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ABSTRACT 

Virtual factory models can help improve manufacturing decision making when augmented with data 
analytics applications.  Virtual factory models provide the capability of simulating real factories and 
generating realistic data streams at the desired level of resolution.  Deeper insights can be gained and 
underlying relationships quantified by channeling the simulation output data to an external analytics tool.  
This paper describes integration of a virtual factory prototype with a neural network analytics application.  
The combined capability is used to create a neural network capable of predicting the expected cycle times 
for a small job shop.  The capability can adapt by retraining the neural network whenever the production 
circumstances change significantly. The trained neural network can be used for functions such as order 
promising and can support factory management. The analytical and adaptive combination represented by 
the virtual factory integrated with the neural network thus supports the move towards smart 
manufacturing.  

1 INTRODUCTION 

In recent years, interest in smart manufacturing has continued to increase across the globe albeit under 
different related terminologies.  The smart manufacturing term appears to be more prominent in the 
United States.   European Union has its “Factories of the Future” initiative (European Commission 2017) 
while Germany is actively pursuing its “Industrie 4.0” under the High Tech Strategy 2020 (GTAI 2017).   
China has its “Made in China 2025” program, India has “Make in India,” Korea has “Smart Factory” 
program, and Japan has “Industrial Value Chain Initiative”.  There are similar initiatives in  many location 
across the globe.    All the initiatives are pursuing use of information and communication technologies for   
performance improvement and many of them identify modeling and simulation as a key enabler for smart 
manufacturing.  Many of the initiatives also emphasize making the smart manufacturing advancements 
accessible to small and medium size enterprises (for example see Ezell 2016). Kusiak (2017) recommends 
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developing platforms that allow collaboration between experts and practitioners for modeling and access 
to industry data as a major step to enable smart manufacturing.  

 This paper presents the next step of a development effort with the overall goal of facilitating the 
move towards smart manufacturing through use of modeling, simulation and data analytics.   Jain, Shao, 
and Shin (2017) discuss the objectives of the effort, describe the virtual factory concept, and present a 
virtual machine prototype as an initial step towards development of the virtual factory.  Jain et al. (2015) 
describe the implementation of a virtual cell model that utilizes the virtual machine level models to 
simulate a small cell with turning and milling machines.  Jain and Lechevalier (2016) report on the use of 
standards to facilitate largely automated generation of the virtual cell model as a prototype for such 
generation of virtual factory level models in future. 
 This paper reports on utilizing a virtual factory together with data analytics to support the move 
towards smart manufacturing.    The virtual factory is used to model a wide range of production scenarios 
and collect relevant data.  The data is used to train a neural network.  The trained neural network can then 
be used to support the order promising function by rapid generation of estimated cycle times given current 
status of the production floor.   While there have been earlier efforts that use Neural Networks or Data 
Mining to predict cycle times, they focused on data from the real factory that is limited to scenarios 
experienced.  Use of virtual factory allows generating data for a wide range of anticipated scenarios thus 
allowing the capability to address situations that may not have occurred previously in the real system.  
The integrated virtual factory and the neural network application provides the capability to adapt to 
changing configurations on the production floor.   New configurations and/or large changes on the 
production floor can be adapted to by updating the virtual factory model, regenerating scenarios and using 
the data to retrain the neural network.  The goal is to develop the capability further such that it can be 
integrated with factory data and control systems to automatically adapt to large scale changes in the 
system.   

2 RELATED WORK 

Reported work over the last year in the three relevant areas for this paper are briefly reviewed in this 
section.  Readers are referred to Jain and Lechevalier (2016) for relevant literature prior to last year. 

2.1 Virtual Factory 

The phrase “virtual factory” is used with multiple definitions in literature.  This work uses the definition 
of virtual factory as a multi-resolution representation across the hierarchical levels of a real factory.   
More recently phrases such as “Digital Factory” and “Digital Twin” have been used in the literature with 
similar definitions.  Neicu and Savii (2016) utilize a “virtual, digital factory” for testing information flows 
and evaluating business information systems. 

Some efforts emphasize the virtual reality aspects of such representation.  Kunz et al. (2016) utilize 
virtual reality to allow a walk through a virtual factory for planning and evaluation purposes. 

