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ABSTRACT 

This paper presents a framework aimed at making decisions on sample size and power that optimize 

expected net benefits of clinical trials that incorporate health and cost variables. Two-stages standard 

modeling and simulation was developed. The hybrid framework was populated with prior information on 

benefits of a clinical trial that compare magnetic resonance imaging vs. computerized axial tomography in 

a trial of acute ischemic stroke diagnostic, combined with an assumption on willingness to pay per health 

gain, correlated distributions, exclusivity and per patient-time cost. As results, an estimated optimal 

expected net benefits of €3.8M at optimal power of 34% and sample size of 1800 were calculated. 

Emphasis on main and sensitivity analysis results are also presented.  

1 INTRODUCTION 

Simulation modeling has recently made significant contributions designed for the calculation of sample 

size and power of clinical trials and, evaluating health and economic outcomes. (Wu 2015) generated data 

to estimate the difference between blind and non-blind estimation of means and variance of continuous 

endpoints for clinical trials, in terms of bias and mean square errors. (Stamey et al. 2013) formulated 

sample size calculations that account for continuous efficacy variable and binary safety variable 

simultaneously assuming correlations between them. Then, they generate data for a range of correlation 

coefficients searching for those coefficients that reduce the sample size of this type of clinical trials. (Lui 

et al. 2008) evaluated a clinical trial test statistic that incorporates noncompliance and missing data that 

may occur during  the experiments. For a given sample size, simulation was used to calculate type I error 

of the null hypothesis and the power of the alternative hypothesis considering missing patients due to 

withdrawal or getting lost from the trial, and noncompliance due to side effects of the assigned treatment. 

(Laouenan et al. 2013) designed and performed a viral kinetic study to compare the antiviral effectiveness 

of two hepatitis-c protease inhibitors using clinical trial simulation. The power, type I error and 

parameters of the comparison test were calculated conducting 500 replication of the designed trial. The 

authors found that the simulated trial provide benefits over the most of empirical approaches. (Ciolino et 

al. 2012) studied the power of ignoring treatment allocation imbalance when continuous baseline 

covariates are involved in clinical trials of acute ischemic stroke. (Yang and Beerahee 2013) calculated 

the power of optimal trial design under pharmacokinetic modeling finding that the suggested approach is 

efficient and cost-effective when investigating a new ant-inflammatory drug in patients with rheumatoid 

arthritis. (Kraiczi and Frisen 2005) estimated the effects of parameters uncertainty on power calculations. 

(Bonate 2000) compare the type I error and the power of different metrics in the analysis of qtc with two 

dosing regimens, recommending not using the mean of qtc as a measure of drug effects. (Tsodikov et al.

1998) compared the power resulting from simulations and from bootstrap approach, giving data of a small 

trial for a chronic myelogenous leukemia. They found that the sampling data using simulation are more 
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accurate than data provided by bootstrap technique. (Henderson et al. 1996) calculated conditional power 

of three test statistics, log-rank, wilcoxon and kolmogorov-smirov tests comparing two treatments, 

making decision on the benefits of extending or not the trial. Using data from a clinical trial conducted 

after heart valve replacement, they recommend using the model for such decision. (Chabaud et al. 2002) 

investigated the best combination between safety and efficacy of Ivabradine, optimizing sample size 

needed to confirm the stability of patients with angina pectoris. (Jin et al. 2014) developed a dynamic 

simulation model to predict the clinical practice impact of controlling hypertension and its associated risk 

factors such as cardiovascular risk increasing the control rate and allowing a reduction in cardiovascular 

events. (Gold et al. 2014) selected a biomarker for chronic obstructive pulmonary disease. (Nixon et al. 

2009) evaluated the probability of drug registration for treating rheumatoid arthritis considering 

parameters uncertainty. (Schackman et al. 2007) identified the benefits and risks of simplifying HIV 

treatment. (Hmelo et al. 2001) taught medical students using simulation to improve their required skills, 

and (Elashoff et al. 1988) used simulation to design a clinical trial to prevent ulcer recurrence. On clinical 

trials registration and simulation-based studies, (Cheng et al. 2014) encouraged on the needs for the 

inclusion of simulation-based studies when registering and publishing the results of clinical trials. (Nakai 

et al. 2015) conducted a clinical trial to compare two treatments for preventing osteoporosis, according to 

an optimized design proposed by modeling and simulation. In relation to the objective of this paper, 

dealing with health and economic outcomes of clinical trials, (Sanghera et al. 2014) developed modeling 

method for calculating long term impact of economic outcomes of health interventions, such as cost-

effectiveness analysis. (Patel and Ankolekar 2007; Willan and Pinto 2005; and Burman et al. 2005) 

developed Bayesian models to incorporate economic variables, aimed at calculating sample size for an 

optimized expected net benefits of clinical trials. (Abbas et al. 2006, 2016) developed hybrid research 

simulation modeling of clinical trials that incorporate health and economic variables. In this paper, the 

main purpose is to make decision on optimal sample size and power of clinical trials for the optimization 

of their expected net benefits under uncertainty and variability.  

