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ABSTRACT

In the robot swarm, each robot can freely form swarm with others to share information. Although particle
swarm optimization (PSO) has been demonstrated to outperform Q-learning and evolutionary algorithms,
less study is conducted to characterize various swarm intelligence (SI) algorithms and evaluate their
performances for robot swarm learning. In this research, we select three representative SI algorithms
include bat algorithm (BA), PSO, grey wolf optimizer (GWO) according to their learning strategies. These
three algorithms are implemented in a distributed manner and compared under various number of robots
(NR) and communication ranges (CR). The simulation results demonstrate that: 1) PSO outperforms BA
and BA outperforms GWO in general, 2) GWO performs better than PSO and BA under large NR and
long CR, 3) increasing NR and CR can significantly improve the performance of GWO. These results can
shed lights on selection of optimal SI algorithms for robot swarm under various scenarios.

1 INTRODUCTION

A group of intelligent robots (a.k.a. robot swarm) which can be self-organized to form swarms to execute
complex tasks have attracted great attention recently (Tan and Zheng 2013). Increasingly sophisticated
intelligent algorithms are needed to optimally control the robot swarm (Pugh and Martinoli 2006). In the past
few years, several exciting approaches are being explored including supervised and unsupervised learning
algorithms (Pugh and Martinoli 2009a). Comparing with supervised learning approach, the unsupervised
learning algorithm is more noise-tolerant and fast-response (Pugh and Martinoli 2009a).

In this research, we mainly focus on unsupervised learning based controller design for robot swarm.
To develop efficient unsupervised learning algorithms, the machining learning, evolutionary computation,
and swarm intelligent algorithms were explored. Two variants of Q-learning algorithms were developed
including Q-learning with discrete and continuous state space (Di Mario et al. 2013). Q-learning is a
model-free reinforcement learning approach. It was demonstrated that Q-learning with continuous state
space outperforms the Q-learning with discrete state space for robot swarm control. Genetic algorithm (GA)
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which is an evolutionary algorithm was studied to optimize an artificial neural network (ANN) controller
(Pugh and Martinoli 2007, Pugh and Martinoli 2009b) for robot swarm. Particle swarm optimization (PSO),
a powerful swarm intelligence algorithm, was employed to study the robot swarm learning recently (Pugh
and Martinoli 2006, Pugh and Martinoli 2007, Pugh and Martinoli 2009a). For example, a distributed version
of PSO algorithm was proposed to improve the ANN controller performance in terms of computational cost
and robustness (Pugh and Martinoli 2009b, Di Mario and Martinoli 2014). To enable robots fast-response
capabilities to noises, several noise-tolerant PSO algorithms were developed (Di Mario et al. 2015, Navarro
et al. 2016). It was demonstrated that the PSO based learning algorithm outperforms GA (Pugh and
Martinoli 2006, Di Mario and Martinoli 2014) and Q-learning (Di Mario et al. 2013).

The term swarm intelligence was first introduced in the early 1990’s from research on a cellular robotic
system (Beni and Wang 1993). Ever since, a wide variety of swarm intelligence algorithms have been
proposed (Parpinelli and Lopes 2011). For example, ant colony optimization algorithm is inspired from
the ants behavior in finding the shortest path between food and their nest (Colorni et al. 1991). Artificial
bee colony (Karaboga and Akay 2009) mimics the food searching process of the honey bee swarm. The
bat algorithm was inspired by the echolocation behavior of bats (Yang 2010).

To the best of our knowledge, less study was conducted to compare the performance of various swarm
intelligence algorithms for robot swarm learning which can shed lights on the selection of optimal swarm
intelligence algorithms for robot swarm under various scenarios. To this end, we will characterize the
swarm intelligence algorithms based on their learning strategies (e.g., social learning, cognitive learning,
naive learning) and select three representative algorithms for comparison analysis. A distributed version of
each algorithm will be implemented where each robot can evolve one or multiple solutions simultaneously.
Through mimicking the individual and swarm behaviors in the swarm intelligence algorithm, we will
compare the performance of various learning strategies for robot swarm learning. The obstacle avoidance
benchmark task (Pugh and Martinoli 2006, Pugh and Martinoli 2007) is employed to evaluate the algorithm
performance. To further analyze the sensitivity of each algorithm, we will study various number of robots
and communication ranges. The performances of each algorithm will be statistically compared. The
research findings can provide guidelines to select appropriate learning approach for the robot swarm. For
example, what are the scenarios to select social learning? When to select cognitive learning?

