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ABSTRACT

Renal failure concerns progressive loss of kidney function. Renal Replacement Therapy (RRT) is a costly,
long-running process that includes several decision points in different stages. Small changes in the protocol
can impact significantly the expenditures and healthcare outcomes. Unfortunately, policy makers have very
little support for benchmarking improvement alternatives. The existing models are designed to fit certain
applications with preset parameters and design choices which do not match with the requirements of a
policy analysis. A generic approach is required to analyze the effects of different design options adjustable
to finer scales. To remedy this, this paper describes a novel toolkit for evaluating renal replacement policies,
containing a parametrized colored Petri-Net which can be configured for the specifics of local settings.
The model is made available for open access to overcome the non-replicability issue of existing models.

1 INTRODUCTION

Systematic advancements in medicine and lifestyle support have extended human lifespan. At the cost
of the clear benefits come great challenges from the healthcare economics side. Since citizens demand
more care throughout their extended lifetime, governments and insurers are struggling to provide accessible
healthcare to all citizens in an affordable manner. Among others, policy makers strive to demonstrate that
planned capacity is able to meet expected demand, without waste. This prompts the need for decision
support tools for Renal Replacement Therapy (RRT) policies as human life depends on the ability to treat
every patient with adequate resources.

In this paper, we present a generic toolkit for evaluating renal replacement policies. The previous
models described for RRT lack the generic structure that allows adaptation to local settings of the treatment
process. The developed model overcomes this problem by a parametrized design which can be modified
to analyze scenarios or regional variations without changing the structure of the model. The toolkit is
available online for open access to be used in further applications.

Renal failure is a progressive loss of the kidney functions. Renal failure is mainly determined by a
decrease in Glomerular Filtration Rate (GFR), the rate at which blood is filtered in the glomeruli of the
kidney. There are five stages of renal failure depending on the values of the Estimated GFR (eGFR),
and five possibilities for treatment: pre-dialysis (only for stages 1-4), Haemodialysis in a Centre (HDC),
Haemodialysis at Home (HDH), Peritoneal Dialysis at home (PD), and kidney transplantation (for stage
5).
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RRT is a long-running process that includes several decision points in different stages and resulting
alternative pathways. The treatment is costly as well: for each patient, between 40,000€ 80,000€ is spent
by the European Healthcare system (EKHA: European Kidney Health Alliance 2013). Fortunately, small
changes in treatment protocols can yield great savings while improving healthcare outcomes too. For
instance, a 10% rise in at-home dialysis (HDH and PD) for 5 years could result in a total savings of almost
one billion euros in Europe (Joble and Laplante 2010). More broadly, several studies examined the renal
treatment options and questioned the renal treatment policies considering costs, life expectancies, medical
outcomes, and capacities. These studies include cost-effectiveness analyses of different treatment options
(Haller, Gutjahr, Kramar, Harnoncourt, and Oberbauer 2011, Lemus, Cerezo, Bravo, and Jimenez Aranda
2013, Roberts, Gross, and Maxwell 1979), analyses of relations between several factors and RRT incidence
rates (Caskey et al. 2011, Visser et al. 2012), and RRT demand predictions (Rodina-Theocharaki et al.
2012, Roderick et al. 2004) to support decision makers in healthcare policy evaluations.

Due to complexity of the process with several sources of uncertainty and multiple decision makers,
simulation is a widely preferred method for RRT analysis, compared to more abstract optimization methods.
One of the earliest studies uses the INS simulation language for a cost-effectiveness analysis where
effectiveness is measured with quality-adjusted-life years (Roberts, Gross, and Maxwell 1979). The early
studies demonstrate feasibility only, for example since they do not yet support all real-life treatment options.
Simulation models in RRT studies are usually built for analyzing the health and cost effects of policy
scenarios, which change the incidence rates of treatment modalities (Rodina-Theocharaki et al. 2012,
Davies and Davies 1987, Liem et al. 2012). Davies and Davies (Davies and Davies 1987) create a generic
simulation model using Pascal_SIM to be used for impact analysis of policy decisions on patient number.
Simulation is also used for case-studies to determine future renal failure incidences in local districts. Davies
and Roderick (Davies and Roderick 1998) expand the scope with discrete-event simulation to nation-wide
RRT demand prediction for the UK. Their model is later updated with more risk factors and live transplants
in addition to analysis of transfer between different dialysis options (Roderick et al. 2004). Other than
discrete event simulation, Monte Carlo simulation is also used for demand prediction where treatment
options are modeled as mutually exclusive states and the transfers among these states as a Markov Chain
(Rodina-Theocharaki, Bliznakova, and Pallikarakis 2012).

