·) is the gamma function. It turns out that Y follows an extended t-process (Wang, Shi, and Lee 2015),
that is, Y ∼ ET P(ν ,ω,µ,RM). This implies that for any collection of a finite number of points in X ,
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say, Xk = (x1,x2, . . . ,xk)
>, we have that Y(Xk) := (Y(x1),Y(x2), . . . ,Y(xk))

> has an extended multivariate
t-distribution (EMTD), namely,

Y(Xk)∼ EMTDk (ν ,ω,µ(Xk),ΣM) ,

with the following density function

p(z) = |2πωΣM|−
1
2

Γ( k
2 +ν)

Γ(ν)

(
1+

(z−µ(Xk))
>Σ
−1
M (z−µ(Xk))

2ω

)−( k
2+ν)

, (1)

with µ(Xk) = (µ(x1), . . . ,µ(xk))
>, ΣM = (RM(xi,x j))k×k. We have that E(Y(Xk)) = µ(Xk) when ν > 1/2

and Cov(Y(Xk)) = ωΣM/(ν−1) when ν > 1. Following Lee and Nelder (2006) and Wang, Shi, and Lee
(2015), from Section 3 and on we set ω = ν−1 so that the covariance matrix Cov(Y(Xk)) = ΣM and does
not depend on ν . In this case, the mean and variance-covariance matrix of an ETMD take the same form
as those of a multivariate normal distribution.

The following properties of EMTD are crucial for the development of the heteroscedastic t-process
metamodeling approach detailed in Section 3.
Proposition 1 (Wang, Shi, and Lee 2015). Let Z ∈ X be a k× 1 random vector such that Z ∼
EMTDk(ν ,ω,µz,Σz).

(a) For any matrix A ∈ R`×k with rank `≤ p, AZ∼ EMTD`(ν ,ω,Aµz,AΣzA>).
(b) Write Z =

(
Z>1 ,Z>2

)> where the dimensions of Z1 and Z2 are respectively k1×1 and k2×1 such

that k1 + k2 = k. Also write µz =
(
µ>z1

,µ>z2

)> and

Σz =

(
Σz11 Σz12

Σ>z12
Σz22

)
.

Then it follows that

Z1 ∼ EMTDk1(ν ,ω,µz,Σz11), Z2|Z1 = z1 ∼ EMTDk2(ν
∗,ω∗,µ∗z2

,Σ∗z22
),

where ν∗ = k1/2+ν , ω∗ = k1/2+ω , µ∗z2
= Σ>z12

Σ−1
z11
(z1−µz1)+µz2 , and

Σ
∗
z22

=
(

2ω +(z1−µz1)
>

Σ
−1
z11
(z1−µz1)

)
Σ̃z22/(2ω + k1)

with Σ̃z22 = Σz22−Σ>z12
Σ−1

z11
Σz12 .

3 A HETEROSCEDASTIC T -PROCESS SIMULATION METAMODELING APPROACH

3.1 Basic Setup for the Heteroscedastic T -Process Simulation Metamodeling Approach

Consider the following model for a random simulation output obtained at a design point x ∈X ⊂ Rd ,

Y (x) = Y(x)+ ε(x) = f(x)>β +M(x)+ ε(x), (2)

where Y(x) represents the true mean simulation response at x, f(·) denotes a p× 1 vector of known
regression functions, and β denotes a p×1 vector of unknown parameters. Let us assume that M(·) and
ε(·) have a joint extended t-process,(

M
ε

)
∼ ET P

(
ν ,ν−1,

(
0
0

)
,

(
rRM 0

0 rRε

))
, (3)
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and ε(x) denotes the simulation noise incurred at x and Rε represents the noise kernel function satisfying
Rε(x,x′) = 0 if x 6= x′, and Rε(x,x) = V(x). As described in Subsection 2, such a joint ETP can be
constructed hierarchically as(

M
ε

)∣∣∣r ∼ GP
((

0
0

)
,r
(

RM 0
0 Rε

))
and r ∼ IG(ν ,ν−1).

By properties of extended t-process, we have Y = Y+ ε ∼ ET P(ν ,ν−1, f(·)>β ,RM +Rε). Therefore,
similar to GP, additivity and many other properties can be shown to hold for ETP.

