
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

A MODULARIZED SIMULATION FOR TRAFFIC NETWORK IN CONTAINER TERMINALS
VIA NETWORK OF SERVERS WITH DYNAMIC RATES

Chenhao Zhou
Loo Hay Lee

Ek Peng Chew

Dept. of Industrial Systems Engineering & Management
National University of Singapore

1 Engineering Drive 2
117576 SINGAPORE

Haobin Li

Department of Computing Science
Institute of High Performance Computing

A*STAR Singapore
1 Fusionopolis Way, #16-16 Connexis

138632 SINGAPORE

ABSTRACT

There are many design factors affecting the traffic efficiency in an automated container terminal. The
traffic efficiency is also dynamically influenced by the nature of the job sequence in the specific container
terminal, the number of vehicles deployed, and the respective yard planning strategies. Therefore, it is
difficult to analyze such complexity using an analytical queuing model; however, challenges arise in a
simulation study such as how to effectively model the impact of the critical design factors as well as the
decision rules. In this study, we model the traffic system as a network of servers that represents both paths
and junctions, for which the service rates are dynamically adjusted according to the respective states and
decision rules. The model is implemented with O2DES.Net, an open-structured and modularized modeling
framework. Numerical experiments illustrate the effectiveness of the developed models, with an application
of the AGV network for an automated container terminal.

1 INTRODUCTION

As the container terminal plays a vital role in modern logistics, its productivity and reliability are always
the primary concerns of the terminal operators. The traffic network is one of the key components in a
terminal system, as it links between quay side and yard side. There are many design factors affecting the
traffic efficiency in a terminal, for example, the layout, dimension and connection of the traffic network
between junctions and paths, the length and number of lanes in each path, and the number of vehicles (i.e.,
AGVs) deployed in the network, etc. Dynamically, the traffic efficiency is also influenced by the nature
of job sequence in the specific container terminal, the number of vehicles deployed, and respective yard
planning strategies. Therefore, it is difficult to analyze such complexity from an analytical queuing model.
For example, Roy et al. (2016) proposed an analytical queuing model to estimate the terminal throughput
under traffic congestion. Although the congestion on the path was represented by load-dependent server
queues, and a non-linear speed-density relationship, the proposed traffic network was simplified in many
details, such as the number of lanes on the path, the movement of vehicles and the interaction between
vehicles.

Hence, to study the impact of the design factors and the decision rules, simulation models on traffic
networks are needed. Discrete event simulation (DES) has been widely adopted in many event-oriented
traffic system studies which focus on vehicle travel strategies and rules. For example, Yang et al. (2004)
built two DES models to compare AGV and ALV based traffic systems in the same terminal layout. Due
to the different behaviors, the events of the two models are also different. Zhou et al. (2016) proposed a

3150978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Zhou, Li, Lee, and Chew

(a) Portion of conatiner terminal traffic system (b) Conceptualized model with network of servers

Figure 1: Model a traffic system in container terminal as network of servers.

real-time strategy to control the automated vehicle movement in a mesh-like traffic network in a container
terminal. The vehicle determined its next waypoint to travel upon reaching its current waypoint, and certain
rules were proposed to prevent and resolve conflicts between any two vehicles. Schroër et al. (2014)
described a traffic network between multiple terminals. The nodes were used to represent the terminals
and intersections, and the arcs were for the roads. The transporters, such as vehicles, could travel through
the network, and encounter delays at intersections. In fact, due to the different focuses, some studies used
the simplified network to evaluate the proposed strategies in the large layout, while the other models built
detailed traffic systems which were only suitable for small layouts.

In recent years, agent-based simulation (ABS) is commonly used to model individual decision-making
and behaviors (Bonabeau 2002), which is also useful in the traffic studies that concentrate on the behaviors
of drivers and vehicles, such as Hidas (2002). However, since our study focuses on the control strategy
from a system perspective for an automation system, DES is more suitable than ABS. In fact, the major
difference between the traffic system with man-driving vehicles and an AGV traffic system is how the
individual vehicle is controlled. For the system with man-driving vehicles, the control is decentralized,
i.e., the drivers will make their own decision when a conflict is met. On the contrary, an AGV system has
a centralized control, i.e., the movement of all vehicles is controlled and coordinated by a central system.
To guide all vehicles properly, certain strategies and rules have to be well-defined before the system starts
operation. For example, if a vehicle is blocked by another one, the system should decide whether to
overtake, wait or do nothing.

