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ABSTRACT

Computer simulations are an important tool for the current research in population and evolutionary genetics.
They help to understand the genetic evolution of complex processes dynamics that cannot be analytically
predicted. The basic idea is to generate synthetic data sets of genetic polymorphisms under user-specified
scenarios describing the evolutionary history and genetic architecture of a species. In this work, we focus
on forward-in-time simulations which represent the most powerful, but, at the same time, most compute-
intensive approach for simulating the genetic material of a population. We present a highly-optimized
forward-in-time simulation library called Libgdrift, specially designed to create large sets of replicated
simulations. Our simulation library uses code optimizations such as spatial locality and a two-phase data
compression approach which allow fast simulation executions, while reducing memory storage. Results
show that our proposal can improve the performance reported by well-known simulation software.

1 INTRODUCTION

Computer simulations allow us to understand the elements and patterns that can alter a system and can
be used to study complex processes, including those that are analytically intractable. Furthermore, the
simulation of multiple stochastic replicates may provide the variability required to study different processes,
such as the genetic variation in natural populations. In this context, simulation is a fundamental tool for
analyzing how basic evolutionary forces such as natural selection, recombination, and mutation can shape
the genetic landscape of a population.

There are three basic simulation approaches commonly used for simulating evolutionary population
and evolutionary genetics: (1) backward-in-time also known as coalescent theory, (2) forward-in-time also
known as individual-based simulations (usually driven by genetic drift algorithms), and (3) resampling
(Yuan et al. 2012). The coalescent theory (Kingman 1982) propose that the genetic sequences of a
given population with some characteristics like genetic variability and neutral genes, should have had
only one common ancestor. Thus, this approach starts from the observed sample of the population in
the present and works backwards to infer the genetic history of the population. On the other hand, the
forward-in-time simulations focuses on individuals. Everyone in the simulated population undergoes a life
cycle: birth, selection, mating, reproduction, mutation, migration and death. The simulation starts from an
initial ancestral population and then tracks the evolution of the individuals of the population generation
by generation under various demographic and genetic forces, such as: mutation, selection, recombination,
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fluctuations in the population size and migration. Finally, the resampling approach usually does not require
to manage evolution and demography, it randomly generates samples from existing data sets.

In this work, we focus on forward-in-time simulations driven by genetic drift algorithms, because it
allows to simulate genetic samples under complex realistic demographic scenarios. In other words, forward-
in-time simulations are not restricted by any assumption. Genetic drift is one of the basic mechanisms of
evolution. It describes random fluctuations in the numbers of gene variants in a population. It is used to
represent the situation when some individuals may - by chance - leave behind a few more descendants than
other individuals. Then it can provoke large changes in populations over a short period of time.

We present the Libgdrift library which aims to reduce the running time and the amount of memory
required to run a forward-in-time simulation. Our optimized library is based in a two-phase compression
approach. Compressing consists of encoding a sequence as a concatenation of sub-sequences from a given
reference sequence. Then, in the first phase we apply a quaternary base conversion to allocate four DNA
nucleotides per byte. In the second phase, given a reference sequence, instead of copying the reference
sequence to each individual of the population, we accumulate its mutations. Moreover, our proposed
library is optimized to take advantage of data locality. To evaluate the Libgdrift library we simulate
Wright-Fisher model where each individual has one gene, and at every generation the population dies but
another one is born at the beginning of the next generation, so the population size remains stable. We
compare the performance achieved by our proposal to other well-known simulation software. Results show
that the Libgdrift library can reduce the simulations running times by 20% in the worst case (when
the mutation rate is too low, about 1e-9).

The remaining of the paper is structured as follows. Section 2 provides related works. In Section 3,
we present the Libgdrift simulation library. Section 4 describes the two-phase compression approach
used in the library. Section 5 presents the experimental results and Section 6 presents concluding remarks.