Let us consider a simulation experimental design that consists of {(xi,ni), i = 1,2, . . . ,k}. That is,
running ni simulation replications at xi ∈X ⊆ Rd that results in independent and identically distributed
(i.i.d.) simulation outputs {Y j(xi)}ni

j=1, i = 1,2, . . . ,k. Suppose model (2) and its related discussion can be
used to describe the random simulation output generated on the jth simulation replication at design point
xi, that is,

Y j(xi) = Y(xi)+ ε j(xi), j = 1,2, . . . ,ni; i = 1,2, . . . ,k. (4)

Let the k× 1 vector of sample average simulation responses be Ȳ (Xk) =
(
Ȳ (x1), Ȳ (x2), . . . , Ȳ (xk)

)>
with Ȳ (xi) = ∑

ni
j=1 Y j(xi)/ni, and use ε̄ as a shorthand for the k×1 vector of average simulation noise,

ε̄(Xk) = (ε̄(x1), ε̄(x2), . . . , ε̄(xk))
>, where ε̄(xi) = ∑

ni
j=1 ε j(xi)/ni, for i = 1,2, . . . ,k; Y(Xk) is defined in a

similar fashion as Ȳ (Xk) and ε̄(Xk). It then follows from Proposition 1 given in Subsection 2 that

Y(Xk) ∼ EMTDk (ν ,ν−1,Fβ ,ΣM(Xk)) ,

Ȳ (Xk)|Y(Xk) ∼ EMTDk (ν ,ν−1,Y(Xk),Σε(Xk)) ,

Ȳ (Xk) ∼ EMTDk(ν ,ν−1,Fβ ,Σ(Xk)), (5)

where the k× p model matrix F of full rank is given by F =
(
f(x1)

>, f(x2)
>, . . . , f(xk)

>)>, and the
k× k matrix Σ(Xk) is defined as Σ(Xk) = ΣM(Xk)+Σε(Xk), with ΣM being the k× k covariance matrix
whose (i,h)th entry ΣM(xi,xh) is given by Cov(M(xi),M(xh)) for i,h = 1,2, . . . ,k; and similar to stochastic
kriging (Ankenman, Nelson, and Staum 2010), the intrinsic variance-covariance matrix is given by Σε(Xk) =
diag{V(x1)/n1,V(x2)/n2, . . . ,V(xk)/nk}. The following result sheds some light on an important relationship
between ETP and GP, the proof of which can be given following that of Lemma 2 in Shah, Wilson, and
Ghahramani (2014).
Lemma 1. EMTDk(ν ,ν−1,µ(Xk),Σ(Xk)) converges to N (µ(Xk),Σ(Xk)) as ν → ∞.

3.2 Prediction via the Heteroscedastic T -Process Metamodeling Approach

For a given prediction point x0 ∈X , the following holds(
Ȳ (Xk)
Y(x0)

)
∼ EMTDk+1

(
ν ,ν−1,

(
Fβ

f(x0)
>β

)
,

(
Σ(Xk) ΣM(Xk,x0)

ΣM(Xk,x0)
> ΣM(x0,x0)

))
, (6)

where ΣM(Xk,x0) denotes the k×1 vector of spatial covariances between Y(x0) and Y(xi) for i = 1,2, . . . ,k.
Let the data set obtained from running a simulation experiment following the design {(xi,ni), i = 1,2, . . . ,k}
be Dk = {xi,{Y j(xi)}ni

j=1, i = 1,2, . . . ,k}. Assuming that all hyperparameters are known, it can be
shown via arguments in light of Zellner (1976), Wang, Shi, and Lee (2015) and Section 3.3.1 of
Santner, Williams, and Notz (2003) that the predictive distribution at x0 can be given as Y(x0)|Dk ∼
EMTD1

( k
2 +ν , k

2 +ν−1,µ∗(x0),σ
2
∗ (x0)

)
, where

µ∗(x0) = ΣM(Xk,x0)
>

Σ(Xk)
−1
(
Ȳ (Xk)−Fβ̂

)
+ f(x0)

>
β̂ , (7)
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σ
2
∗ (x0) = s(Xk)

(
ΣM(x0,x0)−ΣM(Xk,x0)

>
Σ(Xk)

−1
ΣM(Xk,x0)+η(x0)

>
(

F>Σ(Xk)
−1F

)−1
η(x0)

)
, (8)

with η(x0) = f(x0)−ΣM(Xk,x0)
>Σ(Xk)