2 METHODS 

2.1 Clinical trials 

Clinical trials are long health research experiments aimed at showing efficacy and safety of a medicine or 

health technology. Usually they are done to make assessment on a variety of health programs such as 

preventing population from a possible disease, making a diagnostic on a suspected disease, treating 

patients or promoting health care programs. The general purpose of conducting and analyzing such trials 

is to provide information on the benefits of these health programs compared with standards already 

assumed by patients (ICH 1998).  

Often before designing a confirmatory trial, a small research study is conducted to identify the state of 

the clinical situation and economical implications of the proposed trial; in which all information around 

the disease in question and the proposed health intervention are collected, analyzed and used to make 

decisions on the final trial’s design. Since these decisions will have direct impacts on the measurements 

of efficacy and benefits, researchers and decision makers may need additional measures to define the 

study population, response variables, follow-up periods, hypothesis of the trial, power and sample size, 

statistical design requirements, and strategies to manage the budget impact and expenditures on health 

care cost and benefits (Seidl et al. 2012). Hence, the development of clinical trials is a dynamic process 

where many variables are evaluated simultaneously to provide decision makers with their results 

efficiently, at a reasonable health benefit and cost. The pharmaceuticals usually make decisions on 

whether conducting a trial looking at its benefits in comparison with its total cost.  

Regulators make decisions on the benefits in terms of patient health and cost of treatment under the 

intervention, in comparison with the standard. Hence, both departments are concerns on assessing safety 

and efficacy of the health interventions so obtaining regulatory approval. Obviously, regulators and 

pharmaceuticals seek to reach such approval at maximum health and economic benefits. 
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2.2 Modeling 

Clinical trials are characterized by being risky experiments, complex and costly systems, and the benefits 

of its health and cost effects are uncertain. Modeling approach can be applied for producing their 

anticipated results, under which estimation and optimization of expected net benefits can be assessed. 

Hence, the value of conducting these clinical trials under uncertainty requires the specification of key 

variables such as trial expenses, benefits, risks and probability of approvals. The expenses obviously 

depend on the sample size, recruitment rate, and number of centers and time of follow-up. For the trial 

risk it is considered to be the variability that arises from the included parameters. The expected power of 

the trial primary variable for a given sample size is considered to be the approval probability, which is the 

probability of the benefits that can be derived from the trial.  

2.2.1 Sample size and power 

The sample size required for a trial is usually calculated at the design stage, thus suppose that a protocol 

for a double blind randomized clinical trial is to be designed in order to study the efficacy of two 

treatments in patients with a given disease. The sample size calculation can be intended using formula 

(1.a, 1.b). 

For binary response: 𝑛 =  (z1−α 2⁄ + z1−β)
2

σ2 𝛿2⁄  (1.a) 

For continuous response: 𝑛 = 2(z1−α 2⁄ + z1−β)
2

σ2 𝛿2⁄  (1.b) 

Where, n is the sample size at each treatment assuming equal allocation, δ is the difference between the 

two treatments, σ2 is common variance of the primary response variable and the z1-/2 and z1- are the 

values of the standardized normal distribution at the probabilities 1-2 and 1- ( and  are the Type I 

and Type II errors). Formula (1.a and 1.b) can be inverted to obtain the corresponding formula (2.a and 

2.b) for power calculation, giving a sample size n. 

For binary response: 1 − β = 𝑝(𝑍 ≤ (𝛿√𝑛 − 𝜎z) 𝜎⁄ ) (2.a) 

For continuous response: 1 − β = 𝑝(𝑍 ≤ (𝛿√𝑛 − √2𝜎z) √2𝜎⁄ ) (2.b) 

When sample size is already recruited from the population and randomly assigned either to the new or 

to the standard intervention, where the patients will have a primary outcomes that are designated as u2 and 

u1, respectively. As soon as the data are available from the trial for evaluation, the a statistic such as z 

assuming normal distributions of difference can be applied to test the null hypothesis. Thus, using 

formula (3.a and 3.b), the observed value of such statistic can be obtained. 