In addition to RRT processes, simulation modeling is widely used as a toolkit for policy analysis
in other healthcare domains. Simulation is used for performance analysis and improvement in medical
environments by providing tools for scheduling, capacity planning, patient flow modeling, etc (Diaz, Behr,
and Britton 2015). Gunal and Pidd (Gunal and Pidd 2010) provide a brief review of discrete-event simulation
applications in healthcare for performance evaluation and discuss that most models lack a generic approach.

The generic model for simulating the demand for the renal treatment that is described in this paper
is based on Colored Petri-Nets ((CPNs) (Law and Kelton 1991)). CPNs are visual for the process and
data flows while benefiting from the expressiveness of a full programming language for the details. The
model introduces the configuration capability to RRT simulation studies as a critical contribution due to
regional differences. By capturing the key variability through model parameters, we lower the barrier to
applying the model in new regions. Another new aspect of the study is the expansion of process with
the addition of details about the disease and treatment flow. The patients are defined with characteristics
such as eGFR level and age which are essential for an accurate projection of future demand. This addition
also allows for further extensions when treatments specific to age groups or eGFR levels are considered.
The treatment process is expanded with options related to donor policy that allows people to choose to
be a donor or not (i.e. Opting-In, Opting-Out). The key factors are defined in functions, thereby allows
a easy modification for a scenario analysis or regional adaptation. The model and the CPN platform on
which simulations are executed are made available at http://is.ieis.tue.nl/research/renalsim/. Although the
aforementioned literature describes a variety of specific simulation models for the impact of RRT policy
analyses, only Davies and Davies (Davies and Davies 1987) describe a generic model that can be used for
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several applications. Yet, their model is only described and not provided publicly for further applications.
Besides the genericity, our work is novel in the area of open access.

2 RESEARCH METHODS

In this study, we rely on version 4.0.0 of the CPN Tools software. CPN Tools is designed for modeling and
simulating CPNs. CPNs extend classical Petri-nets with data types (so-called colors), time and hierarchy.
We have designed a conceptual process and data model as further documentation to the already visual CPN.
Our generic model is based on information gathered through renal failure therapy literature and medical
experts. The generic approach is applied to a redesign study for the Dutch healthcare system. Data was
collected from the Dutch End-Stage Renal Disease Registry, RENINE for the period between January 1st,
1998 and June 24th, 2013. Information on dialysis centers is retrieved from Hansmak Institute. The process
details including referral to specialist, threshold eGFR levels, pre-dialysis and transplantation waiting lists
are based on De Nierstichting (The Kidney Foundation) and Nierpatienten Vereniging Nederland (Kidney
Patient Association Netherlands).

After the simulation model is developed, verification and validation analysis is done to check if the
simulation runs perform as intended (Jensen and Kristensen 2009). To verify our executable model we have
executed a state space analysis. However, we also used other techniques inspired by Kleijnen (Kleijnen
1995), specifically modular programming and animation. Model validation is done based on the results of
“as is” situation by comparing the past values of key performance indicators (KPI) taken from RENINE
data set with the simulation outputs.

3 RESULTS
3.1 Conceptual Model
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Figure 1: Conceptual process model describing the end to end flow for patient cases throughout simulation.