In this study, we model the traffic system as a network of servers with dynamic service rates. To be
specific, the servers are used to represent both paths and junctions, and the service rates are dynamically
adjusted according to the respective states of each vehicle, path and junction, and high-level decision rules
of the system. The model is implemented with O2DES.Net, an open-structured and modularized modeling
framework. By balancing the detail level of simulation and complexity of the network, the proposed model
can be applied in large scale AGV traffic system while testing different event-based control strategies.

2 MODELING METHODOLOGY

As illustrated in Figure 1, we consider the traffic system in a container terminal by using a “path” to
represent either a section of multiple lanes towards the same direction or a junction that connects multiple
lanes from and to different directions. The basic intuition is that vehicles spend time in traveling through
each of them, as a load is processed by a server. However, in a traffic system the traveling time highly

3151

Zhou, Li, Lee, and Chew

depends on the congestion of the road. Therefore, we consider a dynamic service rate of the “path-server”
which depends on the vehicle density on the path.

Li et al. (2015) introduced a simulation modeling framework, which was referred to as O2DES (object-
oriented discrete event simulation). Li et al. (2017) showed the flexibility of the framework with two
models at different fidelity levels which depend on how detailed the operation is described. Based on the
O2DES framework, and inspired by the modularization concept introduced in DEVS (Zeigler 1987, Zeigler
et al. 2000), the following network model is introduced.

2.1 A Single Path as Server with Dynamic Service Rate

Although they may have distinct dimensions in terms of shape, length, and width, different paths still share
several common properties.

1. Regarding the interaction between a vehicle and a path, it begins at the time when the vehicle enters
the path, and terminates when the vehicle exits from the path.

2. Each path is associated with a finite capacity. A path cannot be entered if the capacity is full, i.e.,
the number of vehicles reaches the capacity.

3. It is reasonable to assume that the traveling time to complete the path, or the traveling speed, is
related to the level of congestion. Hence, the traveling time can be represented by the number of
vehicles which are currently traveling on the path.

4. Upon reaching the end of the path, the vehicle will either exit to another path which leads to its
destination, or leave the traffic network if the destination is reached, unless the specific path is fully
occupied, or the arriving destination is blocked due to external factors, e.g., the yard crane at the
container stack is busy and thus the working lane is full.

Let i index of a path, we define the static parameters of a path, i.e., the configuration, as

CP
i = {li,ci,si,oi,vi (ρ) ,hi} , in which (1)

li indicates the length of the path i from the entrance to the exit;
ci indicates the capacity of the path i;
si denotes the starting point of the path i, i.e., through which the path i is connected from;
oi denotes the ending point of the path i the set for all outgoing paths, i.e., through which path i connects

to;
vi (ρ) describes the function to calculate the instant speed of each vehicle traveling on the path i, based

on the density of vehicles on it denoted by ρ , in the unit of number of vehicles per unit distance;
hi is the binary variable indicating if the path i is cross-hatched.

To prevent two cross-hatched paths connected together, it is reasonable to set the constraint that for any
path i,

@i1, i2, such that oi1 = si2 and hi1 = hi2 = 1. (2)

Let j index of a vehicle, we then define the dynamic properties of any path i, i.e., the state, as

SP
i =

{
Ai,Bi,mi,ki,

{
di, j ∀ j ∈ Ai

}
,
{

ti, j ∀ j ∈ Ai
}
,
{

xi′ ∀i′ ∈ {i}∪Oi
}
,
{

ei′ ∀i′ ∈ Oi∪O2
i
}}

, (3)

in which Oi is defined as the set of all outgoing paths, i.e., Oi ≡ {i′ | si′ = oi}; and O2
i is defined as the set

of second consecutive paths, i.e.,
⋃

i′∈Oi
Oi′ . All state parameters are defined as following:

Ai is the set containing all index of vehicles that is currently traveling on the path;
Bi contains the index of vehicles completed traveling and waiting at the path to exit;
mi records the last time stamp when the Si is updated;

3152

Zhou, Li, Lee, and Chew

di, j indicates the traveled distance of vehicle j on path i;
ki records if the vehicles are stuck on the path due to zero vacancy at the consecutive paths;
ti, j denotes the time when the vehicle j is expected to complete its traveling on path i;
xi′ is a binary variable to indicate if the end point of path i′ is exit-able if it is the destination of the

vehicle;
ei′ is a binary variable to indicate if the path i′ is enter-able, i.e., has vacancy to take any incoming

vehicle that continues traveling.