𝑧 =
𝑢2 − 𝑢1

𝑆𝐸(𝑢2 − 𝑢1)
 (3.a), 𝑆𝐸(𝑢2 − 𝑢1) = √

𝜎2

𝑛1
+

𝜎2

𝑛2
 where n1 = n2 = n (3.b) 

When the resulting value of z is lower than +z1−α 2⁄  and higher than −z1−α 2⁄ , the null hypothesis is not 

rejected concluding that there is not enough evidence to reject the null difference. When the resulting 

value of z is higher than +z1−α 2⁄  (for two sided ), the null hypothesis is rejected advising that the new 

interventions is superior. When z is lower than −z1−α 2⁄ , the null hypothesis is rejected advising that the 

standard intervention remain superior, providing better health improvements.  is the probability of 

rejecting the alternative hypothesis when it is true, means that the observed value of the statistic z is lower 

compared with the nominal one (4.a). The complementary of this probability is known as the power, P = 

1-, of the hypotheses, which is the probability of rejecting the null hypothesis when the alternative is 

true (4.b1), where Z is the CDF-cumulative distribution function of the standard normal distribution, thus: 

 𝛽 = 𝑝(𝑧 ≤ 𝑧1−𝛼 2⁄ ) = 𝑝(𝑍 ≤ 𝑧1−𝛼 2⁄ − 𝑧)  (4.a) 

 𝑃 = 1 − 𝑝(𝑍 ≤ 𝑧1−𝛼 2⁄ − 𝑧)   (4.b1) 

 𝑃 = 𝑝(𝑧 > 𝑧1−𝛼 2⁄ ) = 1 − 𝑝(𝑍 ≤ 𝑧1−𝛼 2⁄ − 𝑧) (4.b2) 

The power also can be calculated directly as the probability of that the observed statistic is higher than 

the value of the reference one when the alternative hypothesis is true (4.b2). The reference value often is 

defined as the critical region of rejecting the null hypothesis. These formulas for  and 1- can be used 

for both binary and continuous responses assuming equal or unequal allocation of subjects. 
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2.2.2 Cost and benefits 

Multicentre trials are methods for increasing the recruitment of patients within a reasonable time-frame.  

Thus, giving the length of clinical trials depends on the number of patients to be recruited, the number 

of centers that are available to participate, recruitment rate at each center and the suggested follow-up 

periods; the cost of trial can be reduced and the expected net benefits is optimized if the assigned budget 

depends on sample size and time. Hence, assuming that the total time of the clinical trial  is the sum of the 

total time of patients recruitment (r) and the time of the follow-up (f), yield r + f. Assuming r depends on 

the recruitment rate, sample size n
*
 where n

*
= n1 + n2 and the number of centers (S), yielding r =  𝑛∗ S⁄  

and then  (𝑛∗  S⁄ ) +  f. This formula assumes the patients are equally distributed between the centers 

according to the rate of enrolment (. Minimizing the total cost of randomized clinical trials of medicine 

or health care can be assessed by minimizing the total time of the trial and sample size. Therefore, this 

can be formulated as the total cost of the trial  equals the cost per patient, denoted by c, multiplied by the 

total duration of the trial, c𝑛∗(r +  f). According to statistics theory, V(∑ bXn
1 ) = nb2V(X) where b is a 

constant. Therefore, assuming that the cost per patient is a random variable following a normal 

distribution, the variance of the total cost will be V(c𝑛∗(r +  f)) = 𝑛∗(r + f)2 V(c). The total cost and its 

variance can be placed within the expected net benefit model, developed later on. When conducting 

clinical trials, economic evaluation studies are used to estimate the cost of treatments that occur beside the 

efficacy or effectiveness. The main objective is to compare the cost-effectiveness of treatments based on 

their incremental health benefits, measured as effectiveness or effectiveness adjusted by quality of life, 

divided by the incremental cost ∆E ∆C⁄ . When the cost of the experimental intervention is higher than the 

standard one, there is an incremental cost of treatment, otherwise the experimental is dominant 

intervention, according to health economic theory. Due to statistical problems associated with ratios and 

their statistics, Benefits analysis was used to compare the effects of treatment on cost and benefits.  

 B = k(μ
e2

− μ
e1

) − (μ
c2

− μ
c1

)   (5) 

Thus, the cost-benefits of comparing two treatments expressed in formula (5) estimate the benefits of 

conducting a trial where e2 and e1 are, respectively, the mean health benefits for patients under the new 

and the standard treatment; C2 and C1 are the mean cost for patients under the new and the standard 

treatment. In this paper it is regarded as the benefits of clinical trials, comparing two health interventions. 

The benefits requires the specification of k, which is the aim of an advanced paper, regarded as the 

amount of willing to pay for increasing health benefits by one unit. As shown later on, the statistical 

problems associated with four planes of the incremental cost-effectiveness and benefits analysis can be 

recognized by the standardized expected net benefits measures and their probabilities. 