2.2 Manufacturing Data Analytics 

Reported applications of manufacturing data analytics appear to focus primarily on machine and process 
level.  Chien, Chen, and Wu (2016) use a big data analytics framework to analyze the parameters at 
process tools level for yield enhancements in semiconductor manufacturing.  Mehta, Butkewitsch-Choze, 
and Seaman (2017) use a data analytics framework for the diagnosis of a process fault in semi-continuous 
manufacturing.  Kache and Seuring (2017) point to lack of empirical research on data analytics at supply 
chain level and identify opportunities and challenges for such applications based on a Delphi study.  
Zhong et al. (2017) extend the concept of physical internet concept and big data analytics from supply 
chain to manufacturing shop floor to identify buffers with high work in progress inventories.   Overall, 
there are limited applications of data analytics at the production floor level in manufacturing. 
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2.3 Integrated simulation and analytics 

Application of simulation and data analytics together for manufacturing is beginning to attract some 
interest. Tao et al. (2017) utilize digital twins of products and factory together with big data to improve 
design, manufacturing, and service phases of the product life cycle.  They utilize shop floor digital twin 
primarily for control at the shop floor level.  They present a case of drive shaft manufacturing for use of 
manufacturing digital twin for production task management and for machine level optimization.     

 Overall, integration of simulation and data analytics offers a good potential for developing decision 
support systems that can deliver better and faster value than either of these approaches on their own.  This 
work presents an example of the synergy between simulation and data analytics.  Such synergy can be 
harnessed to provide a manufacturing system with the capability to adapt to changing circumstances and 
thus facilitate the move towards smart manufacturing. 

3 APPROACH 

3.1 Virtual Factory Prototype 

This section presents extensions of the virtual factory prototype proposed by Jain and Lechevalier (2016). 
The extensions provides improvements for two key components of the virtual factory prototype: (1) the 
virtual machine model has been extended to more accurately represent the behavior of a machine, and (2) 
additional data generation capabilities have been developed to facilitate the application of data analytics. 
 The virtual machine model is modified to include failure as a possible state of the machine. In 
addition to the failure state, a blocking state is also included to represent a batch held up in a machine if 
the following machine or buffer area is already full. Figure 1 shows the extension of the state chart in the 
agent-based model representing the machine. 

 

Figure 1: State chart of the machine model. 

In the state chart, the failure state is included as a conditional state that can occur in the middle of the 
machining state. The machine goes to the failure state if the total time spent in the machining state is 
higher than the sampled time to failure. The time to failure follows an exponential distribution with a 
mean time between failures (MTBF) defined in the Core Manufacturing Simulation Data (CMSD) (SISO 
2012) file used as an input of the virtual factory model. The machine model remains in the failure state for 
a sampled value of repair time. The repair time follows an exponential distribution with a mean time to 
repair (MTTR) that is also specified via the CMSD file. 

The blocking state is included after the batch ejection to enable batch holding. Leaving this state 
depends on the current state of machines or buffer areas that are downstream of the current machine in the 
process flow. If the current machine cannot send a batch to the following step in the process flow, the 
batch is held up and the machine remains in the blocking state. As soon as the following machine or 
buffer areas are able to accept a batch, the machine can release the batch. The machine then goes to the 
idling state and it is open to receive a new batch to process. 
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Extending the state chart of the virtual machine model provides a more accurate representation of 
machine behavior. Consequently, a virtual factory model that uses virtual machine models is also more 
representative of a real factory, and should generate simulation data that are closer to actual data. 
Simulation data generation capabilities have been also improved by providing features to generate outputs 
in selected formats including Business To Manufacturing Markup Language (B2MML) which is an XML 
implementation of the ANSI/ISA-95 (MESA 2010). Two kinds of factory data are represented in 
B2MML format for each simulation run: (1) number of parts processed for each type produced in the 
factory, and (2) a list of orders completed.  

To summarize the number of parts processed in one simulation run, a B2MML file is created for each 
type of part possibly produced by the factory. The types of part are originally defined in the CMSD file. 
Each file contains the following information: 

 Type of part 
 Duration to produce the number of parts 
 Number of produced parts. 

 
 Another B2MML file is generated to list the orders that are completed in one simulation run. For each 
order, the following information are recorded: 

 Order ID 
 Start time of the order 
 End time of the order 
 Part type ordered 
 Number of parts ordered 
 Load of the factory (multiple fields) 

 
 The start time is the time when the order is received. The end time is the time when the order is 
completed. The load of the factory is defined by the work-in-progress (WIP), i.e., the total number of 
parts that are at various stages of processing in the virtual factory when the order is received. Since 
different part types might require different times to be processed, the load is represented as a list of 
numbers that represent the number of parts for each type. For example, if there are two types of parts A 
and B in a given scenario, the load will contain two numbers to represent the numbers of parts A and the 
number of parts B that are in WIP inventory when the order is received. 