There are four input events that allow external components to trigger state changes of a path, which
are defined as following:

• α
(P1)
i (j) , ∀ j /∈ Ai∪Bi, is the event that a vehicle j enters the path i;

• α
(P2)
i (i′,x′) , ∀i′ ∈ {i}∪Oi, is the event to update whether a vehicle is able to exit from the path i′

if its target is completed upon reaching the end;

• α
(P3)
i (i′,e′) , ∀i′ ∈ Oi∪O2

i , is the event to update whether a following path i′ has vacancy to ac-
commodate any vehicle from path i that continues traveling upon reaching the end, indicated by
the binary variable e′;

• α
(P4)
i , is the event to reset the path by removing all vehicles in the path and release any locks

incurred by traffic congestion. Note that, this event is for experimental purpose only, as it will
never happen in reality.

Meanwhile, three output events are defined as interfaces for the path i to trigger events of external
components.

• γ
(P1)
i (j), is the event on exiting, which is triggered once there is a vehicle j exiting the path i;

• γ
(P2)
i (Si), is the event on vacancy change, which is triggered whenever the vacancy of the path i

is changed;

• γ
(P3)
i (Si), is the event on path locking, which is triggered whenever a vehicle is stopped from exiting

the path due to zero vacancy at the consecutive path.

Note that, as output events, although the parameters are specified as the information which the path
i provides, the events are not specifically defined as its purpose is to connect to other components (e.g.,
∀i′Oi) at a higher level modeling.

We now focus on seven events defined to model the activities of vehicles traveling on the path i, in
term of internal transition that connects the input and output events. The seven events include four input
events, and three internal events triggered by them. The details are described as following, meanwhile, the
triggering relationships among the events are illustrated in Figure 2. Note that, in the following description
τ is used to indicate the clock time in the simulation.

α
(P1)
i (j) It updates the positions of each vehicle as

di, j′ ← di, j′+ vi (‖Ai∪Bi‖/li) · (τ−mi) , ∀ j′ ∈ Ai, (4)

and set Ai← Ai∪{ j} and di, j← 0, followed by an immediate execution of the internal event β
(P1)
i

and the output event γ
(P2)
i (Si).

3153

Zhou, Li, Lee, and Chew

Figure 2: The event-diagram for a modularized Path i .

α
(P2)
i (i′,x′) It updates xi′ ← x′, then triggers an execution of β

(P2)
i .

α
(P3)
i (i′,e′) It updates ei′ ← e′, then triggers an execution of β

(P2)
i .

α
(P4)
i It updates the state as Ai← /0, Bi← /0, mi← τ , ei′ ← 1 ∀i′ ∈ Oi∪O2

i , and ki← 0. Note that xi′

remains unchanged as it is not an impact of traffic congestion.

β
(P1)
i It denotes the internal event that updates the completion time of each vehicle based on the

dynamically adjusted speed, due to the state change of path i. Specifically, for each j ∈ Ai, the
event updates

ti, j← τ +
li− si, j

vi (‖Ai∪Bi‖/li)
, (5)

and schedules an event β
(P3)
i (j) at time ti, j.

β
(P2)
i (j) It denotes the internal event that attempts to complete the traveling of the vehicle j in the path

i. The event is aborted if τ 6= ti, j. Otherwise, it updates Ai← Ai \ { j} and Bi← Bi∪{ j}. Then,
after updating the positions of each vehicle using (4), it triggers an execution of β

(P3)
i .