2 RELATED WORKS

2.1 Forward-in-time Population Genetics Simulations

There are various forward-in-time population genetics simulators presented in the technical literature like
the Fwdpp, AnA-FiTS, Forqs, SLiM and SLiM 2, AdmixSim and XSim among others. AnA-FiTS
(Aberer and Stamatakis 2013) is a highly-optimized forward-in-time simulator software of population
genetic datasets. With AnA-FiTS, neutral mutations are produced at the end of the forward-in-time
simulation by keeping a track of the entire ancestry of all surviving individuals on a graph structure.

Forqs (Kessner and Novembre 2014) is a forward-in-time simulation of recombination, quantitative
traits and selection. Forqs uses a haplotype-based approach, i.e. instead of using a mutation-centric
approach (keeping track of single-site variants), keeps tracks of individual haplotype chunks as they
recombine over multiple generations.

GeneEvolve (Tahmasbi and Keller 2017) is a user-friendly and efficient population genetics simulator
that handles complex evolutionary and life history scenarios. It generates individual-level phenotypes and
realistic whole genome sequence or SNP data. GeneEvolve is a forward-in-time simulator which
provides a wide range of scenarios for mating systems, selection, population size and structure, migration,
recombination, and environmental effects.

AdmixSim (Yang et al. 2016) is a forward-in-time simulator based on the Wright-Fisher model,
capable of simulating admixed populations with: 1) multiple ancestral populations; 2) multiple waves of
admixture events; 3) fluctuating population size; and 4) fluctuating admixture proportions. XSim (Cheng,
Garrick, and Fernando 2015) is a software developed to efficiently simulate sequence data in descendants of
arbitrary pedigrees, and XSim implements a strategy to drop-down origins and positions of chromosomal
segments.
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Fwdpp (Thornton 2014) is a C++ library intended to facilitate the implementation of forward-in-time
population genetics simulations by abstracting basic operations required for simulating custom models. It
provides generic procedures for random sampling, mutation, recombination, and migration.

SLiM (Messer 2013) is an efficient forward population genetic simulation designed for studying the
effects of linkage and selection on a chromosome-wide scale. The program is aimed to simulate complex
scenarios of demography and population substructure, various models for selection and dominance, realistic
gene structure, and user-defined recombination maps. SLiM 2 (Haller and Messer 2017) is an evolutionary
simulation framework that combines a powerful, fast engine for forward population genetic simulations
with the capability of modeling a wide variety of complex evolutionary scenarios. One of the main features
of SLiM 2 is scriptability which allows most aspects of the simulation to be tailored and customized.
Furthermore, SLiM 2 have a graphical user interface called SLiMgui which allows an interactive scripting
experience that makes development and testing of simulations vastly easier.

In this paper, we compare the performance achieved by our proposal to the performance reported by
the Fwdpp (Thornton 2014) and the SLiM 2 (Haller and Messer 2017) software which showed good
performance in terms of running time and memory storage.

2.2 Reference-based Genome Compression Approaches

Even the smallest genome sequences are large enough for computer representation, therefore, significant
memory space is required for their storage. To tackle this problem, compression techniques are used to
represent genome sequences (or any kind of data) using less memory size.

Chern et al. (2012) proposed an encoding algorithm composed of two phases: 1) generate a mapping
from the reference genome to the target genome (based on the LZ77 algorithm), and 2) the mapping is
compressed losslessly using an entropy coder. The decoder takes the compressed representation of the
mapping and decompresses it by inverting the original mapping.

Wandelt and Leser (2013) presented a general open-source framework aimed to compress large-scale
biological sequence data sets called Framework for REferential Sequence COmpression (FRESCO). FRESCO
implements three approaches for storing reference entries: a) standard LZ77-based - to encode a sequence
into a set of <match,length> pairs, b) optimized LZ77-based - similar to the previous but stores the
original text when the length of the match is too small, and c) to encode each match into a reference as a
triple <match,length,ncfm> (ncfm, next character following the match). The compression algorithm
consists of matching prefixes of the target with sub-strings of the reference using a compressed suffix tree
on reference. Furthermore, authors discuss three methods to increase compression ratios: selection of a
good reference, rewriting a reference, and second-order compression.