−1F, and β̂ =
(
F>Σ(Xk)

−1F
)−1 F>Σ(Xk)

−1Ȳ (Xk) is the general-
ized least squares estimator of β ; furthermore,

s(Xk) =
2(ν−1)+

(
Ȳ (Xk)−Fβ̂

)> (
AΣ(Xk)A>

)−1
(
Ȳ (Xk)−Fβ̂

)
2(ν−1)+ k

,

with A = Ik−F
(
F>Σ(Xk)

−1F
)−1 F>Σ(Xk)

−1 and Ik being the k× k identity matrix.
In particular, the predictive distribution at the k design points, Y(Xk)|Dk, is given by EMTDk(

k
2 +

ν , k
2 +ν−1,µ∗(Xk),σ

2
∗ (Xk), where

µ∗(Xk) = ΣM(Xk,Xk)
>

Σ(Xk)
−1
(
Ȳ (Xk)−Fβ̂

)
+Fβ̂ , (9)

σ
2
∗ (Xk) = s(Xk)

(
ΣM(Xk)

>
Σ(Xk)

−1
Σε +η(Xk)

>
(

F>Σ(Xk)
−1F

)−1
η(Xk)

)
. (10)

We make the following comments on the predictive distribution for Y(x0)|Dk. First, one feature that
distinguishes TP-based metamodeling prediction from the GP-based is that the predictive variance given
in (8) for Ŷ(x0) increases with the misfit at the design points via s(Xk), whereas the GP-based predictive
variance does not depend on the fit at the design points. Second, the predictive mean given in (7) shares
the common form with the GP-based predictive mean, which is unbiased for predicting Y(x0); yet the GP
and TP-based predictive variances differ and the latter one depends on the parameter ν . Third, we see from
(9) that if there were no simulation errors at the design points, TP-based approach would interpolate at
each of the design point as kriging does and the predictive covariance matrix would be a matrix of zeros.

3.3 Parameter Estimation for the Heteroscedastic T -Process Metamodel

The log-likelihood function for Ȳ (Xk) can be given based on (1) and (5) as follows,

L (Ȳ (Xk)|ν ,Ψ) = −k
2

log(2π(ν−1))− 1
2

log |Σ(Xk)|+ log(Γ(
k
2
+ν))− log(Γ(ν))

−
(

ν +
k
2

)
log
(

1+
(Ȳ (Xk)−Fβ )>Σ(Xk)

−1(Ȳ (Xk)−Fβ )

2(ν−1)

)
, (11)

where Ψ entails all the hyperparameters in the spatial covariance kernel RM, and given Ψ the MLE of
β is the generalized least squares estimate β̂ = β̂ (Ψ). Upon substituting the sample variance-covariance
matrix Σ̂ε into Σ(Xk) as done by Ankenman, Nelson, and Staum (2010) and Chen and Kim (2014) for
stochastic kriging, the parameter estimates can be obtained via maximum likelihood estimation by using
the derivative of (11) with respective to each parameter in Ψ. Specifically, the derivative with respect to a
given parameter Ψi can be obtained analytically as follows

∂

∂Ψi
L (Ȳ (Xk)|ν ,Φ,µ) =

1
2

Tr
((

(k+2ν)αkα>k
2(ν−1)+ γk

−Σ(Xk)
−1
)

∂Σ(Xk)

∂Ψi

)
, (12)

where αk = Σ(Xk)
−1(Ȳ (Xk)−Fβ ) and γk = (Ȳ (Xk)−Fβ )>Σ(Xk)

−1(Ȳ (Xk)−Fβ ) ∂Σ(Xk)
∂Ψi

. Notice that
ν is not estimable as argued in Wang, Shi, and Lee (2015) and Lee and Nelder (2006). Hence, we fix the
value of ν while performing the maximum likelihood estimation of the hyperparameters.
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3.4 Optimization via the Heteroscedastic T -Process Metamodeling Approach