This paper is organized as follows: background knowledge on swarm intelligence algorithms is
introduced in Section 2, Section 3 presents the proposed simulation model; followed by the comparison
experiments in Section 4, and conclusions and future research are drawn in Section 5.

2 SWARM INTELLIGENCE ALGORITHMS REVIEW

Extensive research efforts have been devoted to developing swarm intelligence algorithms since 1990.
In this research, the swarm intelligence algorithms are characterized based on their learning behaviors
which include social learning, cognitive learning, and naive learning. The social learning is defined as the
individual’s capability to learn from others in the swarm. The social learning requires good communication
among robots in the swarm. The cognitive learning is the capability for each individual to learn from its
previous experience. The individuals employ a random wandering/flying without specific guidance in the
naive learning. In this exploring study, we will compare the performances of these three learning approaches
using robot swarm under various scenarios (e.g., different communication range, various numbers of robots).
We study three representative swarm intelligence algorithms which are: 1) PSO (Shi and Eberhart 1998)
combing both social and cognitive learning, 2) bat algorithm (BA) (Yang 2010) employing both social and
naive learning, and 3) grey wolf optimizer (GWO) (Mirjalili et al. 2014) only adopting social learning.

2.1 Particle Swarm Optimization

PSO is a swarm intelligence developed to mimic a flock of birds that communicate together as they fly
(Eberhart and Kennedy 1995, Kennedy and Eberhart 1995). Similar to most population-based algorithms, a
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group of individuals termed as a swarm is created to search on the solution space. Each individual is defined
as a particle whose motion is directed by three components: 1) its current velocity; 2) its best position
(pBest) found so far; 3) the best position (gBest) found so far from its neighbors where the neighborhood
is defined by the topology.

In the PSO with inertia weight, the velocity (vi
p) and position (xi

p) for particle p at iteration i are
updated as (Shi and Eberhart 1998),

xi+1
p = xi

p +vi+1
p = xi

p +w×vi
p + c1× ri

1,p× (pi
p−xi

p)+ c2× ri
2,p× (pi

g−xi
p), (1)

where D-dimensional vectors vi
p and xi

p are the velocity and position of the pth particle (vi
p ∈ [−Vmax,+Vmax])

respectively, Vmax is used to constrain the velocity for each particle and is usually set between 0.1 and 1.0
times the search range of the solution space (Banks et al. 2007); pi

p is the best position found so far by
the pth particle; pi

g is the best position found so far by the swarm; ri
1,p and ri

2,p represent two independent
random numbers uniformly distributed on [0, 1]; c1 is the cognitive learning factor which represents the
attraction that a particle has toward its own success pi

p; c2 is the social learning factor which represents
the attraction that a particle has toward the swarm’s best position pi

g; w is the inertia weight.

2.2 Bat Algorithm

Inspired by the echolocation behavior of bats, BA was presented in (Yang 2010). In BA, there are three basic
rules: (1) all bats employ echolocation to measure distance, recognize prey/food and avoid obstacles; (2)
each bat flies with a velocity using a fixed frequency fmin, varying wavelength λ and loudness A0 to adjust
the flying for exploration and exploitation; (3) the loudness decreases from A0 to Amin. The wavelength
can be fixed in certain implementations (Yang 2010); the rate of pulse emission ri works as a threshold
between [0, 1], where 0 refers to no pulse emission, and 1 means the largest rate of pulse emission.

In BA, bats move to a new position by adjusting their velocities through acquiring knowledge from
the global best information. The velocity (vi

p) and position (xi
p) for bat p at iteration i are updated as

xi+1
p = xi

p +vi+1
p = xi

p +vi
p +(xi

p−x∗)
[

fmin +( fmax− fmin)β
]
, (2)

where x∗ is the global best information obtained so far, β is a random number uniformly distributed on [0,
1], fmax and fmin are two parameters depending on the studied problem. The learning strategy of BA is
similar to PSO but without cognitive learning. Once a promising area is found, the information is shared in
a timely manner for guidance to the other bats in the population. In principal, the pulse emission rate (ri)
and the loudness (Ai) are used to adjust the probability of the converging operation. The pulse emission
rate determines the probability to produce new solutions near the best positions while the loudness decides
the possibility to accept the new solutions. Both of them are updated only if the solutions are improved.
When the condition rand > ri satisfied where rand is a random number uniformly distributed on [0, 1], a
naive learning strategy is implemented where a new solution is generated using random walk

xi+1
p = x∗+∆, (3)

where ∆ is a random step size.