β
(P3)
i It denotes the internal event that the earliest vehicle that completed traveling in the path i exit

from it. The event identifies j as the first element in Bi.
We let i′ denotes the next path the vehicle j is to enter, and i′ = 0 if the vehicle reach the destination
at the end of the path; and let i′′ denotes the second next path the vehicle j is to enter, and i′′ = 0
if its target is reached at the end of current or next path.
The logic flow as described in Figure 3 is used to decide if the vehicle j is able to exit from the
path i. The same flow is to determine if the path i is locked because of congestion, ki← 1 if it is
“Locked” and 0 otherwise.
Then, in the case of “Exit”, Bi← Bi \{ j}, the output event γ

(P1)
i (j) is triggered for execution, and

the event itself, i.e., β
(P2)
i , is called for a recursive execution. Subsequently, in the case of “Locked”

or ‖Ai∪Bi‖= 0, γP3
i (Si) is triggered.

2.2 The Traffic System as Network of Paths

To configure the static properties of a traffic system, we use Π as the set of index for all paths involved, J
as the set of index for all vehicles considered, and we assume the routing rule for each vehicle j is known

3154

Zhou, Li, Lee, and Chew

Figure 3: The logic flow to decide if a vehicle j is able to exit from Path i.

as
i← δ (j,s) , (6)

implying that path i is to be taken by vehicle j after it exits from point s. For convention, we let i = 0 if the
vehicle j has reached its destination at s, and thus exit from the traffic system. In practice, this routing rule
can be set based on the Dijkstra’s algorithm based on given origin and destination, or by a predetermined
routing list for each moving vehicle. Therefore, the static properties of the traffic system can be defined as

CT ≡
{

Π,
{

CP
i ∀i ∈Π

}
,δ (j,s)

}
. (7)

Considering the dynamic properties, besides the state of each path i, we also need to consider the
vehicles that are departing to travel through the network, but have not entered into any path due to the zero
vacancy at the first path on its route. We denote the ordered set of departing vehicles queuing for a path i
as Qi. Then the state of the traffic system is defined as

ST ≡
{(

SP
i , Qi

)
∀i ∈Π

}
. (8)

There are three input events defined at the traffic system level, as following:

• α(T 1) (j,s) is the event for a vehicle j to call for departing in the traffic system from point s;
• α(T 2) (s,x) is the event to update the state of a point s as x, a binary variable that indicates if it is

available for a vehicle to arrive at its destination and exit from the traffic system.
• α(T 3) is the event to reset the traffic system from deadlocks.

Correspondingly, three output events are defined as interfaces to trigger external events.

• γ(T 1) (j,s) is triggered once a vehicle j is departed from point s;
• γ(T 2) (j,s) is triggered once a vehicle j exits the traffic system from point s;
• γ(T 3)

(
ST
)

is triggered once a deadlock is detected.

The internal transitions are defined by the three input events, together with four internal events, and their
interaction with the path-level interface events, which are described below. An overview of the triggering
relationship is illustrated in Figure 4.

α(T 1) (j,s) The event identifies i← δ (j,s), then updates Qi ← Qi ∪{ j}, followed by an immediate
execution of β (T 1) (i).

α(T 2) (s,x) For all i ∈Π, execute α
(P2)
i (i,x) if oi = s; and in the case of hi = 1, execute α

(P2)
i′ (i,x) for

all i′ ∈Π with oi′ = si. This is to update the exit-ability of the point s to all relevant paths in the system.

3155

Zhou, Li, Lee, and Chew

Figure 4: The event-diagram for a traffic network with modularized paths.

α(T 3) To reset the traffic system from deadlock, it simply execute the reset event α(P4), and update
Qi← /0 for all i ∈Π.

β (T 1) (i) This is the event attempting to depart the vehicle at the start of path i. The event is aborted
if ‖Qi‖ = 0 or ci−‖Ai∪Bi‖ = 0. Otherwise, remove the first element from Qi and denote it as
j0. Then, execute the internal event β (T 2) (j0,si), and output event γ(T 1) (j0,si), followed by the
recursive execution of β (T 1) (i) itself.

β (T 2) (j,s) This denotes the event when the vehicle j reaches point s. Let i = δ (j,s) indicates the new
path to travel. If i > 0, the event α

(P1)
i is triggered for execution; otherwise, the internal event

β (T 3) (j,s) is triggered for execution.

β (T 3) (j,s) Necessary statistics are collected and output event γ(T 2) (j,s) is triggered for execution.