Efficient global optimization (EGO) is a well-known GP-based sequential algorithm proposed for uncon-
strained optimization in the context of deterministic computer experiments by Jones, Schonlau, and Welch
(1998). In each iteration, EGO selects a new point to evaluate the computer model via the expected im-
provement criterion (EI). The new point selected provides the maximum expected improvement in objective
function value when compared to the best point that has been found so far. Over the past decades, various
GP-based sequential optimization algorithms have been proposed in the stochastic simulation setting, see,
e.g., Huang et al. (2006), Quan et al. (2013), Picheny et al. (2013) and Liu, Pedrielli, and Ng (2014).
Most of these algorithms are variants of the classic EI criterion, which can be written (for minimization
problems) as

EI(x;D) = E(max(Ymin−Y(x),0)|D)

= (Ymin−µ(x))Φ

(
Ymin−µ(x)√

σ2(x)

)
+
√

σ2(x)φ

(
Ymin−µ(x)√

σ2(x)

)
, (13)

where D denotes the set of experiment results collected up to the current iteration, and Ymin = minXY(xi)
represents the optimal objective function value obtained over X, consisting of points xi’s evaluated up to
the current iteration. The predictive mean and variance at an arbitrary point x given by a GP approach
adopted are respectively denoted by µ(x) and σ2(x); and Φ(·) and φ(·) denote the cumulative distribution
function (CDF) and probability density function (PDF) of the standard normal distribution, respectively.

Recently, it has been reported by Shah, Wilson, and Ghahramani (2014) that a Student-t process-based
sequential optimization approach using its corresponding EI criterion can be a superior choice to its GP
counterpart for deterministic computer experiments. Inspired by Shah, Wilson, and Ghahramani (2014),
we can derive the expression of TP-based EI at a given point x as follows

EI(x;D) = E
(

max(Ŷmin−Y(x),0)|D
)

=
∫ Ŷmin

−∞

Ŷmin−u√
σ2
∗ (x)

λ(ν+ k
2 ,0,1)

(
u−µ∗(x)√

σ2
∗ (x)

)
du

= γ(x)
∫

γ(x)

−∞

√
σ2
∗ (x)λ(ν+ k

2 ,0,1)
(t)dt−

√
σ2
∗ (x)

∫
γ(x)

−∞

tλ(ν+ k
2 ,0,1)

(t)dt

= γ(x)
√

σ2
∗ (x)Λ(ν+ k

2 ,0,1)
(γ(x))+

√
σ2
∗ (x)

(
1+

γ(x)2−1
2ν + k−1

)
λ(ν+ k

2 ,0,1)
(γ(x)), (14)

where in the setting of stochastic simulation Ŷmin denotes the predicted minimum over X (see details on
how to obtain Ŷmin in Subsection 4.2.2), γ(x) =

(
Ŷmin−µ∗(x)

)
/
√

σ2
∗ (x), with µ∗(x) and σ2

∗ (x) being
the predictive mean and variance at x given by (7) and (8), respectively; λ(ν ,µ,σ2) and Λ(ν ,µ,σ2) denote the
PDF and CDF of EMTD1(ν ,ν−1,µ,σ2), respectively. A TP-based sequential algorithm can be developed
based on (14) for solving a stochastic simulation optimization problem.

Notice that EMTD (as specified by the density form given in (1)) with different combinations of ν and
ω used in fact corresponds to various multivariate t distributions studied in the literature (Wang, Shi, and
Lee 2015). In particular, EMTD1(

ν

2 ,
ν

2 −1,µ,σ2) corresponds to the form of MV T1(ν ,µ,σ
2) proposed by

Shah, Wilson, and Ghahramani (2014) and EMTD1(
ν

2 ,
ν

2 ,µ,σ
2) is equivalent to the form of multivariate t

distribution St1(ν ,µ,σ2) used by Roth (2013), Rasmussen and Williams (2006) and MATLAB. Therefore,
(14) derived above can be easily utilized for optimization if other t-process based approaches are adopted.
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4 NUMERICAL EXAMPLES

Through two numerical examples, in this section we compare the TP metamodeling approach with one
popular simulation metamodeling approach, i.e., stochastic kriging (SK), with respect to mean response
surface prediction and metamodel-based simulation optimization.

4.1 An M/M/1 Inspired Example

Let us consider estimating the steady-state mean number in an M/M/1 queue with service rate 1 and arrival
rate x varying in X = [0.3,0.9]. It is known that the steady-state mean number of customers in an M/M/1
queue with service rate 1 and arrival rate x is x/(1−x), for x ∈ (0,1). If a simulation replication is initiated
at time 0 in steady state given the arrival rate x, then the average number of customers in system during the
first T time units is an unbiased estimator for Y(x), and its variance is approximately 2x(1+x)/(T (1−x)4)
for large T (Whitt 1989).