2.3 Grey Wolf Optimizer

GWO imitates the leadership hierarchy of grey wolves, and models four different roles comprising of an
alpha, beta, delta and omega ranking from the highest level to the lowest level (Mirjalili et al. 2014).
These four types of roles are characterized by a strict social dominant hierarchy in grey wolves. Moreover,
group hunting, an interesting social activity of grey wolves, including encircling prey, hunting, attacking
and searching is considered in the GWO. Since there is a strict social dominant hierarchy imposed, most of
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the members act as followers (omega) of the dominators (alpha, beta, and delta) who rank in the first three
places according to performance. In GWO, the roles of alpha, beta and delta are dynamically changed
based on their current position in each iteration. Social learning is adopted in GWO, and the position (xi

p)
for wolve p at iteration i are updated as

xi+1
p = ∑L∈α,β ,δ

xL/3, (4)

xL = xi
L− (2×a× r1−a)×|2× r2×xi

L−xi
p|,L ∈ α,β ,δ , (5)

where xi
α , xi

β
, and xi

δ
refer to the leaders’ positions (alpha, beta, and delta correspond to the first, the

second and the third best individual separately), a is a weight linearly decreasing from 2 to 0 over the
generations, r1 and r2 are random vectors uniformly distributed on [0, 1]. It can be observed from that
each individual simultaneously and evenly learns from alpha, beta and delta. Learning from the leaders
is not biased toward any of the individuals. It also reveals that grey wolves as a group animal always
move together towards their prey. All individuals keep living in a pack and acting simultaneously when
exploiting and exploring. Although there is a strict social hierarchy in population, the members collaborate
closely to search, encircle, and hunt for food.

3 ROBOT SWARM SIMULATION MODEL

In this research, a swarm of Khepera III mobile robots (Di Mario and Martinoli 2014) is studied using
Webots (Michel 2004) which is a mobile robotics simulation software to model, program and simulate
mobile robots. Khepera III mobile robot is a differential wheeled vehicle which can detect short and medium
range obstacles using nine infra-red sensors and five ultrasound sensors (Di Mario and Martinoli 2014).
In the simulation model, a swarm of robots is distributed and navigated in a square arena (see Figure 1).
For each robot, the walls and other robots are considered as obstacles.

Figure 1: Robot swarm simulation model in Webots.

The obstacle avoidance benchmark task studied in (Pugh and Martinoli 2006, Pugh and Martinoli
2007) is adopted to evaluate the algorithm performance. The fitness function used in the swarm intelligent
algorithm is defined as

F =V × (1−
√

∆v)× (1− i), (6)

where V is the average left and right wheel speed, ∆v is the speed difference for left and right wheels, i is
the proximity sensor activation value of the most active sensor. All the three quantities, V , ∆v, and i are
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normalized to the interval [0, 1]. The robot which moves fast, turns as little as possible, and spends as
little time as possible close to obstacles will have large value of F (Di Mario and Martinoli 2014).

Each robot will run a same ANN based controller with different weights for the ANN. In the ANN
based controller, the input layer has 13 neurons to accept inputs for the nine infrared sensors, two constant
biases, the previous speed of left and right wheels. The hidden layer is designed to include two neurons
and the output layer has two neurons to control the left and right wheels of the robot. The readers can
refer to (Pugh and Martinoli 2006, Pugh and Martinoli 2007) for details about the ANN based controller
and multi-robot simulation model. The weights will be evolved using the swarm intelligent algorithms
which means an optimization problem with 30-dimensional search space is solved to maximize the fitness
function defined in Eq. (6).

4 SIMULATION RESULT ANALYSIS

Let NR and CR represent the number of robots and communication range, respectively. We will compare
the performance of these three algorithms (BA, GWO, and PSO) by changing NR from 4, 10 to 20, and
CR from 0.3, 0.8 to 1.5 meters. The arena size is defined as 1.5 meters. Each robot is assumed to only
communicate with other robots in its neighborhood with distance less than CR. This indicates that the
robot can communicate with more robots when the CR is large. To guarantee the fair comparison, the
population size for each algorithm is set as 20 which means each robot will maintain 5 solutions when NR
is 4, maintain 2 solutions when NR is 10, and maintain 1 solution when NR is 20. Large value of NR will
make the arena crowded. The maximum number of iterations for each algorithm is set as 50, and each
algorithm is independently run 30 times. The fitness values for each run is recorded.

4.1 Comparison Analysis for the Three Algorithms under Settings of NR=10 and CR=0.8

In this set of experiments, we set NR as 10 and CR as 0.8 meter. The average, standard deviation, maximum,
and minimum values for the best fitness obtained at each run are presented in Table 1. It is observed that
PSO performs the best among these three algorithms, and BA performs better than GWO. The best fitness
value is obtained by the BA, and the performance of GWO is more stable comparing to BA and PSO.

