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ABSTRACT

High-dimensional Markov decision processes are often solved using online sampling-based methods such
as Monte Carlo tree search. Problems that involve rare catastrophic events with large negative rewards can
be very challenging for such approaches. The difficulty arises because the common policies for expanding
a search tree are not able to handle rare large negative rewards appropriately, leading to high variance
estimates of value. This paper studies the impact of reward structure with rare catastrophic events on the
performance of common algorithms and proposes enhanced tree policy strategies for Monte Carlo tree
search. Numerical experiments suggest that our proposed methods can significantly improve performance
on a variety of problem domains ranging from stochastic multi-armed bandits to aircraft rerouting problems.

1 INTRODUCTION

Sequential decision problems with uncertainty in the outcomes of actions are often modeled as Markov
decision processes (MDPs) (Bellman 1957, Howard 1960). When there is also uncertainty in the current
state of the environment, such problems can be modeled as partially observable Markov decision processes
(POMDPs) (Åström 1965, Sondik 1971). Both models have been extensively studied (Kochenderfer 2015).
Solving for optimal decision strategies that maximize the expected accumulation of reward can quickly
become computationally intractable as the dimension of the state space increases. Hence, there has been
interest in approximate solution techniques, including online methods that involve planning over only a
subset of the state space that is potentially reachable from the current state.

A category of online approaches that has attracted tremendous interest in the artificial intelligence
community is Monte Carlo tree search (MCTS) (Coulom 2006). It finds approximately optimal actions by
iteratively building a search tree using Monte Carlo simulations. A commonly used MCTS algorithm is
UCT (Kocsis and Szepesvári 2006), which applies the Upper Confidence Bound (UCB) policy (Auer et al.
2002) to guide the construction of the tree. The policy involves an exploration constant as a parameter. With
a proper exploration constant, UCT will consistently provide near-optimal solutions (Kocsis and Szepesvári
2006). However, tuning the constant can be challenging.
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Choosing a proper exploration constant for UCT is particularly difficult for problems with rare catastrophic
events, such as a system failure of a nuclear plant or an aircraft collision. In MDP or POMDP formulations,
large negative rewards are associated with catastrophic events. Since the possibility of large negative rewards
increases the range of reward, UCB requires a large exploration constant to provide sufficient exploration.
On the other hand, a large exploration constant may not be required in points of the UCT search tree that
do not involve rare catastrophic events and may result in an unnecessarily slow convergence to optimal
long-run average performance. In addition, the rare occurrence of catastrophic events causes high variance
estimates of value in points of the UCT search tree that involve events and degrades the performance.

Main contribution. This paper presents modifications to Monte Carlo tree search to better account for
rare catastrophic events. Three heuristics are proposed. First, we introduce an Adaptive UCB (A-UCB)
heuristic that considers two possible settings: one in which rare catastrophic events occur (“hard” setting),
and another one in which they do not (“easy setting”). A-UCB introduces an additional level of exploration
over UCB policies to identify the more appropriate exploration constant among two constants, where each
constant is pre-specified for each setting based on the associated reward structure. Second, we propose
Thompson sampling with a Gaussian mixture model over rewards. We apply Thompson sampling over the
reward model to balance exploration and exploitation without the need of an exploration parameter. Third,
a splitting method borrowed from the rare event simulation literature (Rubino and Tuffin 2009, Garvels
2000) is applied to the construction of the tree. This method biases Monte Carlo tree search towards rare
catastrophic events with the aim to reduce the variance of the estimate of the reward accumulation. We
evaluate these strategies on three problem domains.

2 METHODS

This section briefly reviews prior work and describes our extensions to address rare catastrophic events in
multi-armed bandit problems, MDPs, and POMDPs.

2.1 Multi-Armed Bandit Policies

A multi-armed bandit problem is originally proposed in the context of drug tests by Thompson (1933) and
formulated for a general setting by Robbins (1952). In the problem, a decision maker needs to choose an
arm from a set of arms at each round to maximize cumulative reward over a decision horizon (Berry and
Fristedt 1985, Gittins 1989). In the stochastic setting of this class of problems (Lai and Robbins 1985),
each arm is associated with an unknown, typically independent, reward distribution, and reward realizations
are only observed when an arm is selected. To maximize cumulative expected reward, one needs to balance
between acquiring information about arms through exploration and exploiting information about immediate
rewards. One way to measure the success of this trade-off is cumulative regret, which is the sum of the
expected reward difference between the best arm and played arms. The objective of the multi-armed bandit
is to minimize cumulative regret.