The Genotype Query Tools (GQT) is proposed in (Layer et al. 2015) as a new indexing strategy and
powerful toolset that enables interactive analyses based on genotypes, phenotypes and sample relationships.

An algorithm called ERGC (Efficient Referential Genome Compression), is presented in (Saha and
Rajasekaran 2015). The ERGC algorithm is based on a reference genome and it is composed by the following
stages: 1) to divide the reference and the target into equal-sized partitions, 2) to align each corresponding
partition by using their algorithm based on hashing, and 3) to compress the starting positions and matching
length using delta encoding. A new compression algorithm for collections of RNA-seq reads is presented
in (Kingsford and Patro 2015). In (Nicolae, Pathak, and Rajasekaran 2015), the authors presented a lossless
non-reference based FASTQ compression algorithm called LFQC (Lossless FASTQ Compressor). Zhang
et al. (2015) proposed a lossless reference-based method namely FQZip for the compression of NGS data in
FASTQ format. Later the authors presented a lossless light-weight reference-based compression algorithm
namely LW-FQZip to compress FASTQ data (Zhang et al. 2015).

An algorithm called NRGC (Novel Referential Genome Compressor) is presented in (Saha and Ra-
jasekaran 2016). The algorithm is based on a user-defined reference genome. In (Shi, Zhu, and Samsudin
2016) is proposed a reference-based compression method RDC for genome data in FASTQ format.
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A general graph data structure is presented in (Ruths and Nakhleh 2013). The proposed data structure is
devised for compressing the genotype space explored during a simulation run, along with efficient algorithms
for constructing and updating compressed genotypes which support both mutation and recombination.

Good reviews on compression methods specialized for genome and reads compression and comparison
of high-throughput sequencing data compression tools can be found in (Sardaraz, Tahir, and Ikram 2016),
(Deorowicz and Grabowski 2013), (Numanagic et al. 2016), (Zhu et al. 2015).

3 GENETIC DRIFT LIBRARY

The Libgdrift(https://github.com/robertosolargallardo/libgdrift) simulation kernel is a C++ library de-
veloped to simulate forward-in-time population genetics based on the Wright-Fisher model. Libgdrift
provides a set of basic operations that may be combined to model and simulate arbitrary complex demo-
graphics scenarios. The summary of basic operations provided by Libgdrift is described as follows:
create; to generate an initial fixed-size population, split; to emulate the partitioning of a population into
different isolated populations (genetic divergence), merge; to combine a set of populations into a new
unique population, decrease and increase; to emulate the variation in the population size (a decrease
operation followed by an increase operation replicate a bottleneck effect), migration; to emulate the phys-
ical movement by individuals from one area to another (founder effect); and extinction; to emulate the
death of all individuals of a population. A scenario consists of a set of basic operations (events) applied
to populations organized as a sankey diagram, as shown in Figure 1, where nodes -colored rectangles-
represent events and links -gray areas- represent populations. At the bottom of the figure, the values t0 . . . t3
represent the time the event should have occurred. A sankey diagram is a specific type of flow diagram in
which the width of the links is shown proportionally to the flow quantity.

Figure 1: Sankey diagram.

The individuals of a population are characterized by their ploidy (number of sets of chromosomes),
and a set of chromosomes that are composed by a set of genes. Genes may be either short tandem repeat
(STR) (also known as microsatellite); tandem repeats of short DNA motifs (between 2 and 5 base pairs
that are repeated several times), or single-nucleotide polymorphism (SNP); variation in a single nucleotide
that occurs at a specific position in the gene. We choose these types of genetic markers since are the most
frequently used for generating genetic datasets in population genetics simulations. A genetic recombination
occurs at gene level (intra-locus recombination is not yet supported). Furthermore, Libgdrift supports
several mutation models: JC69, K80, F81, HKY85 and TN93 for SNP, and stepwise mutation model for
STR. The Libgdrift library parses an input simulation specification document written in JSON to then
run the simulation. Summary statistics over samples of populations are computed. Typically, summary
statistics computed over samples correspond to diversity indices, such as: number of distinct haplotypes,
number of segregating sites, mean and variance of pairwise differences, Tajima’s D statistics, mean and
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variance of the numbers of the rarest nucleotide at segregating sites, number of private segregating sites,
etc.