Table 1: Experimental results for the three algorithms (NR=10, CR=0.8).

Average Standard Deviation Maximum Minimum
BA 0.7579 0.1170 0.9604 0.5066

GWO 0.6212 0.0893 0.8363 0.4974
PSO 0.8037 0.1173 0.9407 0.5536

To further demonstrate the differences among these three algorithms, we rank the 30 runs for each
algorithm and present the convergence curve for the top 15th run in Figure 2. As we observe, the GWO
has premature convergence issues. Although the GWO has very good initial solution, it is stuck in the
initial solution for more than 20 iterations. BA does not have improvement after 30 iterations. PSO can
maintain a good population diversity to improve solution quality. According to the statistical t-test, we
conclude that PSO outperforms BA, and both PSO and BA significantly outperform GWO.

4.2 Statistical Comparison of the Three Algorithms under Various Settings of NR and CR

In this set of experiments, the performances of these three algorithms are compared under different values
of NR and CR. The box plots for these three algorithms using 4, 10, and 20 robots are shown in Figures
3-5 where the mean value over the 30 runs is represented using triangle and the outlier is represented using
circle. Please note “CR0.3” represents that CR=0.3. In general, we conclude that PSO is better than BA,
and BA is better than GWO when NR is 4 and 10. However, GWO outperforms BA when NR is 20 and
CR is 0.8 and 1.5, and outperforms PSO when NR is 20 and CR is 1.5.
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Figure 2: Convergence curve for BA, GWO and PSO (NR=10, CR=0.8).
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Figure 3: Box plots for BA, GWO and PSO (NR=4).

The statistical t-test results for these three algorithms are presented in Table 2 where the algorithms
are ranked based on the t-test results. The algorithm A will be assigned symbols (“>>”, “>”, or “=”)
based on the following rules: 1) symbol “>>” if it is significantly better than algorithm B (e.g., p-value
< 0.05), 2) symbol “>” if it is better than algorithm B (e.g., p-value is in the range [0.05, 0.90]), 3)
symbol “=” if it performs the same as algorithm B (e.g., p-value > 0.90). The two symbols of the rank
#1 algorithm indicate its relationship between the rank #2 and rank #3 algorithms, and the symbol of
the rank #2 algorithm indicates its relationship with the rank #3 algorithm. For example, GWO performs
similar to PSO, and better than BA, and PSO performs better than BA when NR=20 and CR=1.5. We can
conclude that: 1) the algorithm with both social and cognitive learning capabilities (e.g., PSO) can perform
better than the algorithms without cognitive learning capability (e.g., BA and GWO), and 2) the algorithm
only with social learning capability (e.g., GWO) may underperform the algorithms with hybrid learning
strategies (e.g., BA and PSO) when NR is small and CR is short.
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Figure 4: Box plots for BA, GWO and PSO (NR=10).
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Figure 5: Box plots for BA, GWO and PSO (NR=20).

Table 2: Statistical t-test results for the three algorithms under various settings of NR and CR.

NR CR #1 #2 #3
4 0.3 PSO (>>, >>) BA (>>) GWO
4 0.8 PSO (>>, >>) BA (>>) GWO
4 1.5 PSO (>>, >>) BA (>) GWO
10 0.3 PSO (>>, >>) BA (>>) GWO
10 0.8 PSO (>, >>) BA (>>) GWO
10 1.5 PSO (>>, >>) BA (>>) GWO
20 0.3 PSO (>>, >>) BA (>>) GWO
20 0.8 PSO (>, >>) GWO (>) BA
20 1.5 GWO (=, >) PSO (>) BA
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4.3 Statistical Comparison of Individual Algorithm under Various Settings of NR

In this set of experiments, the performances of each algorithm are compared under different values of NR.
The box plots for these three algorithms are shown in Figures 6-8. Please note “Rob4” represents that
NR=4. For BA, it performs the best when NR=10 and performs the worst when NR=4. However, BA under
NR=10 performs slightly better than NR=20. The performances of GWO have significant improvement
when NR is increasing. PSO performs very similar under various settings of NR.
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Figure 6: Box plots for BA under various settings of NR.
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Figure 7: Box plots for GWO under various settings of NR.