β (T 4) This event check if the deadlock exists in the traffic system, which occurs when

∑
i∈Π

1‖Ai∪Bi‖>0 = ∑
i∈Π

1ki > 0. (9)

In such a case, the output event γ(T 3)
(
ST
)

is triggered for execution.

To complete the integrated model, there is a need to bridge the path level output events and the internal
events at the system level. The sign of “→” indicates that the event on the left is triggering the events on
the right. Thus, we have

γ
(P1)
i (j)→ β

(T 2) (j,oi) ,∀i ∈Π, and (10)

γ
(P1)
i (j)→ β

(T 1) (i) ,∀i ∈Π. (11)
It implies that once a vehicle exits from a path, we should route it to the next path or arrive at its destination,
and attempt to accommodate an incoming vehicle that is waiting at the path. This is to ensure all vehicles
move forward to their destinations.

Another connection is to passing the information backward, so as to update the vacancies of paths
ahead. Specifically, we have

γ
(P2)
i (Si)→ α

(P2) (i′,1‖Ai′∪Bi′‖<ci′

)
,∀i, i′ ∈Π, i ∈ Oi′ ∪ i ∈ O2

i′ . (12)

3156

Zhou, Li, Lee, and Chew

Figure 5: A dynamic speed function for the effect of vehicle density.

Last but not least, whenever there is a lock observed at the path level, the traffic system should check if a
deadlock occurs, i.e.,

γ
(P3)
i (Si)→ β

(T 4). (13)

2.3 Dynamic Speed Function

The critical part of the proposed model is the dynamic speed function of a path i, i.e., vi (ρ). Although
there are several functions discussed in the literature, in this part we attempt to develop a theoretical model
with reasonable simplification, so as to test the usability of the model.

We consider the ideal situation in which vehicles can travel at the maximum available speed, and the
only constraint is that the average safety distance between two consecutive vehicles should be sufficient
for the vehicle to decelerate to fully stop.

Let a be the deceleration of the vehicle, according to the assumption above, the traveling speed v is a
function of safety distance d, as

v =
√

2ad. (14)

Besides, given the vehicle length L and number of lanes N, the average safety distance can be written as
a function of density ρ when it is not negative, i.e.,

d = N/ρ−L. (15)

Therefore, combining (14) and (15), and the speed limit vmax the speed function of a path i is represented
as following. An example of the dynamic speed function and the resulted vehicle flow curve is illustrated
in Figure 5. The function is to be adopted in the numerical experiment in the next section.

vi (ρ) = min

√2a
(

Ni

ρ
−L
)+

,vmax

 . (16)

3 NUMERICAL EXPERIMENT

3.1 Experiment Settings

For the numerical experiment, we study the traffic network of a container terminal with 3×4 parallel yard
layout, which is usually adopted for a transshipment container port. For transshipment container port, the
inner terminal traffic is a critical issue. The dimension of the physical layout is illustrated in Figure 6(a).
As shown, the green sections indicate the area of paths with two lanes in each direction (i.e., totally four
lanes), and the yellow sections indicate the area of paths with a single lane in each direction. The junctions

3157

Zhou, Li, Lee, and Chew

(a) Physical layout of the traffic network

(b) A partial illustration of the topological graph

Figure 6: A example traffic network at the container terminal for numerical experiment.

are indicated as red rectangular, and the 4 “work-points” at quay side and 12 points at the yard area are
indicated by the black and blue crosses respectively. The “work-point” enables the vehicles to enter into
and exit from the traffic system, i.e., move into the “working lanes” which do not obstruct the ongoing
traffic.

The topological graph as in Figure 6(b) shows how the physical layout is conceptualized into the entities
in the O2DES simulation model proposed in the last section. Basically, both junctions and multi-lanes
paths are modeled as the “path” as in Section 2.1, and are connected via the control points. Note that,
the dynamic speed function in (16) is adopted only for multi-lane paths, whereas for the junctions, it is
assumed that vehicle travels at half of the maximum speed, throughout the longest Manhattan-distance in
the junction (i.e., width + length).

In our experiment, three scenarios as following are to be tested with the shortest path routing rule so
as to illustrate the applicability of the proposed model. We implement a travel lock prevention strategy
“cross-hatching” which is commonly applied in city traffic. When driving on the road, we can notice some
junctions in front of public services are “cross-hatched”. It is used to prevent vehicles from entering the
path if its exit is blocked so that the path will still be available to accommodate other incoming vehicles
from different direction.