3.2 Neural Network Application 

Artificial Neural Networks (NNs) are a computational model used to make predictions from data. An NN 
is composed of an input layer, zero to several hidden layers and an output layer. Each layer contains at 
least one neuron. Edges connect the different layers. Weights are assigned to the edges. From a 
mathematical viewpoint, NNs consist of a set of nonlinear basis functions with free parameters, i.e., 
weights, that are adjusted. The basis functions are called activation functions. Training the neural network 
consists of adjusting the weights to minimize the error between the output value of the NN and the real 
output value for a given data sample. Haykin (1994) provides additional information about NNs. 

In this work, we attempt to predict the cycle time for a new incoming job considering the current 
system load. We build a multilayer-perceptron neural network (NN) to make this prediction. The NN 
takes certain input parameters, and produces an output prediction. In our study, the input parameters 
include the type of parts to be manufactured, and estimated current system load. Only a limited set of 
inputs is used for this proof of concept. A practical application may require consideration of additional 
factors in the simulation model and the NN such as human operators and supply consistency.  The output 
of the NN is the predicted duration. In our study, we denote the part type by a categorical value limited to 
a small set of part types. We represent the current system load as a set of numbers, identifying the number 
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of parts of each part type currently being processed in the machining cells. This serves as a good estimate 
of the current system load, as it is determined by the amount of time it takes to process each part type. We 
use stochastic models to represent machine failure and time to repair in the simulation. The effect of these 
factors is embedded in the generated training data, and thus does not need to be represented as an explicit 
input to the NN. The power of this approach is that by generating sufficiently large training data through 
simulations, we can produce a machine learning model that embeds the effects of factors such as failure 
and variability in resources, thus eliminating the need to model them explicitly as inputs for prediction.  

To build the NN model, we must train it with training data from experiments recording the duration to 
complete orders of various sizes along with the current system load when the orders came in. This data is 
collected through the simulation described in Section 3.1. We use the simulation to produce a large data 
set, and partition it into two sets. One set is used to train the NN, and the other set is used to validate the 
NN. Once the NN has been trained and validated, it can be used to predict the duration for new incoming 
orders to the factory. When a new order comes in, we give the type and number of parts in the order and 
the current system load as inputs to the NN. From these, we can obtain the predicted duration for the new 
order as the output of the NN. 

 We describe a use case in the next section, with details about the factory model, the data collected, 
and the prediction model. 

4 IMPLEMENTATION WITH A USE CASE 

4.1 Use Case 

The use case is based on the order promising scenario for a small job shop that produces three part types 
that are essentially the same part but produced using different materials.   Customers place orders for 
defined quantities of one of the three part types.  The planner performing the order promising function has 
to provide an expected shipment date for the order.  The shipment date has to be estimated carefully since 
a shipment sent too early or too late can lead to a dissatisfied customer and may result in the loss of the 
customer altogether.  It is complex to estimate the shipment date as it can vary based on several factors 
including the ordered quantity, current load on the shop, and machine failure characteristics.   Simulation 
models that use the current situation on the shop floor as the starting condition can be used for estimating 
the shipment date, but it can take some time to generate such estimates and may require more expertise 
than a typical planner may have.  Also, the company wouldn’t want to have customers wait for several 
minutes for finding out the shipment date.  The planner needs to be supported by an application that 
generates shipment date estimates for proposed orders within seconds.   

The small job shop scenario for the use case is an extension of the virtual machine cell presented by 
Jain and Lechevalier (2016).  The job shop consists of a turning cell with 4 machines and a milling cell 
with 2 machines.  All parts have two operations with first one in the turning cell and the second one in the 
milling cell. Figure 2 presents the machine shop in this scenario.  

For this scenario, Jain and Lechevalier (2016) presented the capability of auto generation of the 
model including the logic and the layout using a data file based on the CMSD standard. We leverage 
these capabilities and extended them (as described in section 3.1) to include blocking and machine 
failures. 

In this scenario, a batch is going from a raw material stock to a finished good area after being 
successively processed in a turning cell, and a milling cell. Each batch is composed of ten parts. Three 
types of part are defined in this scenario: aluminum, titanium, and steel parts. Each type of part requires 
different value ranges of machine parameters leading to different processing times and energy 
consumptions.  

Orders are received at the source and specify the part type and the number of parts to be processed in 
the machine shop. In the base scenario, the order frequency follows a normal distribution with a mean of 
60 minutes. During the execution of the simulation, a slider allows the users to modify the frequency. 
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In the CMSD file used as input, MTBF and MTTR of each machine are specified as below.  
 Turning Machine 1: MTBF: 60 hours, MTTR: 2 hours 
 Turning Machine 2: MTBF: 40 hours, MTTR: 2 hours 
 Turning Machine 3: MTBF: 30 hours, MTTR: 1 hour 
 Turning Machine 4: MTBF: 30 hours, MTTR: 1 hour 
 Milling Machine 1: MTBF: 50 hours, MTTR: 1 hour 
 Milling Machine 2: MTBF: 45 hours, MTTR: 1 hour 

 

 

Figure 2: Machine shop scenario (Jain and Lechevalier 2016). 