UCB1 (Auer et al. 2002) is a common multi-armed bandit policy. One first pulls each arm once,
and from that point on, plays the arm i that maximizes X̄i + c

√
lnn/ni where X̄i is the empirical mean of

rewards for playing arm i, c is an exploration parameter, n is the total number of plays so far, and ni is the
number of times arm i was played. The first term in the UCB1 formulation, X̄i, encourages exploitation by
playing what appears to be better arms. The second term, c

√
lnn/ni, encourages exploration by playing

less-explored arms. Auer et al. (2002) show that UCB1 uniformly achieves expected cumulative regret that
is logarithmic in the length of the decision horizon.

This paper introduces a new method, Adaptive UCB (A-UCB) shown in Algorithm 1. This heuristic
considers two possible problem settings: one in which rare catastrophic events occur, and another one in
which they do not. Given a suitable exploration constant in UCB1 for each setting, A-UCB increasingly
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plays with the proper UCB1 policy. A control policy in A-UCB adaptively chooses which subpolicy to
use based on expected rewards from subpolicies. The reward from each subpolicy is assumed to follow a
Gaussian distribution, and the Normal-Gamma (NG) distribution is chosen as the conjugate prior. The
control policy executes the subpolicy having the highest expected reward.

Algorithm 1 Adaptive UCB.
Initialize reward models for both subpolicies
loop

for each subpolicy πi

(θi,τi)∼ NG(µi,λi,αi,βi)

Set i∗ = argmax
i

θi

Play with subpolicy πi∗ and observe reward r
Update reward model for subpolicy πi∗ with reward r

A-UCB is related to other policies that have been proposed in the context of adaptation to unknown
environments. Sani et al. (2014) present an online optimization method that uses decisions proposed by
two online optimization algorithms, where both online optimization algorithms need to be observed. This
requirement does not fit in a multi-armed bandit context in which only one arm is played and observed
in each period. Seldin and Slivkins (2014) present an algorithm for multi-armed bandits that achieves
near-optimal performance in both stochastic and adversarial bandits. The algorithm detects which regime the
environment is in and plays accordingly. Chaslot et al. (2008) uses the cross-entropy method (Rubinstein
and Kroese 2004) to find parameters for planning problems including the exploration constant of UCB in
Monte Carlo tree search. This approach finds one tuned exploration constant and applies it to all points in
MCTS.

Recently, Thompson sampling (TS) has attracted attention because of its excellent empirical performance.
TS is a randomized algorithm originally proposed by Thompson (1933). It assumes a Bayesian prior on
parameters of the reward distribution for each arm. At each time step, it draws the posterior probability of
being the best arm for each arm and plays an arm having the highest probability. Studies have demonstrated
the merits of this approach empirically (Chapelle and Li 2011, May and Leslie 2011) as well as theoretically
(Agrawal and Goyal 2012).

This paper presents a modified version of TS with a Gaussian mixture reward model (TSM), where the
reward model is assumed to be a mixture of Gaussian distributions. Reward is divided into multiple groups,
and each group of reward is assumed to be a Gaussian distribution. The estimate of a reward is obtained by
weighting rewards from reward groups. For example, if a multi-armed bandit involves a rare catastrophic
event, reward can be divided into two groups: one group includes large negative rewards and another group
includes smaller rewards. The idea is to exploit prior knowledge of the reward structure.

TSM is similar to DNG-MCTS (Bai et al. 2013) and D2NG-POMCP (Bai et al. 2014) in that Thompson
sampling is applied to MCTS and rewards are Gaussian mixtures. However, the underlying reward modeling
is different. In TSM, each group of rewards, depending on whether a rare catastrophic event exists or
not, is modeled as a Gaussian and weights are the probability of the rare catastrophic event. DNG-MCTS
and D2NG-POMCP modeled accumulated reward with Gaussians given states and weights, which were
transition probabilities.

Algorithm 2 outlines TSM. In this algorithm, γi j, µi j, λi j, αi j, and βi j are the parameters of the conjugate
priors of the reward model. It is assumed that each reward group follows a Normal distribution. The
Normal-Gamma distribution is chosen as the conjugate prior of parameters for the Gaussian distribution.
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The weights for the reward groups follow a Dirichlet distribution. The expected reward for an arm is
estimated by summing the weighted expected rewards of reward groups.