2.2.3 Optimal expected net benefits with uncorrelated distributions 

Expected Net Benefits is the key approach for assessing the global value of conducting clinical trials by 

converting available data into information and conclusions to assist making decisions on whether clinical 

trials provide net benefits for health systems. Maximizing the expected net benefits depends on the power 

calculated for an expected difference on primary health outcome, cost and benefits. In mathematical term, 

defining ENB as the expected net benefit from the trial; P denotes the probability of rejecting the null 

hypotheses of the trial; B as the total benefits (for example, the benefits derived from a trial comparing 

two interventions using formula (5)); D denotes the years of exclusivity; C the total cost of the trial that  

 ENB = PBD − C (6.a) 

 STD(ENB) = √V[PBD − C] (6.b) 

includes the design cost, managements, follow-up period, data analysis and other administrative costs; 

yield formula 6.a and 6.b. for its standard deviation. So assuming predefined parameters on sample size, 

power and benefits, follow-up and period of exclusivity, we rewrite formula 6.a as formula 7.a for the 

total ENB. Again, according to statistics theory, 𝐸(∑ 𝑏X𝑛
1 ) = 𝑛𝑏X, V(∑ bXn

1 ) = nb2V(X) where b is a 

constant, we rewrite the variance of ENB in 6.b as formula 7.b. 
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 ENB = (1 − 𝑝(Z ≤ z1−α 2⁄ − z)) (k(n2μ
e2

− n1μ
e1

) − (n2μ
c2

− n1μ
c1

)) D f⁄ − c𝑛∗ (𝑛∗  S⁄ +  f) (7.a) 

 V(ENB) = [(1 − 𝑝(Z ≤ z1−α 2⁄ − z))
2

((k2σe1
2 + σc1

2 )n1 + (k2σe2
2 + σc2

2 )n2) ] D2 f 2 + (𝑛∗  S⁄ +  f)2⁄ σC
2𝑛∗ (7.b) 

Where, e2 the standard deviation of health benefits for patients under the new treatment, e1 the 

standard deviation of health benefits for patients under the standard treatment, C2 the standard deviation 

of health cost for patients under the new treatment, C1 the standard deviation of health cost for patients 

under the standard treatment, C the mean cost of the trial under standard or new treatment, C the 

standard deviation of the mean cost of the trial between patients, k willingness to pay per health gain, f 

the follow-up and D the exclusivity time, n1 and n2 are the number of subjects at the standard and the new 

intervention, n* = n1 + n2. Notice that, the resulting benefits from the trial is extrapolated to real treatment 

practice by a number of periods D/f, including the benefits resulting from the follow-up period and the 

subsequent periods of exclusivity, each of which is equal to the follow-up period until the expiration of 

exclusivity. The resulting standardized normal statistical test of ENB (7.a), for known variance (7.b) is: 

 z = ENB √V(ENB)⁄    (8.a) 

Then, the power of net benefits can be assessed using formula (8.b). For known variance, the 

standardized normal statistical test may provide evidence if there is difference between the benefits and 

the cost of conducting the trial. 

 𝑃 = 1 − 𝑝(𝑍 ≤ 𝑧1−𝛼 2⁄ − 𝑧) (8.b) 

Where Z is the CDF-cumulative distribution function of the standard normal distribution. The model 

expressed in formula (8.a) or its probabilities in formula (8.b) can be used to calculate the optimal sample 

size and power of clinical trials that consider their expected net benefits. 

2.2.4 Optimal expected net benefits with correlated distributions 

Previously, the first response variable measures are assumed to be independent. This is typically true for 

the clinical outcomes. However, more complicated measures for cost-benefit analysis are typically 

correlated. Many times in cost-benefit analysis, a more expensive intervention will produce better results. 

These correlations will influence the cost-benefit analysis. Assuming normality, the difference of two 

correlated quantities has a variance of σ2 = σ1
2 + σ2

2 − 2ρσ1σ2  where 𝜎1 is the variance of the first 

quantity and 𝜎2 is the variance of the second quantity, ρ is the correlation coefficient. Consider B2 =
k U2 −  C2 and B1 = k U1 − C1, where B2 and B1 are the total benefits per patient of the new and the 

standard intervention; k is the willingness to pay to a unit of health benefits per patient; U2 and U1 are the 

health utilities of the new and standard intervention; and C2 and C1 are the associated costs with the new 

and standard intervention. By rewriting (7.a) as (9.a), correlations can be explicitly considered: 

 ENB = (1 − 𝑝(Z ≤ z1−α 2⁄ − z)) ( n2B2 −  n1B1) D f⁄ − cn∗ (n∗  S⁄ +  f)   (9.a) 

Notice that the data for U2 and C2 are paired data. Similarly, so are the data for U1 and C1. Again, 

according to statistics theory 𝐸(∑ 𝑏X𝑛
1 ) = 𝑛𝑏X, V(∑ bXn

1 ) = nb2V(X) where b is a constant and assuming 

correlation between health benefits an d cost of treatment as in (9.a), we rewrite (7.b) as 9.b. 
 