Figure 1 shows conceptual process model describing the end to end flow for patient cases. Patients
enter the simulation process at the point they have been diagnosed with renal failure. In this phase eGFR
is usually still above the pre-dialysis threshold and slowly decrease. Some people may die from other
(natural) causes before their eGFR deteriorates to the pre-dialysis threshold. When the eGFR falls below a
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certain threshold, the patients go to pre-dialysis where they will start to prepare for dialysis. Furthermore,
they start looking for a potential living donor match. If they find a match and finish the procedure, which
last several months, on time, they receive a transplant and continue to live with a donor kidney. Else,
when their eGFR drops below a certain threshold, they start dialysis. At this stage, the treatment option
is selected according to certain probabilistic parameters. When the patients choose PD, the peritoneum
deteriorates over time, which causes the patient to switch automatically to HDC. There are two ways of
exiting the dialysis phase. The first way is to get a transplant, from either a living donor that was already
found during pre-dialysis, or a post-mortal donor. If a living donor is found but the patient does not match
his blood group, he enters a cross-over program. In this program, donor kidneys are exchanged between
patients with a donor from the wrong blood group. Since renal failure is irreversible, the only other way
to finish dialysis for a patient is to die.

3.2 Setting The Model Parameters

The parameters that can be changed in the model to describe different scenarios and their input value in
the “as is” model are specified in Table 1. Table 2 provides the output parameters of the model. The
values of certain input parameters are dependent upon the age (A= a0_44,a44_65,a65_) and eGFR level
(E=100-30,29_16,15.9,8_0) of the patient.

Table 1: Input parameters.

Input Parameter Description Value Input Value
Patient distribution | Distribution of input patients among different | (E,A) (100_30,a0_44) (29_16,a0_44)
patient classes based on eGFR level (E) and (15.9,a0_44) (100_30,a44_65)
age category (A) (29.16,a44_65) (15.9,a44_65)
(100-30,265.) (29.16,265.)
(159,a65.)
Patient arrivals Average number of patients per week. A 4.063846 patients per week
Length diagnosis | Deterministic time in weeks (t-D) based on | t-D (E) (5 year ,0 year,-,-)
phase eGFR level.
Mortality Rate Percentage of patients (MR) that die per five | MR (A) (0.08%:0.18%:4.08%)
years due to natural causes.
Length pre-dialysis | The average length of the pre-dialysis in | t_-PD(E) (-,178 weeks,44 weeks,22 weeks)
phase weeks t_PD based on the eGFR level of the
patient.
Treatment distribu- | The percentage of patients that choose a spe- | HDH, HDC, | (3.41%;17.12%579.47%)
tion cific dialysis treatments (HDH, HDC, PD). PD (A) (3.33%;19.22%;77.45%)
(3.59%312.80%;83.61%)
Life  expectancy | The average life expectancy in weeks for pa- | LE_HDH, (1336 weeks, 478  weeks,179
dialysis tients receiving dialysis LE_HDH, LE_HDC, | LE_HDC, weeks) (1336 weeks,478
LE_PD. LE_PD (A) weeks, 179 weeks) (1336
weeks,478 weeks,179 weeks)
Length PD treat- | The maximum duration of the PD treatment | t PDSWITCH| 4 year
ment in weeks (. PDSWITCH).
Living donor The chance of finding a living donor P_.LD. | P_LD (A) (86.18%318.36%;14.34%)
Living donor | The chance that the living donors matches | P-MLD 90%
Match with the patient.
Diagnosis time liv- | The time that it takes to diagnose the person | t_LD 22 weeks
ing donor that wants to donate his kidney in weeks
t_.LD.
Post mortal donor | The number of post mortal donors that become | S_.PMD(Y) 37.99
available per year S_PMD.
Life  expectancy | The average life expectancy of a living donor | LE_LD 25 year
living donor in years.
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Life  expectancy | The average life expectancy of a post mortal | LE_PMD 15 year
post mortal donor donor in years based on Exponential Distri-

bution.
HDC Capacity Total capacity of Hemodialysis clinics innum- | S_HDC 954

ber of patients that can be treated in parallel.

Table 2: Output parameters.

Output parameter Description

HDC Patients Number of patients that receive HDC at any moment in time.
HDH Patients Number of patients that receive HDH at any moment in time.
PD Patients Number of patients that receive PD at any moment in time.
Donor Patients Number of patients that receives a donor kidney.

Utilization HDC capacity The utilization of the hemodialysis clinic capacity.