3.1 Performance Code Optimizations

Libgdrift aims to perform as-fast-as-possible forward-in-time simulations by implementing performance
improvement code optimizations, such as: a) recycling and reusing allocated memory; to reduce the
memory allocation overhead, b) using principles of spatial and temporal locality of reference; to amortize
the high cost of memory accesses (cache-friendly code), and c) two-phase gene compression; to reduce
the overall usage of main memory.

3.1.1 Cache-friendly Code

A cache-friendly code is a concept tightly coupled with the principle of locality. The cache-friendly code
attempts to keep accesses contiguously allocated into memory so that you minimize cache misses (at CPU
level). Caching is one of the main methods to reduce the impact of latency (CPU idle time). We adapt our
data structures and temporal order of computations in order to maximize the use of the cache. All internal
Libgdrift objects are stored into array-like structures (std::vector or native C++ arrays), and are
contiguously allocated into memory during the execution of the simulation. Furthermore, we adapt the
main simulation cycle in order to avoid unpredictable branches and, as a consequence, the algorithmic
complexity is significantly reduced (as shown in Section 3.1.3).

3.1.2 Recycling and Reusing Allocated Memory

A disadvantage of forward-in-time simulations is the way populations are handled during generation to
generation transitions. Classical approaches create copies of each population to perform each transition.
This is highly expensive in terms of memory allocation and it is even worst as the population size increases.

In this work, we propose to maintain two copies of each simulated population during the simulation: a
source population popsrc and a destination population popdst . While random sampling is performed over
popsrc, offspring individuals are stored into popdst . At the end of the generation and right before the next
generation, populations popsrc and popdst are swapped. This code tweak helps us to reduce the number of
memory allocations from N ∗G to 2N - where N is the population size and G is the number of generations
- thus, our method is independent of the amount of generations. The size of a population popsrc and popdst
is increased iff the increase event is triggered.

3.1.3 Our Point Mutations Approach

A point mutation is a random change in one or a few base pairs in a SNP. Point mutations occurs during
DNA replication and may involve a single base pair substitution, insertion or deletion. In forward-in-time
simulations, the most compute-intensive section is the main simulation cycle, in which the transition
between generations is performed while mutations per gene are evaluated by generating a random number
per nucleotide, as described in Algorithm 1.

In this work, we propose to intervene the main simulation cycle in order to avoid unpredictable branches.
Our point mutation approach consists of performing point mutations at the end of each generation instead
of evaluating each gene per individual. To this end, we draw a random number from a binomial distribution
Bi = binomial(n, p), with n = N ∗L(gi) and p = µi, where L(gi) is the number of nucleotides of gene gi, N is
the population size and µi is the mutation rate of gene gi. The value of Bi indicates the total number of point
mutations to be performed at the gene gi, as shown in Algorithm 2. We use a binomial distribution because
it models the possible number of times that a particular event can occur in a sequence of observations.
Particularly, by using this approach allows us to reduce significantly the algorithmic complexity of the
main simulation cycle from O(N ∗ nG ∗L(gi)) to O(N)+O(Bi ∗ nG ∗L(gi)), where nG is the number of
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Algorithm 1 Main simulation cycle.

for j = 0 to N do
individual = popsrc[random[0,N)]
for i = 0 to nG do

for k = 0 to L(gi) do
if random[0,1] < µi then

mutate(individual.gi[k])
end if

end for
end for
popdst [ j] = individual

end for

genes and taking into account that Bi ≪ N.