V(ENB) = (1 − 𝑝(Z ≤ z1−α 2⁄ − z))
2

(σB2
2 n2 + σB1

2 n1) D2 f 2 + (n∗  S⁄ +  f)2⁄ σC
2n∗ 

 (9.b) 

Hence z = ENB √V(ENB)⁄  (9.c) 

In (9.b), σB2
2 = (k2σe2

2 + σc2
2 − 2kρσe2σc2) and σB1

2 = (k2σe1
2 + σc1

2 — 2kρσe1σc1) are the variances 

for B2 and B1 respectively, ρ  is the correlation coefficient between health benefits and cost of the 

treatment within each intervention. All subsequent analysis follows the same as before. Formula (8.b) 

should still be used, but for z coming from equation (9.c). 

2.3 Simulation 

In this paper, simulation incorporates mathematical equations and statistical distributions to draw random 

data using computing random numbers generators. The random numbers and data were generated using a 

common modeling and simulation software, allowing for creating data that are comparable to real data 
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generated in clinical trials. The simulation starts at recognizing the clinical trial parameters including 

sample size, number of centers, rate of recruitment, follow-up period, the number of evaluations, 

probabilities or the values of reaching the first and the second clinical response whether binary variable or 

continuous variable, respectively, cost of treating each patient following the administration of each 

compared health intervention, covariance, and the cost of enrolling each patient. The simulation is run in 

two stages, the first is to simulate the power and sample size considering the first response variable of the 

trial, the second simulates the power and sample size considering the expected net benefits. Both stages 

can be done assuming non-correlation and correlation between health benefits and cost of treatment. The 

two stages should be repeated for a range of sample size, thus to obtain optimal ENBs, n
*
 and power, as 

shown in the results of the applications. 

2.3.1 Stage 1. Simulating sample size and power of the trial 

This stage of simulation starts at enrolling the subjects of the trial as the following: 

1. The first patient from the population is recruited to any centre, and then randomly will be chosen to 

be allocated either to standard or experimental intervention according to the probability of 

randomization. Assuming equal allocation if p = 0.5 ≤ rand(0,1) then this patient will be allocated 

to the standard health intervention, otherwise will be at the experimental intervention. 

2. Subsequently, this patient randomly will remain in the actual health state or to have an updated health 

state according to the probabilities or the values of reaching the first clinical response in the case of 

binary variable or continuous variable.  

3. The cost of trialing this patient will be calculated depending on the time of recruitment and follow-up 

of the trial. This is calculated according to formula cn∗(n∗/ S +  f), where: c is the cost per patient 

sampled from normal distribution with mean uc and standard deviation c multiplied by the sum of 

actual time of recruitment n∗/ S  and the trial follow-up time f.  

4. The three steps will be repeated as many as the required number patients, n1, n2.  

5. Then, calculations are done for the proportion of responses under the new intervention p2 and 

proportion of responses under the standard intervention p1, in the case of binary response; and values 

of responses under the new intervention u2 and values of responses under the standard intervention u1, 

in the case of continuous response.  

6. The previous steps are repeated for 10000 trials on the same parameters and sample size.  

7. The difference between the two proportions p2-p1 or values u2-u1 are calculated for each repetition, 

and the standard deviations of difference is calculated as the overall standard deviation between the 

simulated trials. 

8. Each difference of each simulated trial is divided by the overall standard deviation, obtaining the 

statistic to test the hypothesis of no difference between the two interventions. If the resulting statistic 

is higher than the reference one, we conclude that there is an evidence of difference in favor the new 

intervention. If the resulting statistic is lower than the reference one, we conclude that there is 

evidence of difference in favor the standard intervention. If the resulting statistic is between the 

higher and lower value of the reference one, we conclude that there is no evidence of difference in 

favor the new intervention. The power is calculated as the proportion of the number of the trials that 

showed evidence of difference out of the total number of simulated trials. The mean of the total cost 

is calculated. 

2.3.2 Stage 2. Simulating sample size and power of ENB with uncorrelated distributions 

In this scenario the simulation will treat the random variables distributions as independent, so the 

covariance is not considered and consequently there are no variability reduction within or between 

subjects.  