When a machine fails, the machine is unavailable and no batch can be processed on the machine until 
it is repaired. This obviously impacts the time to process the orders that continue to arrive meanwhile. 
The next section presents the data generated when this scenario is executed. 

4.2 Data generation from Virtual Factory 

As mentioned in Section 3.1, the virtual factory prototype has been extended to generate B2MML files 
that summarizes the orders that have been processed during the simulation. Figure 3 presents an extract of 
a B2MML file generated when the simulation is over. 
 For each order, a ProductionResponse element is generated and contains the information as described 
in section 3.1. In this extract, an order “0” of 20 units of “Part1T” was received at 12:00:00AM on March 
14, 2017. When the order was received, the machine shop was not processing any part as described with 
the values “0” in the Load element. The order was completed at 1:02:20AM on March 14, 2017.  
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Figure 3: B2MML file to summarize the order processing. 

Two different B2MML files have been generated. One file summarizes the orders processed during a 
simulation without failures of machines. The other file summarizes the orders processed during a 
simulation with failures of machines. To facilitate the data manipulation by an analytical model, we also 
developed a converter of B2MML files into CSV files. Figure 4 shows the extract from CSV file 
corresponding to the B2MML extract shown in Figure 3. The CSV file contains the order ID, the 
description of the order, the duration to process the data in seconds, the number of parts ordered, the type 
or parts ordered, and the current system load represented by the number of parts in process. Two CSV 
files have been generated from the two different B2MML files generated. These two CSV files are used to 
train neural networks for the two scenarios. This training is described in the next section. 
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Figure 4: CSV file to summarize the order. 

4.3 Neural Network Training 

The NN model tries to make a prediction on a value of interest, based on our current knowledge about 
other system variables that are believed to have an impact on the value of interest. In our case, we are 
interested in predicting the duration to complete a new order. The known information includes the order 
itself, and the current system load. The order information is represented using a categorical variable to 
specify the material type, and a numerical variable to specify the number of parts in the order. The load 
on the system is represented by a set of numerical values, one for each part type currently being 
processed.  
 We used the Knime data analytics platform to train and validate the NN model. The data generated by 
the virtual factory simulation in Section 4.2 is used for training and validation. We used Knime’s 
MultiLayerPerceptron (MLP) model to build the NN. Knime provides an MLP Learner node that employs 
a reverse propagation algorithm to train a multilayer perceptron NN from tabular input data. The Knime 
MLP learner only accepts numerical input values. One of our input variables, “part type”, is categorical. 
In order to use this trainer, we transform the categorical “part type” variable into three separate columns, 
one for each part type. The “part type” value is then transformed into a value of 1 for the column 
corresponding to the one in the order, and 0 for the other columns. The NN was configured with a single 
hidden layer with 10 hidden neurons. The “Duration” column was marked as the target for prediction.  
 The data collected in Section 4.2 was partitioned into two sets, one for training and one for validation. 
The training data was then normalized and sent to the MLP Learner node, which produced a trained NN 
model. We conducted two simulation experiments. The first simulation only modeled load on the system 
in terms of the number of parts of each type being processed, and did not include any failure. The second 
simulation included failures, modeled as described in the previous sections. We obtained 2,264 rows of 
data for the first scenario, and 1,720 rows of data for the second. The data sets were partitioned into 80% 
for training, and 20% for validation. We built separate neural networks for the two experiments. We 
provide the results of the validation below. 

4.4 Neural Network Validation 

Validation for a NN is defined as testing its ability to predict values for the variable of interest close to the 
actual values realized in the system.  The NN generated by the MLP Learner node is passed to a predictor 
node, where it is used to predict the duration (cycle time) value for the validation portion of the data. The 
validation portion of the data collected in Section 4.2 is normalized and passed to the predictor to obtain 
the predicted duration. The prediction is denormalized, and compared with the original duration column 
in the validation data. Figure 5 shows the graph of the predicted and original values of the duration for a 
subset of the validation data set, for the first scenario without failures. The Y-axis on the graph shows the 
duration in seconds, and the X-axis is the series of batches of orders. Since the validation partition was 
randomly sampled from the dataset, these points do not necessarily represent a continuous sequence of 
incoming orders. However, a high duration value should be associated with a high system load at the time 
the order arrived. The validation had an R2 value of 0.998, and mean absolute error of 1,200 seconds. The 
average duration in the validation data set was 54,371 seconds. This represents an error of about 2%. The 
RMS error was 2,311 seconds. 
 Figure 6 shows the graph of the predicted and original values of the duration for the scenario with 
failures. In this case, a high value of duration is associated with a high load on the system, and/or possible 
machine failures. For this scenario, the validation had an R2 value of 0.996, and mean absolute error of 
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1,716 seconds. The average duration in the validation data set was 57,201 seconds. This represents an 
error of about 3%. The RMS error was 2,463 seconds. 
  