We consider the following M/M/1 inspired example. The simulated response on each replication at
a point x is generated as Y j(x) = Y(x)+ ε j(x), with ε j(x)’s being i.i.d. N (0,V(x)) random variables,
where Y(x) = x/(1−x) and V(x) = 2x(1+x)/(T (1−x)4) with x ∈ [0.3,0.9] and T = 1000. Notice that the
simulation variance increases explosively with x which makes the prediction task considerably challenging.

The design-point set consists of k design points in [0.3,0.9] and we consider varying k ∈ {7,25}. A total
simulation budget N is allocated to the k design points and we want to evaluate the predictive performance
of TP and SK by varying N ∈ {500,2000}. A simulation experiment is performed with a total simulation
budget of N replications to expend at k distinct design points, with ni simulation replications assigned at
design point xi, for i = 1,2, . . . ,k. Two budget allocation schemes, i.e., the equal and unequal allocations,

are considered. Specifically, the unequal budget allocation scheme sets ni =
⌈ √

V(xi)

∑
k
i=1

√
V(xi)

N
⌉

, while under

the equal allocation scheme ni = dN/ke is used; and dae denotes the least integer not less than a. The
entire experiment is repeated for 100 independent macro-replications, and the corresponding performance
measure, the empirical root mean squared errors (ERMSE), is calculated as follows,

ERMSE` =

√
1
K

K

∑
i=1

(
Ŷ`(xi)−Y(xi)

)2
, `= 1,2, . . . ,100, (15)

where Ŷ`(·) represents the prediction given by TP on the `th macro-replication; K represents the number
of prediction points and K = 193.

Table 1: Summary of ERMSEs obtained for the M/M/1 inspired example.

(k,N) (7,500) (25,500) (7,2000) (25,2000)

Equal allocation
SK

0.27
(0.01)

0.35
(0.01)

0.154
(0.005)

0.180
(0.007)

TP
0.22

(0.01)
0.24

(0.01)
0.167

(0.006)
0.133

(0.006)
ν 25 1.25 25 1.75

Unequal allocation
SK

0.188
(0.005)

0.146
(0.004)

0.168
(0.004)

0.079
(0.002)

TP
0.196

(0.006)
0.122

(0.004)
0.172

(0.004)
0.065

(0.002)
ν 25 21 25 11.5

Summary of results. The mean and standard error of 100 ERMSEs obtained by SK and TP under different
(k,N) settings are shown in Table 1 (with standard error given in parentheses). For implementing the
proposed TP approach under each (k,N) setting, we have varied the values of ν from 1.25 to 25 to investigate
the impact of ν on TP’s predictive performance. It is observed that the mean ERMSE achieved by TP
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gets closer to that of SK as ν becomes larger, which is consistent with Lemma 1. The value of ν shown
in Table 1 under each (k,N) setting is the one used by TP to obtain the minimum mean ERMSE across
the 100 macro-replications. From these ν values, we observe that the minimum mean EMSRE is typically
obtained with ν = 25 for a sparse design (i.e., k = 7) whereas for a dense design (i.e., k = 25) the minimum
ERMSEs are achieved with smaller ν values. Regarding the predictive performance of TP as compared to
SK, we observe that TP outperforms SK when a dense design is used, regardless of the budget allocation
scheme adopted. On the other hand, SK tends to outperform TP when the design is sparse (i.e., k = 7) and
especially when the unequal allocation scheme is used.

4.2 A Periodic Review Inventory System

In this subsection we demonstrate the performance of TP and SK-based algorithms for optimizing a simple
periodic review (s,S) inventory system.