3.3 Executable Model

The executable model is built in CPN Tools, a package for discrete event simulation. The previously
defined input parameters are either used in functions or, in the case of patient attributes, within the color
set patient. Figure 2 shows the hierarchy levels of the model. Each subsequent part of the model uses the
output of the previous phase as input. Furthermore, pages lower in the hierarchy form the sub processes of
pages higher in hierarchy. This favors the overall readability of the model compared to a variant without

hierarchy.
N
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Figure 2: Model Hierarchy

3.3.1 Functions

In CPN tools, functions are necessary to translate the input parameters to practical outputs in the executable
model. Table 3 shows a list with functions used, their respective page in the model, the relevant input
parameters, the distribution that used to determine values and the output that follows from the execution
of the function.
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Table 3: Explanation of formulas used in specific pages (submodels) of the executable model.

Page Function Input Distribution Output
1 TakeTime() - None Current model time
1 patientarrivals() ? Arrivals: Poisson | Tokens for new patients (per week)
1 loadPatientTypes() (E,A) None Tokens for each patient-class
1 Uniform(u) - Uniform Tokens with a uniform value (to
match patients with patient-class)
1 definePatient(id:ID, Patient-class, None Individual patient
egfr:EGFRLEVEL, a:AGE, | value [0,1], ID
p:PROVINCE)
2 survivediagnosis(p) MR (A) Chance: Uni- | Chance of dying during diagnosis
form
2 setefrdiagnosis (p) E Fixed: None New eGFR level for patient (from
100-30 to 29-15)
4 dettreat(p) HDH,HDC,PD Chance: Uni- | Treatment type
(A) form
4 setegfrpredialysis (p) E, t_PD(E) Fixed: None New eGFR level for patient (if end
stage renal failure is not reached)
4 predialysistime (p) t_PD(E) Time: Exponen- | Time till next eGFR deterioration
tial based on eGFR level
4 livingdonor(p) PLD (A) Chance: Uni- | Yes or no value whether patients
form will find a living donor
6 UpdateSwitchtime(p,k) t.PDSWITCH Fixed: None The time the patient needs to switch
from PD to HDC
6 deceasedialysis(p) LE_HDH, Time: Exponen- | Time when patient deceases
LE_HDC,LE_PD | tial
A)
9, 10, | donordetoriation(p) LE LD, Time: Exponen- | Time after which patient with donor
11 LE_PMD tial kidney will die.
genpostmortal() S_PMD(Y) Arrivals: Poisson | Post-mortal donors (per week)
5 diagnosedonor(p) P_MLD Chance: Uni- | Value to determine if patient needs
form cross-over

3.3.2 Process Description

For each page (i.e. hierarchical submodel), a short overview of the process is defined as follows:

Generator. Patients are created in the generator. The inter arrival time per province determines
the number of patients generated. Each patient receives a unique ID number and is assigned to a
predefined patient class according to input ratios.

Diagnosis phase. At the diagnosis page, patients arrive with a certain eGFR as determined in the
generator. During this phase, patients with an eGFR > T1 can pass away according to a pre-defined
mortality rate. This is represented by a number from the uniform distribution which is different for
every age group since mortality changes over age groups. With an eGFR < Tq, the patient directly
flows to pre-dialysis.

(Pre-)Dialysis. The treatment page consists of several hierarchical phases which are mentioned
below. At the start of the pre-dialysis page, it is determined if a patient will find a living donor, based
on an input probability, which is different for every age group. The length of the time in pre-dialysis
depends on the patient’s initial eGFR and the rate of deterioration, which is based on an exponential
distribution. At the end of the pre-dialysis phase, a treatment-type is determined for each patient
based on the distribution as specified in the input parameters. During pre-dialysis a percentage of
the patients, specified in the inputs, will receive a living donor. At the start of the dialysis page
(Figure 3), the life expectancy of the patient is determined, and in case of a PD treatment, the time
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at which the patient should switch to HD treatment (due to peritoneum deterioration) is set. In
addition, the patient is subscribed on the waiting list for post-mortal donors. HDC, HDH and PD
are modeled individually. Each province has a certain capacity. If capacity is short, a patient is
sent to the “dialysis in other province” place where it waits until capacity is available. Patients can
leave the treatment place due to deceasing or receiving a donor kidney. Therefore, the treatment
places are hierarchical and connected to the donor process. This is also the reason why the patients
don’t receive an updated timestamp for their decease time but an updated value for an attribute.
With a timestamp, patients would not be able to exit the dialysis phase because of the arrival of
a post-mortal donor. Figure 3 makes the flow of patients through dialysis visually explicit for an
easier extension when new treatment options are to be introduced.
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Figure 3: The dialysis page of the executable model in CPN Tools.