 
 The validation results show that in both scenarios, we are able to get a good predictive model from 
the simulated data. We notice that the prediction is less accurate but still within acceptable limits when 
the load on the system is high. The prediction accuracy only drops slightly when we consider the case 
with machine failures. The results show that representing system load and machine failure as described in 
this paper provide a good basis for building a prediction model for these types of systems. 

4.5 Discussion 

The NN validation results show that it provides quite accurate predictions of the flow time of part batches 
through the small job shop considered in the use case.  Once the NN has been built and trained, it can 
provide the flow time predictions instantly, and thus provide the quick response needed for order 
promising functions by the planners.  The prediction is within 3% of the actual durations in our tests.  
 In our approach, we take advantage of simulations to generate large amounts of data, which allows us 
to simplify the representation of factors like current system load and variabilities due to machine failure 
and downtime. We represent load as the number of parts of each part type currently being processed in 
the machining cells. We use a stochastic model for machine failure and downtime, and the effect of 
machine downtime is embedded in the generated training data, and does not have to be modeled 
explicitly. An alternative approach can be to represent machine failure as an additional load attribute, for 

Figure 5: Predicted vs. original durations for no machine failure case. 
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which training data can be generated using stochastic models. In the latter approach, the prediction can 
take into account a manually specified value for machine conditions based on the current factory 
conditions to improve the accuracy of predictions. This can be extended to other factors beyond machine 
failure such as resource variability. 
 

 
 The NN has been trained for the defined configuration and for the range of load levels included in the 
simulation runs conducted using the virtual factory prototype.  If there are significant changes in major 
parameters such as number of machines, number of part types, process plans, machine failure 
characteristics, etc., the NN will need to be trained again.  This will require updating the input files to 
reflect the current real factory, regenerating the corresponding virtual factory, and running through a 
range of load level scenarios to generate data to train and validate the NN.  Such significant changes are 
expected to happen only a few times or less in a year and hence are not considered as a deterrent for 
application of the presented approach in real systems.   The use case utilized a very small job shop 
scenario.   The capability of virtual factory and NN combination to predict flow times in larger systems 
will need to be tested for evaluating its applicability. 

5 CONCLUSION 

Global competition is pushing industry in the developed world to advance their manufacturing systems 
through pervasive use of analytics.  The goal is to make the systems smart to allow them to autonomously 
monitor and control various aspects to achieve increasingly efficient and effective operations.   A number 
of initiatives are in progress across the globe towards this goal.  This paper describes a small step towards 

Figure 6: Predicted vs. original durations for the case with machine failures. 
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one of the many aspects of this goal via the combination of simulation and analytics to predict flow times 
of incoming orders.  The simulation component is implemented as a virtual factory prototype that allows 
largely auto-generation of a simulation model based on data for a limited set of manufacturing 
configurations.  The analytics component is implemented as a largely auto-generated neural network.  The 
two components have been integrated using information flows that are based on standard formats where 
available.  The cycle time predictions by the integrated virtual factory and neural network capability are 
based on the current load level of the manufacturing system and thus adapt to operational variations in the 
system.   The combined ability can also adapt to significant changes in the system through updating the 
neural network based on simulations of the updated system. 

The presented application was shown to be capable of providing quite accurate predictions of flow 
time for the order promising use case for the considered small job shop scenario.  Future directions under 
consideration include enhancing the virtual factory prototype’s modeling capabilities to include such 
factors as human operators, different material handling devices, and other realistic constraints, testing of 
the combined simulation-analytics approach for scenarios with larger manufacturing systems, and 
generating standard data sets for use as benchmarks for manufacturing data analytics applications. 

 
DISCLAIMER   

No approval or endorsement of any commercial product by the National Institute of Standards and 
Technology (NIST) is intended or implied. Certain commercial software systems are identified in this 
paper to facilitate understanding. Such identification does not imply that these software systems are 
necessarily the best available for the purpose.  
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