1. In simulating health benefits of each patient, suppose  z1~N(0,1)and z2~N(0,1) are two standard 

normal distributions, the health benefits of the new (10) and the standard (11)  interventions are the 

sum of the mean and two values sampled from these two distributions: 
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                                       U2 =  𝑢𝑒2 + 𝑍1𝜎𝑒21 + 𝑍2𝜎𝑒22, where 𝜎𝑒2 = √𝜎𝑒21
2 + 𝜎𝑒22

2                                         (10) 

                                       U1 =  𝑢𝑒1 + 𝑍1𝜎𝑒11 + 𝑍2𝜎𝑒12, where 𝜎𝑒1 = √𝜎𝑒11
2 + 𝜎𝑒12

2                                         (11) 

2. In simulating the cost of treatment, suppose  Z1~N(0,1)and Z2~N(0,1) are the same two standard 

normal distributions, the cost of treating patients with the new (12) and the standard (13) 

interventions are the sum of their mean cost and two values generated from these two distributions: 

                                                            C2 =  𝑢𝑐2 + 𝑍1𝜎𝑐21 + 𝑍2𝜎𝑐22, where  𝜎𝑐2 = √𝜎𝑐21
2 + 𝜎𝑐22

2                                         (12) 

                                                           C1 =  𝑢𝑐1 + 𝑍1𝜎𝑐11 + 𝑍2𝜎𝑐12, where 𝜎𝑐1 = √𝜎𝑐11
2 + 𝜎𝑐12

2                                          (13) 

3. Once the health benefits and cost of treatment are sampled using these statistical models whether the 

patient is allocated to the new or the standard intervention, the sampled value of health benefits will 

be multiplied by monetary health value (k) that assumed to be the monetary value per Qalys. 

4. The cost of treating will be subtracted to obtain the benefits of the new intervention,  B2 = k U2 −  C2 and 

the standard intervention,  B1 = k U1 − C1, thus to obtain the overall  benefits of the trial  B = B2 −  B1. 

5. The four steps will be repeated for all patients simulated at stage 1 (sample size of the trial), thus 

obtaining the total benefits. 

6. Then the expected net benefits of this trial can be calculated according to formula (9.c) introduced in 

the modeling section, where the power and the cost of the trial are results of stage 1. 

7. The six steps are repeated for the 10000 trials, thus to obtain 10000 ENBs. Their overall standard 

deviations is calculated, STD(ENB) = √
1

N
∑ (ENB − E(ENB))2N

1 ,  as the deviation of the mean expected net 

benefits from all simulated ENBs, where N=10000 is the number of simulated trials under the same 

settings. 

8. Dividing each trial’s ENB by the overall standard deviation will result in obtaining the statistic used 

to test the null hypothesis, and comparing the resulting statistic with a reference one (z or t). 

9. Then the results of the comparison is used to assess if the expected net benefits of the trial is 

statistically significant or not. The power is calculated as the proportion of the number of significant 

expected net benefits divided by the total number of repeated trials. 

2.3.3 Stage 2. Simulating sample size and power of ENB with correlated distributions 

In this scenario, the simulation considers variability reduction for within and between subjects by 

incorporating covariance between the health benefits and cost of treatment, within each health 

intervention. As commented in the modeling section, commonly health benefits are positively correlated 

with the cost of the treatment. Thus, modeling the correlation requests that the variance of health benefits 

and costs should be discomposed into two variances; one for the correlated part between the health 

benefits and costs and one for the uncorrelated variance. The procedure to discompose the variances and 

generate correlated values between benefits and costs can be as the following: 

1. In simulating health benefits of each patient, suppose  z1~N(0,1)and z2~N(0,1) are two standard 

normal distributions, the health benefits of the new (14) and the standard (15) interventions are the 

sum of the mean and two values sampled from these two distributions: 

                                                             U2 =  𝑢𝑒2 + 𝑍1𝜎𝑒21 + 𝑍2𝜎𝑒22, where 𝜎𝑒2 = √𝜎𝑒21
2 + 𝜎𝑒22

2                                         (14) 

                                                              U1 =  𝑢𝑒1 + 𝑍1𝜎𝑒11 + 𝑍2𝜎𝑒12, where 𝜎𝑒1 = √𝜎𝑒11
2 + 𝜎𝑒12

2                                         (15) 

2. In simulating the cost of each patient, suppose  Z1~N(0,1)and Z2~N(0,1) are two standard normal 

distributions, the cost of treating patients with the new (16) and the standard (17) interventions are the 

sum of their mean cost and two values generated from these two distributions. However, when 

assuming correlations, Cholesky decomposition of variability was used to generate the data, thus: 

                                                    C2 =  uc2 + Z1ρσc2 + Z2σc2√(1 − ρ2)                                                         (16) 

                                                    C1 =  uc1 + Z1ρσc1 + Z2σc1√(1 − ρ2)                                                         (17) 

3. Then to complete the simulation, steps 3-9 in section 2.3.2 should be repeated in this section. 
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3 RESULTS 