e Donor Process. When a living donor is found, it is instantly checked if the donor matches the
patient, the remaining others will find a match after 3 months in the cross-over program. Patients
with deteriorated donor kidneys will not flow back into the normal pathway, but considered in the
inflow at the generator. Four situations are modelled; one for each situation where it is possible to
receive a donor kidney, which means one for HDC, HDH, PD and Pre-Dialysis.

Verification. According to the manual techniques, such as checking intermediate results before adding
extra complexity and manual simulations to check whether the tokens followed the intended path, the model
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performs as intended. Conducting a state space analysis is the final verification step after the whole model
is finished. However, the state space analysis is done with only one patient since the model is relatively
complex. Therefore the generator was disabled. In this way, it is possible to get a full state space report.
First, the upper and lower bounds are checked which are as expected. For example, the timer works as
intended, there is always one token in this place. If we look at the best upper and lower multi-set bounds
we can check that the patient is in pre-dialysis with three different eGFR levels, from 29 to 8, when he
has to leave to dialysis. This also performs as intended. When checking the Liveness properties, the dead
markings are as expected since they are associated with the deceased patient. At that point, there are of
course no Live transition instances. One patient cannot take all three treatment types and the dead transitions
are the transitions not fired when a patient receives a post-mortal donor after HDC. Furthermore, since
there is only one patient, there are no infinite occurrence sequences. Based on the state space analysis
and the results of the other verification techniques, we can conclude that the simulation computer program
performs as intended and does not contain any bugs.

Validation. The model is validated by comparing the actual values of four Key Performance Indicators
(KPIs) in 2013 taken from RENINE with the simulation outputs for these four KPIs for the province of
Limburg. The four KPIs used for validating the model are the number of new patients that go to dialysis, the
number of patients in dialysis, the number of post mortal donor transplantations and the patient distribution
over the different treatment options. The warm up period is set with Welch’s method based on the number
of patients in dialysis which reaches the steady state latest among other parameters. The actual values
provided by RENINE of the number of new patients in dialysis and the number of post mortal donor
operations are almost equal to the simulation results and are within the 95% confidence interval of the
simulation results. The actual values for the patient distribution are different from the simulation results.
This is due to the fact that the treatment distribution provided by RENINE is implemented as an initial
treatment preference for patients in the simulation model. The number of patients in PD in the simulation
model will be lower due to the PD switch that will occur after four years and the relative high percentage
of young people in PD treatment which get a donor transplant.

4 DEMONSTRATION OF USABILITY

To demonstrate the usability of the generic model on a concrete case study, this section presents an
application of the toolkit to a policy evaluation study for the Dutch province Limburg for the period
2013-2050. Limburg is the province with the highest average number of dialysis patients per inhabitant
which makes it an interesting region to test the toolkit.

4.1 Renal Failure Pathway In Limburg

In the Netherlands, patients spend quite some time in the diagnosis phase, where they are regularly checked
by a GP. When dialysis starts a patient can choose between three different types of treatments: HDC, which
is the most popular treatment, mainly among elderly, HDH and PD, which both face higher popularity by
younger patients. Furthermore, the patient is subscribed to the donor waiting-list where patients younger
than 44 years get priority. Post-mortal donor kidneys become available if donors, which are subscribed
opting-in, die unexpectedly while their kidneys still are in good shape, e.g. due to a traffic accident.

4.2 Analyzing Scenarios

In the first scenario we investigate the effects of earlier detection and therefore better treatment before the
end stage renal failure phase. Effectively, we will enlarge the average time that a patient will be in the
diagnosis phase from 5 to 10 years. This will give more insight into the effects of earlier renal failure
detection. In the second scenario we changed the preference for treatment types which makes home dialysis
a more adapted choice according to the numbers in Table 4. These values are based on research that shows
nephrologists and nurses prefer home dialysis over HDC (Ledebo and Ronco 2008, Schiller, Neitzer, and
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Doss 2010). In the third scenario, becoming a donor is based on an opting-out principle instead of the
current opting-in principle. This will increase the percentage that is a registered donor from 25.8% to an
estimated 61.17% (extrapolation based on current data) (?).