Algorithm 2 Thompson sampling with Gaussian mixture.
For each arm i = 1, . . . ,K, set parameters of the reward model for arm i with initial values
loop

for each arm i = 1, . . . ,K
(w1,w2, . . . ,wn)∼ Dir(γi,1,γi,2, . . . ,γi,n)
for each component j = 1, . . . ,n

(µ j,τ j)∼ NG(µi j,λi j,αi j,βi j)

Set θi = w1×µ1 +w2×µ2 + · · ·+wn×µn

Play arm i∗ = argmax
i

θi and observe reward r

Update reward model for arm i∗ with reward r

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a family of algorithms that has been applied to both MDPs and
POMDPs. The basic algorithm iteratively builds a search tree from the current state in attempt to find the
best possible action. Nodes in the search tree represents states and links between nodes represents actions.
Each state holds statistics for choosing an action such as expected rewards. The search tree represents
sequences of states and actions. Each search iteration consists of four stages (Browne et al. 2012).

1. Selection: Starting from the root node, a tree policy is recursively applied for descending the search
tree until a leaf node is reached.

2. Expansion: At the leaf node, an action is selected by the tree policy and a new child node is linked
to the leaf node.

3. Evaluation: A simulation is performed from the new node according to a default policy.
4. Backup: An outcome from the simulation is backpropagated through the search path from the new

node to the root node. Outcomes from nodes in the path are also backpropagated. Statistics of
states in the path are updated accordingly.

The tree policy selects an action based on statistics that are updated each iteration. The tree policy must
balance exploration with exploitation at each level in the search tree. UCT is a kind of MCTS that uses
UCB as a tree policy. Pseudocode for a version of UCT applied to MDPs and POMDPs is provided by
Kochenderfer (2015). When rewards are in the range [0,1], UCT consistently finds the optimal solution
using an exploration constant of

√
2 multiplied by depth for the UCB (Kocsis et al. 2006). Otherwise, the

exploration constant must be adjusted appropriately according to the range of rewards.
MCTS involves collecting statistics about the expected accumulation of reward after a series of actions.

If catastrophic events occur in a problem, sampling may result in large negative rewards. Rare large negative
rewards can make the reward estimates converge slowly, leading to poor performance. In the context of
MCTS, there has been work on general variance reduction techniques such as control variates, common
random numbers, and antithetic variates (Veness et al. 2011). We will focus on a particular kind of variance
reduction technique from the rare event simulation literature, known as the splitting method (Rubino and
Tuffin 2009, Garvels 2000).

The splitting method accelerates the convergence of Monte Carlo simulations by increasing the occurrence
of rare events. The method generates more samples of interest by selecting and replicating sample paths. It
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divides paths into multiple levels based on proximity to the event of interest. If a sample path starting from
a level reaches to the next level, multiple copies of the path are reproduced. These copies are resimulated
from the current level. If a copy reaches the next level, the replicating procedure is repeated. If not, the
simulation of the copy ends without replication. While the replication procedure is repeated, generated
sample paths are biased toward rare events. The splitting method has been successfully applied to various
domains (Prandini et al. 2011, Kim et al. 2015).

The idea of selection and replication in the splitting method can be applied to UCT. Levels are defined
by a series of distances to an event of interest. While traversing the search tree, if a state and an action lead
to a next state hitting a level, a specified number of simulations at the level are replicated from the state
hitting the level. The average of outcomes from replicated simulations is backpropagated. If a replicated
simulation hits the next level, the replication procedure is repeated. Throughout the process, UCT simulates
more states close to rare catastrophic events and obtains better estimates of expected rewards involving the
events.

3 EXPERIMENTS

This section demonstrates the issues that can arise when decision problems involve rare catastrophic events.
The methods presented in the previous section are evaluated empirically on a series of problems.

3.1 Stochastic Two-Armed Bandit

We begin with a two-armed bandit problem with rewards that follow a mixture of two truncated Normal
(TN) distributions: {

TN(µ1,σ1) with probability 1− p
TN(µ2,σ2) with probability p

(1)

where µ1,µ2 < 0, µ2� µ1, 0 < p < 1, and p� 1. We assume a 5-σ truncated Normal, keeping the reward
bounded. With this distribution, playing an arm returns a small negative reward most of the time, but
sometimes it returns a large negative reward.