The modeling and simulation methods were applied to real data that come from a clinical trial. The 

parameters on primary response and benefits were obtained from their published results. An assumption 

was made on cost of the trial, recruitment rate, number of centers, the monetary contribution and the time 

of exclusivity. Since these parameters are rather health policy parameters, they can be adjusted to reflect 

values coming from real data. The clinical trial was conducted for comparing magnetic resonance 

imaging (MRI) and computerized axial tomography scanner (CT) in the diagnostic of patients with acute 

ischemic stroke. The information obtained from the trial, are the follow-up years where the evaluation of 

effects will be done, f = 1 year, the rate of primary event (stroke-independent) per year provided that 

patients are under MRI (p1 = 0.429) and under CT (p2 = 0.506), the cost of health care per patient under 

MRI (C2 = €6184, standard deviation C2 = €2413) and CT (C1 = €6129, standard deviation C1 = 

€2546), the effectiveness adjusted by quality of life for a patient under MRI (e2 = 0.1123, standard 

deviation e2 = 0.2815) and CT (e1 = 0.1638, standard deviation e1 = 0.2286). Suppose that the rate of 

recruitment per year,  = 150 patients at each centre, the number of centers, S = 2, the cost per patient of 

the trial is assumed to be C = €300, standard deviation C = €20; the monetary value per Qalys, k = 

€8000, and the supposed total time of patent and exclusivity, D = 20 years.  

 
Figure 1: Absolute (left panel) and standardized (right panel) ENB as a function of n

*
 (ENB in €100.000). 

Left Figure 1 shows three curves of expected net benefits of three parameterizations for a range of 

sample sizes. All results are calculated using formula 7.b and simulation without considering variability. 

The blue one is the results of the model with the real parameters of the trial that are described above. The 

expected net benefits increases with sample size reaching its maximum of €4.3M at optimal sample size 

of 2400 subjects, and declines smoothly. The power at these optimal results is 0.96. The sample size is 

1300 for a power of 0.8, yielding to an expected net benefits of €2.8M, which is 45% of the optimal one 

at 45% reduction of sample size. The other two curves shows the sensitivity of expected net benefits to 

health benefits resulting from diagnosing patients either with MRI or with CT. At the green curve, the 

expected net benefits increases with sample size reaching its maximum of €2.5M at optimal sample size 

of 2000 subjects, and declines smoothly. The power at these optimal results is 0.93. The sample size is 

1300 for a power of 0.8, yielding to an expected net benefits of €1.8M, which is 75% of the optimal one 

at 35% reduction of sample size. At the red curve, the expected net benefits increases with sample size 

reaching its maximum of €6.7M at optimal sample size of 2800 subjects, and declines smoothly. The 

power at these optimal results is around 98%. The sample size is 1300 for a power of 0.8, yielding to an 

expected net benefits of €3.7M, which is 50% of the optimal one at 55% reduction of sample size. Right 

Figure 1 shows the three curves for the standardized SENB giving sample sizes. All results are calculated 

considering risk, which is the variability that ENB can suffer from uncertain variables. For the blue curve 

(middle), the SENB increases with sample size reaching its maximum of 1.55 (€3.8M) at optimal sample 

size of 1800 subjects, and declines smoothly. The power at these optimal results is 34%. The other two 

curves shows the sensitivity of expected net benefits to change to the health benefits resulting from 

diagnosing patients either with MRI or with CT. At the green curve (bottom), the expected net benefits 

increases with sample size reaching its maximum of 1.024 (€2.0M) at optimal sample size of 1400 

subjects, and declines subsequently. The power at these optimal results is 0.17. At the red curve, the 

expected net benefits increases with sample size reaching its maximum of 2.15 (€5.8M) at optimal sample 

size of 2000 subjects, and declines smoothly. The power at these optimal results is around 58%. 
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Figure 2: Power of ENB as a function of n

*
 for non-correlated distributions by modeling and simulation. 

 
Figure 3: Power of ENB as a function of n

*
 for correlated distributions by modeling and simulation. 

When looking at Figure 2 and Figure 3, we see that there are three uncorrelated and correlated curves, 

respectively, for the power of the expected net benefits of three parameterizations for a range of sample 

sizes. The calculation is done by modeling (left curves) and simulation (right curves), showing identical 

results. The blue curve (middle) of represents the results of the model with the real parameters of the trial 

that are described above. The power increases with sample size reaching its maximum of 34% (99% for 𝜌 

= 0.95 correlated distributions) at optimal sample size of 1800 subjects, and declines smoothly. The 

expected net benefits at these optimal results is €3.8M. The other two curves shows the sensitivity of 

expected net benefits to change to the health benefits resulting from diagnosing patients either with MRI 

or with CT. At the black curve (bottom), the power increases with sample size reaching its maximum of 

18% (96% for 𝜌 = 0.95 correlated distributions) at optimal sample size of 1400 subjects, and declines 

smoothly. The expected net benefits at these optimal results is €2.0M. In the case of the red curve (top), 

the power increases with sample size reaching its maximum of 58% (100% for 𝜌  = 0.95 correlated 

distributions) at optimal sample size of 2000 subjects, and declines smoothly. The expected net benefits at 

these optimal results is €5.8M. 