4.2.1 The Model: Dynamics and Simulation

The system is assumed to have i.i.d. continuous demands, zero lead times, full backlogging, and linear
ordering, holding and shortage costs. The scenario considered here is similar to that discussed in Fu and
Healy (1997), from which much of this example is constructed. Let Xi be the inventory position (inventory
level plus outstanding orders in period i) and Wi be the inventory level (on-hand minus on backorder). The
assumption of zero lead times gives Xi =Wi. The (s,S) inventory system works as follows. If Xi is below s
units, an order of amount (S−Xi) will be made and a fixed ordering cost K and a purchase cost c(S−Xi)
will be incurred. The inventory holding cost and shortage cost are also taken into account. The demand
in period i,Di, has distribution function FD(·), which is absolutely continuous with density function fD(·);
denote the mean demand by E[D]. The one-period cost is the sum of ordering, holding and backorder costs
as follows

Ji = 1{Xi < s}(K + c(S−Xi))+hmax{0,Wi}+ pmax{0,−Wi},

and the quantity of interest is the long-run average cost per period

J = lim
n→∞

Jn, and Jn =
1
n

n

∑
i=1

Ji.

Define δ = S−s and let λ = 1/E[D]. Consider the two-dimensional problem of estimating the unknown
response J(δ ,s) at a given point (δ ,s). If the demands are i.i.d. exponentially distributed with mean E[D],
then the following analytic expressions for the long-run average cost and the optimal solutions can be
obtained

J(δ ,s) = cE[D]+
K +h(s−E[D]+λδ (s+δ/2))+(h+ p)E[D]e−λ s

1+λδ
, (16)

δopt =
√

2K/λh, sopt =−E[D] ln

(
h+
√

2Khλ

h+ p

)
,

where λ = 1/E[D].

4.2.2 Experimental Design, Optimization Algorithms and Results

Experimental design. The design space is set as Ωδ ×Ωs = [100,300]× [200,500]. The initial design is a
‘maximin’ Latin Hypercube sample of 20 design points. The list of parameters used are shown in Table 2.
TP and SK-based metamodeling approaches are examined under both low (N = 1000) and high (N = 5000)
budget schemes. Under a given budget scheme with N simulation replications to expend, the optimization
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Table 2: Parameters for the (s,S) inventory system.

E[D] c p K h
200 1 10 100 1

process starts with running n0 simulation replications at each of the 20 design points in the initial design.
In each simulation replication, the run length of T = 1000 is used to estimate the response J(δ ,s) at a given
point (δ ,s). Pretending that we have little information about the true response surface, a constant trend
model f>(δ ,s)β = β0 is used; we fit initial TP and SK metamodels using maximum likelihood estimation.
In each subsequent iteration, ∆n replications are allocated to each point selected from the candidate solution
set Xtot, which consists of 2500 regularly spaced points in Ωδ ×Ωs; and the TP and SK metamodels are
updated correspondingly. We choose to set n0 = ∆n∈ {25,50,100,125} under the high budget scheme, and
n0 = ∆n ∈ {5,10,20,25} under the low budget scheme. This results in 4 distinct experiment configurations
under either budget scheme.
Optimization algorithms. In this paper we focus on examining the performance of TP and SK-based EI
and augmented expected improvement (AEI, Huang et al. 2006) algorithms. We next elaborate on the two
selection criteria used by EI and AEI algorithms. Notice that below x is used to denote (δ ,s) for notational
convenience.

Selection criterion. In each iteration, the EI (respectively, AEI) algorithm selects the point in Xtot that
maximizes EI (resp., AEI) specified below to perform simulation runs in the next iteration. Take SK for
example. At x ∈ Xtot, we have

• EI(x) =
(
Ŷmin−µ(x)

)
·Φ
(

(Ŷmin−µ(x)√
σ2(x)

)
+
√

σ2(x)φ
(

Ŷmin−µ(x)√
σ2(x)

)
, where Φ(·) and φ(·) denote the

CDF and PDF of the standard normal distribution, respectively; the predictive mean and variance at
x given by SK are respectively denoted by µ(x) and σ2(x); and Ŷmin = µ(x∗) with x∗ denoting the
current effective best point found by the minimum-mean-response identification criterion specified
below.

• AEI(x) = EI(x) ·
(

1−
√

V(x)√
σ2(x)+V(x)

)
, where V(x) is the sampling variance at x.

Identification criterion. By the end of each iteration, the current effective best point is chosen as
x∗ = argminx∈X q(x), with X representing the set of points that have been evaluated up to the current
iteration; and q(·) is specified according to the following two criteria. Specifically,

• the minimum-mean-response criterion uses q(x) = Ȳ (x) for x ∈ X; and
• the minimum-predictive-quantile criterion adopts q(x) = µ(x)+Φ−1(α)

√
σ2(x) with α ∈ [0.5,1].