Figure 1 shows the impact of a rare catastrophic event on UCB1. The bandit used for the experiment
has two arms. The reward distribution for each arm is defined as follows:

r1 ∼

{
TN(−30,4) with probability 1− p1

−1000 with probability p1

r2 ∼

{
TN(−70,10) with probability 1− p2

−1000 with probability p2

where 0≤ p1, p2 ≤ 0.1. The figure shows two extreme settings that the event does not occur in easy setting
and there is 10% chance of the event for each arm in hard setting. A proper exploration constant is chosen
for each case empirically and both constants satisfy the Chernoff-Hoeffding inequality for UCB1 (Auer
et al. 2002). Plots in the figure are averages of a thousand simulations. The figure shows that an exploration
constant working well for one case does not work well for another. There are large cumulative regret
differences between two UCB1 policies. Figure 1 (d) shows that setting an improper exploration constant
can negatively impact the convergence of UCB1. UCB1(50), which is UCB1 with the exploration constant
50, selects the best arm only 60% of the time. It is close to 50% of random selection. It is an issue to
choose a proper exploration constant for UCB1 in the case that the probability of the event is unknown to a
player. The experiment shows that UCB1 might not be a good policy for a multi-armed bandit involving a
rare catastrophic event.
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Figure 1: Impact of a rare catastrophic event on UCB1.

Figure 2 shows the average cumulative regret of a thousand simulations when using A-UCB and TSM
compared to UCB1 and TS. The reward distribution for the experiment is the same as the reward distribution
used in previous experiment. A-UCB selects UCB1(50) and UCB1(400) as subpolicies. For TSM, the
reward is modeled with two Gaussian distributions, one for rewards from a rare catastrophic event and
another for rewards from other. The uniform prior is set as follows: γi,1 = 0.01,γi,2 = 0.01,µi,1 =−50,λi,1 =
1,αi,1 = 0.5,βi,1 = 12.5,µi,2 =−1000,λi,2 = 1,αi,2 = 0.5,βi,2 = 0.5. Experiment has been performed with
various set of probabilities of the rare catastrophic event for arms. UCB1(CE) shows average cumulative
regret when using UCB1 with the optimal exploration constant. For each set of probabilities, the optimal
exploration constant for UCB1 is computed using the cross-entropy method (Rubinstein and Kroese 2004,
De Boer et al. 2005). The cross-entropy method is an adaptive optimization algorithm that searches for the
optimal parameters optimizing a performance metric. The method is used for finding the optimal exploration
constant minimizing cumulative regret. Few featured results from the experiment are presented in the figure.

In Figure 2, TSM performs better than other policies. TSM generally performs better than TS because
TSM exploits the reward structure while TS maps rewards into [0, 1] regardless of the possibility of rare
catastrophic events. In Figure 2 (a) and (b), the regret of A-UCB is close to the regret of UCB1(50) and the
regret of UCB1(400), respectively. A-UCB performs close to the best UCB1 for each setting with some
overhead. In A-UCB there is a cost for learning which subpolicy is best.

Figure 2 (c) shows an interesting characteristic of A-UCB. In the figure, A-UCB performs better than
both UCB1(50) and UCB1(400), which are its subpolicies, and even better than UCB1(CE). For the reward
distribution used in Figure 2 (c), one subpolicy works well with some of simulations while another subpolicy
works well with others depending on when the rare catastrophic event occurs in simulations. Since A-UCB
is designed to choose the best subpolicy based on empirical outcomes, it switches to play another subpolicy
if a playing subpolicy performs badly during a simulation.

Extensive experiment with various reward settings is performed for validating the usefulness of A-UCB
and TSM empirically. In the experiment, the mean of nominal reward distribution has been changed from
−10 to −100, the probability of the rare catastrophic event has been changed from 0 to 0.1, and the reward
for the event is fixed at −1000. To choose proper exploration constants for A-UCB, the optimal exploration
constant is computed for every reward setting using the cross-entropy method and two extremes of the
exploration constants are chosen, which are 10 and 350. Other experiment settings are the same as settings
used in the previous experiment. From all reward settings, A-UCB and TSM performs better than both
UCB1 and TS in 73% and 78% of all settings, respectively.
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Figure 2: Regret from simulation with A-UCB and TSM.