4.3 Input Parameters

Table 2 displays the values for each input parameter in the “as is” situation. The input parameters that are

changed for the three different scenarios are described in Table 4.

Table 4: Input parameters scenarios.

Scenario Input Parameter Value Input Value
Diagnosis 10 years Length diagnosis phase | t D (E) (10 year , O year,-,-
Changed treatment | Treatment distribution HDH, HDC, | (32.77%;24.83%:42.40%)
distribution PD (A) (31.67%;27.35%:40.98%)
(35.38%;18.84%;45.78%)
Opting Out Post mortal donor S_PMD(Y) 90.74
4.4 Results

The results of the simulation study are presented in Figure 4 and Table 5.

Table 5: Average patient distribution in Limburg in 2013-2050.

Scenario % patients of all pa- | % patients of all pa- | % patients | % patients | # patients
tients entering dialy- | tients entering dialy- | in home | in HD | in Dialysis
sis receiving a living | sis receiving a post | dialysis clinic
donor mortal donor

as is 15.6% 27.7% 14.2% 85,8% 600.65

Diagnosis 10 | 16.8% 29.8% 13.7% 86,8% 539.8

years

Change in treat- | 15.5% 27.9% 49.4% 50,6% 584.6

ment distribu-

tion

Opting-Out 15.3% 51.8% 18.0% 82% 390.6

From the results of the “as is” situation, it is clearly visible that while utilization increases for the
first few upcoming years, it will start declining after 2020. The increase is probably the consequence of
the fact that the incoming patients remain stable, but the mortality rate decreased last years. The decrease
after 2020 is caused by an increase in the number of post-mortal donors, strengthened by a shift in age
distribution of patients to more elderly patients. This causes a higher mortality and results in a shorter
average time spent in the dialysis phase.

From Figure 4 it follows that each redesign decreases the utilization of clinics. However, a longer
diagnosis phase just decreases the percentage of patients that really needs dialysis, and therefore the
utilization follows a trend similar to the “as is” situation. By changing the distribution of patients over the
treatments such that home dialysis is more frequently used, a decrease in utilization is directly visible as it
can be implemented immediately. The third scenario, where ‘Opting-Out’ is applied and more people will
donate their kidney, shows a steep decrease in utilization for the upcoming years, but flattens out eventually.

In Table 5 the patient satisfaction measures are given. A first finding is that the percentage of patients
receiving a living donor does not change much over the different designs. This is as expected, since this
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Figure 4: Utilization HD clinics in Limburg.

scales with the number of patients in pre-dialysis. However, as expected the number of post mortal donors
increases to a large extend by introducing an opting-out system (51.8% instead of 27.7%), leading to
enhanced patient satisfaction. Furthermore, stimulating patients to choose for home dialysis increases the
percentage of patients receiving home dialysis treatment (from 14.2% to 49.4%). In addition, the opting
out redesigns seems to perform a little bit better on this aspect as well (18%). If we look at the number
of patients in dialysis, we note that this is much lower in the opting out system. This can be explained by
the fact that people receive a post mortal donor faster, and due to a prolonged stay in the diagnosis phase
fewer patients will be using dialysis.

Concluding, we see clear improvements for each scenario compared to the “as is” scenario. Furthermore,
each scenario indicates improvements as expected, which could indicate that the toolkit is valid representation
of reality.

S CONCLUSIONS

We described the parametrized CPN-model for simulating the demand on renal treatment. CPN tools is
selected as the simulation tool since it is widely used for modeling processes defined by Petri Nets. Renal
Replacement Therapy (RRT) is a costly, long-running process that includes several decision points in different
stages and resulting alternative pathways. Small changes in treatment paths can result in great savings in
addition to healthcare outcomes. The developed simulation model can be used to try different scenarios
and predict future demands for healthcare in this domain, and therefore influence the strategy planning
of the healthcare. Our parametrized model can accessed online http://is.ieis.tue.nl/research/renalsim/ to be
used for further analysis of several scenarios.
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