The statistical t-test results for these three algorithms under various settings of NR are presented in
Table 3. It is observed that GWO prefers larger number of robots. This is due to the fact that GWO just uses
social learning to evolve the solutions, and increasing the number of robots can improve the social learning
capability of each individual to better search the solution space. Both BA and PSO prefers a medium
number of robots (e.g., 10) since smaller number of robots may weaken the social learning capability and
larger number of robots may increase the density of the arena and thus to increase the collision possibility.
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Figure 8: Box plots for PSO under various settings of NR.

Table 3: Statistical t-test results for individual algorithm under various settings of NR.

Algorithm CR #1 #2 #3
BA 0.3 10 (>, >>) 20 (>>) 4
BA 0.8 10 (>, >>) 20 (>>) 4
BA 1.5 10 (>, >) 20 (>) 4

GWO 0.3 20 (>>, >>) 10 (>) 4
GWO 0.8 20 (>>, >>) 10 (>>) 4
GWO 1.5 20 (>>, >>) 10 (>) 4
PSO 0.3 10 (>, >) 20 (>) 4
PSO 0.8 10 (=, >) 4 (=) 20
PSO 1.5 10 (>, >) 4 (>) 20

4.4 Statistical Comparison of Individual Algorithm under Various Settings of CR

In this set of experiments, the performances of each algorithm are compared under different values of CR.
The box plots for these three algorithms are shown in Figures 9-11. The communication range does not
have a significant impact to the performances of BA and PSO. The performances of GWO have significant
improvement when CR is increasing.

Table 4: Statistical t-test results for individual algorithm under various settings of CR.

Algorithm NR #1 #2 #3
BA 4 1.5 (>, >) 0.3 (=) 0.8
BA 10 0.3 (=, >) 1.5 (>) 0.8
BA 20 1.5 (>, >) 0.3 (>) 0.8

GWO 4 1.5 (>>, >>) 0.8 (>) 0.3
GWO 10 1.5 (>, >>) 0.8 (>>) 0.3
GWO 20 1.5 (>, >>) 0.8 (>>) 0.3
PSO 4 0.3 (=, =) 1.5 (=) 0.8
PSO 10 0.3 (>, >) 1.5 (>) 0.8
PSO 20 0.3 (>, >) 0.8 (>) 1.5
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Figure 9: Box plots for BA under various settings of CR.
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Figure 10: Box plots for GWO under various settings of CR.

The statistical t-test results for these three algorithms under various settings of CR are presented in
Table 4. It is observed that BA slightly prefers large CR (e.g., 1.5 meters) and PSO slightly prefers small
CR (e.g., 0.3 meter), but there does not have significant difference among various CR settings for BA and
PSO. Large CR is preferred by GWO since it can increase the possibility of each robot to communicate
with more robots and thus to improve the social learning capability.

5 CONCLUSION

In this research, we compare the performances of three representative swarm intelligence algorithms including
BA, GWO and PSO for robot swarm learning. BA employs both social and naive learning strategies, GWO
just implements social learning, and PSO adopts both social and cognitive learning strategies. The obstacle
avoidance benchmark task is adopted to evaluate the algorithms’ performance. A distributed version of
each algorithm is implemented where each robot evolves one or more solutions simultaneously. These three
algorithms are compared under various number of robots and communication ranges. It is observed from
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Figure 11: Box plots for PSO under various settings of CR.

the simulation results that: 1) the algorithm with hybrid learning strategies (e.g., PSO, BA) outperforms
the algorithm with sole learning strategy (GWO), 2) increasing the number of robots and communication
ranges can significantly improve the social learning capability of individuals in GWO and thus to improve
the algorithm performance, 3) a medium number of robots are preferred by PSO and BA where small
number of robots may decrease the social learning capability and large number of robots may increase the
possibility for collision. These results can provide valuable insights to select appropriate swarm intelligence
algorithm for various scenarios. For example, the PSO is preferred for robot swarm system with limited
communication (e.g., underwater robot swarm) and small number of robots (e.g., expensive robotics). On
the other side, the GWO is preferred when the communication range and number of robots are increased.

We will further evaluate the scalability and sensitivity of the swarm intelligence algorithms under
various sizes of arena and maximum number of iterations. We will develop noise-tolerant swarm intelligence
algorithms for robot swarm learning which consider various sources of uncertainties, such as sensor and
actuator noise, and changes in the operation environment (Di Mario et al. 2015). A set of features will be
identified to characterize the robot swarm (e.g., number of robots, communication range, etc.) and swarm
intelligence algorithm (e.g., learning strategy, etc.), and a mapping model based on these features will be
developed to optimally select swarm intelligence algorithms for robot swarm under various conditions.
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