In our implementation Φ−1(α) = 1 is used following Huang et al. (2006)’s suggestion.

For TP-based EI and AEI algorithms, the selection and identification criteria can be specified in a similar
fashion by using the expression of EI given in (14) and relevant quantities defined for ETMD. We note
that to implement the TP-based (respectively, SK-based) AEI algorithm, a TP (resp., kriging) metamodel
with nugget effect is built for estimating the variance function V(·).

We apply the SK and TP-based EI and AEI algorithms, with each algorithm implemented under each
experiment configuration for 100 independent macro-replications. To implement the TP-based algorithms,
we set ν to 1.25 so that TP can behave as differently from SK as possible. Two measures are used to
evaluate the performance of each algorithm, namely, the X distance and Y distance. Let xopt = (δopt,sopt)
denote the true optimal solution. The X distance refers to the Euclidean distance between x∗∗ returned by
a given algorithm according to an identification criterion adopted and xopt, whereas Y distance is given by
the discrepancy between the true objective function values at x∗∗ and xopt, |J(x∗∗)− J(xopt)|.
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Inspired by Jalali, Nieuwenhuyse, and Picheny (2017), we also examine the identification ability of each
algorithm. Specifically, by the end of sequential iterations under each experiment configuration, instead
of applying either identification criterion given above, the true best point x among the set of evaluated
points by each algorithm is returned as the final solution, assuming that the true objective function given in
(16) is known. The X and Y distances achieved in this case are referred to as being obtained with perfect
identification, in contrast to those obtained without using the knowledge of the true objective function.

(a) X Distance: obtained without perfect identification (b) X distance: obtained with perfect identification

(c) Y distance: obtained without perfect identification (d) Y distance: obtained with perfect identification

Figure 1: Summary of performance of TP and SK-based algorithms under the high budget scheme.

Summary of results. The X and Y distances achieved by each algorithm with various ∆n under the high
budget scheme are shown in Figure 1. For the low budget scheme, we comment without showing details to
economize on space. The following observations can be made. First, significant identification gaps exist
for all algorithms under all experiment configurations examined. More specifically, under the high budget
scheme shown in Figure 1, a comparison of (a) with (b) and (c) with (d) clearly shows that the X and Y
distances achieved by a given algorithm with perfect identification are much smaller. Similar comments
apply to results obtained under the low budget scheme. Furthermore, we note without showing details that
these algorithms have selected promising points yet they fail to return the best point evaluated as the final
solution. Second, we observe that under all experiment configurations, AEI algorithms outperform their EI
counterparts, regardless which metamodeling approach is used and whether perfect identification is in effect.
This observation confirms those reported earlier in the literature (e.g., Picheny and Ginsbourger 2014); and
it is due to the fact that AEI algorithms tend to select more distinct points than their EI counterparts.

Under the high budget scheme, we see from Figure 1 that TP-based algorithms outperform the SK-based
ones when ∆n is relatively low (i.e., when ∆n = 25 and 50) without perfect identification, yet the reverse
holds true when ∆n is relatively high (i.e., ∆n = 100 and 125). Under the low budget scheme, we observe
that when ∆n is relatively low (i.e., ∆n = 5,10 and 20), the SK-based EI algorithm performs slightly
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better than its TP counterpart without perfect identification, and the SK-based AEI algorithm performs
slightly worse than its TP counterpart. However, when ∆n = 25, TP-based algorithms are comparable to
the SK-based ones, if not much better.

In summary, we find that when ∆n is moderately high and a sufficiently large number of iterations
is permitted under a given total budget, TP-based algorithms can outperform their SK counterparts. In
other cases, however, superiority of TP-based algorithms over their SK-based counterparts has not been
observed. Furthermore, we reach a similar conclusion as that mentioned by Jalali, Nieuwenhuyse, and
Picheny (2017) regarding the performance of all kriging-based algorithms for simulation optimization: All
SK and TP-based algorithms examined suffer from the identification problem.

5 CONCLUSION

In this paper we have developed a heteroscedastic t-process metamodeling approach (TP) for approximating
the mean response surface implied by a stochastic simulation and performing metamodel-based optimization.
The preliminary numerical evaluations indicate that TP can serve as a promising simulation analytics tool
for solving problems encountered in production planning and supply chain management. In particular, TP
can outperform stochastic kriging in terms of prediction and optimization when a dense design is used with
a sufficiently large mount of simulation effort being allocated to each point.