Figure 3 shows some policy maps representing the best policy in terms of average cumulative regret for
each reward setting. For each plot, x and y axes are means of nominal reward distributions for the first and
the second arms, respectively. The mean varies from −10 to −100. In the figure, the first row compares
A-UCB and its subpolicies. The second row compares UCB1, TS, and TSM. When the rare catastrophic
event does not occur in both arms, as shown in Figure 3 (a) and (e), A-UCB and TSM perform better
than UCB1 and TS in most settings, and UCB1 with the small exploration constant performs well in some
settings. When the rare catastrophic event can occur in both arms, UCB1 with the large exploration constant
can be seen in the policy maps. When the event can occur in one arm but cannot occur in another arm,
UCB1 with the small exploration constant works better than A-UCB and TSM in many settings as shown
in Figure 3 (b) and (f) because playing one arm is obviously better than playing another arm. However, the
difference in average cumulative regret among UCB1 with the small exploration constant, A-UCB, and
TSM is not large. If the event may occur in both arms, A-UCB and TSM tend to work better than UCB1
and TS as shown in Figure 3 (c), (d), (g), and (h).

In short, experiments demonstrate that A-UCB and TSM work well for a multi-armed bandit involving
a rare catastrophic event whose probability is unknown. The source code of this experiment can be found
at https://github.com/neosado/MultiArmedBandit.git. Additional policy maps from the experiment can be
found at https://goo.gl/EZA3Tp.

3.2 MineField

MineField is a simple MDP involving rare catastrophic events. The world is modeled as a grid as shown in
Figure 4. There is a rover at the bottom left corner and a goal at the top right corner. Mines are placed at
random locations. The rover does not know where mines are located. The rover can move up or right.
There is a random cost whenever the rover moves. If a mine is at the location of the rover, there is a chance
that the mine explodes with a large cost. The rover can still move regardless of explosions. The objective is
to find the optimal path to the goal that minimizes expected cost.

Scenarios for simulations are randomly generated. Each scenario involves a 7 by 5 grid world. Mines
are placed randomly at approximately 10% of the grid cells. Each mine gives a large negative reward of
−10000 when exploded. Otherwise, the scenario gives a random cost following a Gaussian distribution
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Figure 3: Policy maps from simulation of a stochastic two-armed bandit.

with a randomly selected mean in [−110,−10] and standard deviation in [2,22]. The probability of the
mine explosion is chosen uniformly at random between 0 and 0.1. UCT is used for solving the problem.

Figure 5 shows the relative return error as the computational budget is increased. The relative return
error is defined by the difference between a return and the optimal return for a scenario divided by the
optimal return. The return for a scenario is computed by averaging cumulative rewards from one hundred
simulations. The figure shows the average and the 95% confidence interval of relative return errors from one
hundred scenarios. The relative error goes to zero as the return is close to the optimum. The computational
budget is the maximum number of iterations for UCT. Two exploration constants for UCB1 are chosen
according to the range of rewards without or with the mine explosion, respectively. A-UCB uses two UCB1
policies with the exploration constants as subpolicies. In the experiments, TSM has the uniform prior set to
γi,1 = 0.01,γi,2 = 0.01,µi,1 =−100,λi,1 = 1,αi,1 = 0.5,βi,1 = 50,µi,2 =−10000,λi,2 = 1,αi,2 = 0.5,βi,2 =
0.5.

As shown in Figure 5, A-UCB and TSM performs better than other policies, especially when the
computational budget is limited. UCB1(10000), A-UCB, UCB1(CE), TS, and TSM converge to a similar
relative return error with sufficient computational budget while the relative return error of UCB1(100) is far
from others. A-UCB performs better than both UCB1(100) and UCB1(10000), which are its subpolicies,
and even better than UCB1(CE), which applies one single optimal exploration constant to all decision nodes
in UCT search tree. A-UCB adaptively applies a proper exploration constant to decision nodes in UCT
search tree depending on whether a node faces large negative rewards or not. The experiment shows that
A-UCB and TSM perform better than other policies in UCT for a MDP with rare catastrophic events.

The source code for this experiment is found at https://github.com/neosado/MineField.git.

3.3 Rerouting of Unmanned Aircraft

Unmanned aircraft often use GPS for navigation. It is not uncommon for the GPS signal to be lost due to
occlusions, interference, or failures of GPS device. When the signal is lost, alternative localization methods
can be used that rely on inertial measurement units or cellular networks. However, these methods can
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result in large errors in localization and navigation. If multiple unmanned aircraft are operated in the same
airspace, a GPS loss can lead to mid-air collisions. To avoid collision with degraded position information,
one must carefully reroute the paths of unmanned aircraft.