Non-Cross-Hatched In the first scenario, we consider the case no path is cross-hatched, including the
junctions. Therefore, it is likely for a vehicle to be stuck at junctions and block the traffic from the
other direction. Meanwhile, all targets from either quay-side or yard-area are uniformly sampled
from respective groups.

Cross-Hatched The second scenario enforce the cross-hatching at the junctions path, i.e., the vehicle
needs to make sure the next path is clear before entering the junction, so as to lower the chance of
blocking at the junctions. However, the targets are still uniformly sampled from respective group.

3158

Zhou, Li, Lee, and Chew

Restricted Jobs (with Cross-Hatching) The last scenario restricts the distances of the traveling jobs,
by setting a probability of 95% for sampling a target with at most 1-column difference, whereas
with 5% of sampling it other-where. For example, if the vehicle is at “Y22”, then with 95% of
chance “Q1”, “Q2” or “Q3” is sampled; alternatively, if the vehicle is at “Q1”, with 95% of chance
either of “Y11–Y23” is to be sampled, and the other 5% of chance goes to “Y31–Y43”.

In all scenarios, we keep a fleet of vehicles traveling between the quay side and yard side, i.e., after
exiting from the target point from one side, the vehicle will enter the traffic network again via the same
point and travel to new target point, which is sampled randomly from either side. The fleet size is increased
so that we can evaluate the performance of the traffic system at various congestion level. Note that, each
scenario is simulated for 30 days and 10 replications, and once the traffic network encounters a deadlock,
an immediate resetting, i.e., α(T 3) as in Section 2.2, is conducted. The experiments are conducted on a
workstation with Intel Xeon E5-2620 CPU and 32GB. For the computation time, each vehicle takes 0.045
seconds for one day simulation in average, which approximately follows a linear trend.

3.2 Result and Discussion

(a) Mean times to deadlock (b) Total hourly jobs rate

(c) Hourly jobs rate per vehicle (d) Average gross vehicle speed

Figure 7: Efficiency comparison of traffic network in different scenario.

Firstly, we evaluate the average time for a system to encounter a deadlock, and the results are shown
in Figure 7(a) on a logarithmic scale. The result shows that deadlocks start to be observed with 30 vehicles
for non-cross-hatched scenario, and no deadlock for the other two scenarios. It provides evidence that the
cross-hatching is effective in preventing the deadlocks in the system.

3159

Zhou, Li, Lee, and Chew

Then, we compare the efficiency of the traffic network in the three scenarios by looking into the multiple
indicators, such as total hourly job rate and hourly jobs rate per vehicle. The Figure 7(b) and 7(c) give
an overview of the traffic efficiency in terms of jobs completed. Obviously, without cross-hatching at the
junctions, the efficiency drops significantly due to the increasing deadlocks and congestions. And when
jobs are restricted on its distance, the efficiency is slightly better mainly due to the reduction of time in each
journey when the number of vehicles is small. And the results show that the traffic network is saturated
when the number of vehicles reaches around 100, and the overall efficiency will drop when more vehicles
are added. Therefore, it is economic to keep the number below the saturation. It should be noted that the
result of non-cross-hatched scenario after 100 does not have practical meaning since the network will reset
when deadlock occurs.

Besides, we can compare the average gross speed, which considers all the traveling time and waiting
time due to congestion. It is also an efficiency measure regardless of job distances. The Figure 7(d) provides
evidence that restrict job distance does not help in increasing the gross speed with the same number of
vehicles.

4 CONCLUSION

In this paper, to balance between the operation details and model complexity, we developed a modularized
discrete event simulation model with the network of servers with dynamic service rate, based on the
O2DES.Net framework. In particular, we consider the traffic system in a container terminal by using a
“path” to represent either a section of multiple lanes or a junction. Since the traveling time in a traffic system
highly depends on the congestion on the road, we consider a dynamic service rate of the “path-server”
which depends on the vehicle density on the path. The proposed model can be applied in large scale AGV
traffic system and be used to explore different event-based control strategies.