ACKNOWLEDGMENT

This work was partially supported by the Virginia Tech ICTAS Junior Faculty Award.

REFERENCES

Ankenman, B. E., B. L. Nelson, and J. Staum. 2010. “Stochastic Kriging for Simulation Metamodeling”.
Operations Research 58:371–382.

Arellano-Valle, R. B., and H. Bolfarine. 1995. “On Some Characterizations of the t-Distribution”. Statistics
& Probability Letters 25:79–85.

Barton, R. R., and M. Meckesheimer. 2006. “Chapter 18 Metamodel-Based Simulation Optimization”.
In Simulation, edited by S. G. Henderson and B. L. Nelson, Handbooks in Operations Research and
Management Science Vol. 13, 535–574. Oxford, UK: Elsevier.

Chen, X., and K. Kim. 2014. “Stochastic Kriging with Biased Sample Estimates”. ACM Transactions on
Modeling and Computer Simulation 24:8/1–8/23.

Dellino, G., J. P. C. Kleijnen, and C. Meloni. 2012. “Robust Optimization in Simulation: Taguchi and
Krige Combined”. INFORMS Journal on Computing 24:471–484.

Fu, M. C., and K. J. Healy. 1997. “Techniques for Simulation Optimization : An Experimental Study on
an (s,S) Inventory System”. IIE Transactions 29:191–199.

Girón, F. J., and C. del Castillo. 2010. “The Multivariate Behrens Fisher Distribution”. Journal of Multivariate
Analysis 101:2091–2102.

Huang, D., T. T. Allen, W. I. Notz, and N. Zeng. 2006. “Global Optimization of Stochastic Black-Box
Systems via Sequential Kriging Metamodels”. Journal of Global Optimization 34:441–466.

Jalali, H., I. V. Nieuwenhuyse, and V. Picheny. 2017. “Comparison of Kriging-Based Algorithms for Simula-
tion Optimization with Heterogeneous Noise”. European Journal of Operational Research 261:279–301.

Jones, D. R., M. Schonlau, and W. J. Welch. 1998. “Efficient Global Optimization Expensive Black-Box
Functions”. Journal of Global Optimization 21:455–492.

Jylänki, P., J. Vanhatalo, and A. Vehtari. 2011. “Robust Gaussian Process Regression with a Student-t
Likelihood”. Journal of Machine Learning Research 12:3227–3257.

Kotz, S., and S. Nadarajah. 2004. Multivariate t Distributions and Their Applications. Cambridge: Cambridge
University Press.

3252



Xie and Chen

Lee, Y., and J. A. Nelder. 2006. “Double Hierarchical Generalized Linear Models (With Discussion)”.
Journal of the Royal Statistical Society: C (Applied Statistics) 55:139–185.

Liu, C., G. Pedrielli, and S. H. Ng. 2014. “eTSSO: Adaptive Search Method for Stochastic Global
Optimization under Finite Budget”. Working paper, Department of Industrial & Systems Engineering,
National University of Singapore.

Mortazavi, A., and A. Arshadi Khamseh. 2014. “Robust Inventory System Optimization Based on Simulation
and Multiple Criteria Decision Making”. Modelling and Simulation in Engineering 2014:1–17.

Neal, R. M. 1997. “Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and
Classification”. Technical report, University of Toronto, Department of Statistics and Department of
Computer Science.

Picheny, V., and D. Ginsbourger. 2014. “Noisy Kriging-Based Optimization Methods: A Unified Imple-
mentation within the Diceoptim Package”. Computational Statistics and Data Analysis 71:1035–1053.

Picheny, V., D. Ginsbourger, Y. Richet, and G. Caplin. 2013. “Quantile-Based Optimization of Noisy
Computer Experiments with Tunable Precision”. Technometrics 55:2–13.

Quan, N., J. Yin, S. H. Ng, and L. Lee. 2013. “Simulation Optimization via Kriging: A Sequential Search
Using Expected Improvement with Computing Budget Constraints”. IIE Transactions 45:763–780.

Rasmussen, C., and C. K. I. Williams. 2006. Gaussian Processes for Machine Learning. New York: MIT
Press.

Roth, M. 2013. “On the Multivariate t Distribution”. Technical report, Linköpings universitet, Department
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