Figure 6 shows a scenario of the rerouting problem. There are five unmanned aircraft in 5010 ft by
5010 ft area and one of the aircraft loses GPS signal. Each aircraft follows a pre-planned path that consists
of waypoints. A pre-planned path is shown as a dashed line and waypoints are shown as gray dots. There
is a safety margin centered at the location of the unmanned aircraft. If an aircraft violates the safety margin
of another aircraft, it is regarded as a near mid-air collision. There are emergency landing bases indicated
as black squares. In the figure, trajectories of unmanned aircraft are shown as black solid lines and the
unmanned aircraft that losing GPS signal deviates from its pre-planned path. The aircraft requires rerouting
to avoid mid-air collision while it tries to follow its pre-planned path as far as it can.

The rerouting problem is formulated as a POMDP. States are tuples of an unmanned aircraft location,
its status, last passed waypoint, and a time step. The unmanned aircraft that loses GPS signal can move
toward one of its waypoints or a landing base. It observes its location with Gaussian noise and navigates
based on its location estimate. It receives the reward 100 whenever it passes a waypoint and the reward
−0.5 every time step while it moves. If the safety margin is violated, the large negative reward −10000
will be obtained. The unmanned aircraft losing GPS signal knows the locations of the other aircraft.

A MCTS algorithm, POMCP is used for solving the rerouting problem. POMCP (Silver and Veness
2010) is an online method for solving POMDPs that combines UCT and particle filtering for belief updating.
Since the observation space of the problem is large, we use the Sparse UCT heuristic (Bjarnason et al.
2009) to limit the number of observations under each node of the search tree so that the search tree can
explore more deeply.

The enhanced tree policy heuristics are applied to POMCP. Table 1 shows the relative return among
different tree policies. The relative return for a tree policy in a scenario is defined by the difference between
a return from the tree policy and a mean of returns from all tree policies divided by the mean. The return for
a scenario is computed by averaging cumulative rewards from one hundred simulations. Computational time
differences among tree policies are negligible. The table shows the average and the 95% confidence interval
of relative returns from one hundred random scenarios. Two exploration constants for UCB1 are chosen
according to the range of rewards without or with the near mid-air collision, respectively. A-UCB uses two
UCB1 policies with the exploration constants as subpolicies. TSM sets the same prior used in MineField.
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Table 1: Relative return from simulation of aircraft rerouting.

UCB1(100) UCB1(10000) A-UCB UCB1(CE) TS TSM

−0.7230±0.042 0.1723±0.025 0.2378±0.021 0.1812±0.029 −0.1489±0.026 0.2806±0.023

Table 2: Relative return from simulation with splitting method.

UCB1(100) UCB1(10000) A-UCB TS TSM

0.07467±0.0055 0.07560±0.0056 0.1644±0.0053 0.02467±0.0043 0.1224±0.0078

As shown in the table, A-UCB and TSM performs 24% and 28% better than the mean performance of all
tree policies, respectively. A-UCB performs better than its subpolicies, UCB1(100) and UCB1(10000), and
UCB1(CE).

Table 2 shows the relative return with the splitting method. The relative return for a tree policy is defined
by the difference between returns from the tree policy with and without the splitting method divided by the
return from the tree policy without the splitting method. Levels are defined by the distance between the
unmanned aircraft losing GPS signal and an other unmanned aircraft. Among various levels and numbers of
replications for levels that have been tested empirically, levels [500 ft, 200 ft] and the number of replications
[2, 2] are chosen for the splitting method. The computational overhead of using the splitting method
depends on the setting of the method. In the experiment, the computational time difference is within 10%
between experiments with and without the splitting method. As shown in the table, returns are improved
with the splitting method for all tree policies. A-UCB with the splitting method achieves 16% better return
compared to the return of A-UCB without the splitting method.

The source code for this experiment is available at https://github.com/neosado/SAPR.git.

4 CONCLUSIONS

The paper presents three methods to improve Monte Carlo tree search involving rare catastrophic events.
A-UCB improves the performance by adaptively applying a proper exploration constant according to the
reward structure. A version of Thompson sampling with a Gaussian mixture model improves performance
by exploiting the reward structure. The splitting method improves performance by reducing the variance of
the estimate from Monte Carlo simulations. Empirical studies demonstrate improved performance.

Although A-UCB demonstrates its usefulness empirically, the overhead of learning which subpolicy is
better than another is unknown. Theoretical analysis is required to understand the overhead and prove the
performance bound of the method. In the splitting method, the performance is sensitive to the choice of
splitting levels and the number of replications. Future work will involve exploring an adaptive splitting
method that finds the optimal levels and the number of replications during simulation.
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