 
Figure 4: Power of ENB as a function of n

*
 for uncorrelated distributions by modeling and simulation. 

Even considering the calculation for uncorrelated distributions, modeling still rely on strong assumption 

that the diagonal part of the non-self correlation matrix is 1. However, when facing situations in which all 

variables of the matrix are uncorrelated, the simulation can be run with independent random numbers 

generator for each variable of the matrix, leading to the same optimal results on sample size and expected 

benefits but at smaller optimal power as shown at Figure 4 (right curves, 17%, 32%, 0.56%), compared 

with the results assuming the previous uncorrelated matrix (left curves, 18%, 34%, 58%).  

4 DISCUSION AND CONCLUSIONS 

This paper describes a modeling and simulation framework for making decisions on optimal sample size 

and power considering expected net benefits of clinical trials. The main difference between the two 

applied methods, modeling and simulation, resides in the calculations and analyses of the results. 

Analyses and decisions can be made on sample size and power based on empirical distributions of the 

expected net benefits means which is not treated in this paper. It can be done by, for example, the widely 
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used curve of acceptability for their empirical distributions. In this case, the described simulation will 

cover up the limitations of modeling. However, analyses should be made without considering variability 

in expected net benefits, concluding weaker decisions. The framework was kept simple so it can be 

applied, reproduced or updated by related researchers. It considers two methods of calculations assuming 

normality. In sample size section, the statistical models expressed in formula 4.b1 and 4.b2 provides a 

method of power calculation which was the base for formulating the power calculation of expected net 

benefits as expressed in formula 8.b. The results on sample size, power and expected net benefits were 

presented without considering variability for a range of sample sizes. However, including variability or 

correlations of some of parameters imply that the standardized expected net benefits might be used to 

calculate probabilities, power, sample sizes and optimal expected net benefits. The framework was 

populated with real data on benefits obtained from two clinical trials on stroke disease, combined with an 

assumption about health gain value, exclusivity and per patient-time trial cost. Using the developed 

modeling and simulation framework, an optimal expected net benefits can be calculated for an optimal 

sample sizes and powers. Modeling first uses the statistical-mathematical model (7.a) to calculate optimal 

sample size and expected net benefits without considering variability for a range of power that was 

obtained for the first response variable of the trial. Then modeling again uses the statistical models in 

formula 8.a and 8.b, by hand, calculates the optimal results considering variability. These hand 

calculations were repeated for the correlated distributions using formula 9.c, and then the optimal result 

were calculated using formula 8.b. Simulation relied on the method of repetitions to calculate the optimal 

results. It calculates, in random fashion for each patient, the effects on health and costs of the health 

interventions. This fashion is repeated for a given sample size of the trial and repeated many times to 

calculate the power and expected net benefits. The expected net benefits is calculated as the sum patient-

based ENB, and the resulting standardized ENBs are used to calculate the power comparing the 

standardized values with reference value from the standard normal distribution. To find optimal results, 

these are repeated for a range of sample sizes. Sensitivity analysis was applied by simulating different 

settings of the parameters, to quantify uncertainty on the optimal expected net benefits, sample size and 

power. Uncertainty was considered in the health benefits, and accordingly three sets of results were 

generated. Still, although this hybrid research describes a research methods based on two-stages modeling 

and simulation, the results of these clinical trials are likely to arise until a complete real data are available, 

allowing for an updated and validated optimal results. Nonetheless, further developments can be assumed 

based on multiple-testing (for example, superiority, equivalence and non-inferiority simultaneously) or 

multi-two-stages. n-two-stages of modeling and simulation of a clinical trial means that the results of the 

applied modeling and simulation can be updated each time there are additional data, and consequently 

sample size and power of an optimal expected net benefits will be modified depending on previous 

updates. The regulatory approval of a prevention strategy, diagnostic technology, pharmaceutical or heath 

care program requires the development of clinical trials ensuring that benefits are derived. Since that these 

trials are long, costly and complex to be manage and their result are subject to variability and uncertainty, 

the anticipated analysis of their expected data on cost-benefit for health system and society can bring 

invaluable contributions. Modeling and simulation not only could make such analysis possible. They also 

make available research methods on how a particular clinical trial should be designed, conducted and 

extrapolated considering their expected net benefits. The modeling and simulation framework is based on 

scientific methods, making decisions on whether conducting clinical trials provides net benefits for health 

system, and contributing to the transfer of the discovered knowledge at experimental environments to 

medicine applications. 
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