In the numerical experiment, an example of the traffic network is presented, and three scenarios
are evaluated with several performance indicators. The experiment demonstrated the applicability of the
developed model in answering questions from various perspectives. The model is foreseen to be flexible
and extensible to adapt to different speed functions, more sophisticated traffic rules, and vehicle routing
principles.

ACKNOWLEDGMENT

This work is supported under the Singapore Maritime Institute research grant: SMI-2015-MA-05.

REFERENCES

Bonabeau, E. 2002. “Agent-based Modeling: Methods and Techniques for Simulating Human Systems”.
Proceedings of the National Academy of Sciences 99 (suppl 3):7280–7287.

Hidas, P. 2002. “Modelling Lane Changing and Merging in Microscopic Traffic Simulation”. Transportation
Research Part C: Emerging Technologies 10 (5):351–371.

Li, H., C. Zhou, B. K. Lee, L. H. Lee, E. P. Chew, and R. S. M. Goh. 2017. “Capacity Planning for
Mega Container Terminals with Multi-Objective and Multi-Fidelity Simulation Optimization”. IISE
Transactions (accepted for publication).

Li, H., Y. Zhu, Y. Chen, G. Pedrielli, and N. A. Pujowidianto. 2015. “The Object-oriented Discrete Event
Simulation Modeling: A Case Study on Aircraft Spare Part Management”. In Proceedings of the Winter
Simulation Conference, edited by L. Yilmaz, I. Moon, W. K. V. Chan, and T. M. K. Roeder, 3514–3525.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Roy, D., A. Gupta, and R. B. De Koster. 2016. “A Non-linear Traffic Flow-based Queuing Model to Estimate
Container Terminal Throughput with AGVs”. International Journal of Production Research 54 (2):472–
493.

3160

Zhou, Li, Lee, and Chew

Schroër, H. J., F. Corman, M. B. Duinkerken, R. R. Negenborn, and G. Lodewijks. 2014. “Evaluation of
Inter Terminal Transport Configurations at Rotterdam Maasvlakte Using Discrete Event Simulation”.
In Proceedings of the Winter Simulation Conference, edited by A. Tolk, L. Yilmaz, S. Y. Diallo, and
I. O. Ryzhov, 1771–1782. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Yang, C. H., Y. S. Choi, and T. Y. Ha. 2004. “Simulation-based Performance Evaluation of Transport
Vehicles at Automated Container Terminals”. OR Spectrum 26 (2):149–170.

Zeigler, B. P. 1987. “Hierarchical, Modular Discrete-event Modelling in an Object-oriented Environment”.
Simulation 49 (5):219–230.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems. Academic Press San Diego, USA.

Zhou, C., E. P. Chew, L. H. Lee, and D. Liu. 2016. “An Introduction and Performance Evaluation of the
GRID System for Transshipment Terminals”. Simulation 92 (3):277–293.

AUTHOR BIOGRAPHIES

CHENHAO ZHOU is Research Fellow for the Department of Industrial Systems Engineering & Man-
agement, National University of Singapore. He received his Ph.D. degree from the same department in
2017. His research interest focuses on transportation and logistics in urban city and maritime industry
with simulation, optimization to solve complex deterministic and stochastic problems. His email address
is zhou chenhao@u.nus.edu.

HAOBIN LI is Scientist for the Institute of High Performance Computing, A*STAR Singapore. He
received his B.Eng. degree (1st Class Honors) in 2009 from the Department of Industrial and Systems
Engineering with minor in computer science at National University of Singapore, ; and Ph.D. degree from
the same department in 2014. He has research interests in operations research, simulation optimization
and designing high performance optimization tools with application on logistics and maritime studies. His
email address is lihb@ihpc.a-star.edu.sg.

LOO HAY LEE is Associate Professor for the Department of Industrial Systems Engineering & Manage-
ment, National University of Singapore. He received Ph. D. degrees from Harvard University. His research
interests include production planning and control, logistics and vehicle routing, supply chain modeling,
simulation-based optimization, and evolutionary computation. His email address is iseleelh@nus.edu.sg.

EK PENG CHEW is an Associate Professor in the Department of Industrial and Systems Engineering,
National University of Singapore. He received his Ph.D. degree from the Georgia Institute of Technology.
His research interests include logistics and inventory management, system modeling and simulation, and
system optimization. His email address is isecep@nus.edu.sg.

3161