Algorithm 2 Improvement to the main simulation cycle.

for j = 0 to N do
popdst [ j] = popsrc[random[0,N)]

end for
for i = 0 to nG do

Bi = binomial(N ∗L(gi),µi)
for j = 0 to Bi do

mutate(popdst [random[0,N)]).gi[random[0,L(gi))]
end for

end for

4 TWO-PHASE COMPRESSION APPROACH

One of the main features of Libgdrift is to include a two-phase compression approach: first-phase;
quaternary base conversion, and second-phase; reference-based gene compression.

4.1 Quaternary Base Conversion

Quaternary base conversion is a simple mechanism that consists of translating the four abbreviated DNA
nucleotides in alphabetical order by using a simple function for mapping them into quaternary digits in
numerical order as shown in Table 1. Since there are only four digits they can be represented by two binary
digits, this way we can store four nucleotides per byte. Examples of this conversion are shown in Table 2.
Thus, by using quaternary base conversion we reduce the memory usage approximately by 75% per sequence.

Table 1: Quaternary conversion of DNA nucleotides into base-4 digits.

Nucleotide Mapped value Bit representation
A 0 00
C 1 01
G 2 10
T 3 11
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Table 2: Example of a quaternary base conversion.

Nucleotides Quaternary Binary Byte
---C 0001 00000001 1
AGTA 0230 00101100 44
CGAT 1203 01100011 99
AGAT 0203 00100011 35
AGAG 0202 00100010 34
GGCA 2210 10100100 164

4.2 Reference-based Gene Compression

Reference-based compression consists of compressing a target genome given a known reference genome.
The simulation of population genetics is focused on generating artificial genetic material of individuals
of the same specie. Therefore, although the total size of the genome may be very large, each individual
has similar genome with small variations (mutations). In this work, we propose a reference-based gene
compression for simulation of large-scale population genetics scenarios. To this end, at the beginning of
the simulation Libgdrift builds a GenePool, a tree-based data structure in which all genes and their
variants are stored. Each variant points to a random generated gene of reference. Since individuals share
most of their genetic material, they do not explicitly store their genes as attributes (no copies of existing
instances), instead individuals point to GenePool entries.

Figure 2: Example of reference-based gene compression: It can be observed that GenePool holds two genes
(namely g0 and g1). Gene g0 has two variants denoted as e(0,0) and e(0,1) pointing to their gene of reference
r0. The variant e(0,0) of gene g0 indicates that individuals I0 and I1 have been affected by a nucleotide
substitution at position 1 by an A, and an insertion of a new nucleotide C at position 13. Whereas gene g1
also has two variants, where e(1,1) points the fact that a mutation of substitution of the nucleotide at position
12 occurred changing its value to A, and also a mutation deletion happened removing the nucleotide at
position 18.

2678



Sepulveda, Solar, Inostrosa-Psijas, Gil-Costa, and Marin

When a mutation is triggered at a e(i, j) (variant of gene gi), a new GenePool variant e(i,k) (k > j) is
created (or reused from the recycling bin). Each variant e(i,k) has a pointer to the gene of reference ri,
an internal control counter which indicates the number of individuals pointing it, and a list of mutations
< p, t, bp >, where p is the position where the mutation is performed, t is the type of point mutation
(substitution, insertion or deletion), and bp the new base pair (- when a deletion occurs). At the beginning
of each generation all control counters are decreased by 1. When an individual points to an entry, its
counter is increased by 1. At the end of the simulation all entries with counter equal to 0 are stored into a
fixed-size recycling bin for further utilization.

5 EXPERIMENTAL RESULTS

In this section we present the evaluation of the Libgdrift and compare its results to other state of the art
alternatives. All of the C++ code were compiled using gcc version 5.3.1. Peak memory usage was measured
by using ”massif ”, a memory profiler which is part of the valgrind tools. Experiments were executed in the
Leftraru Cluster from the National Laboratory for High Performance Computing (http://usuarios.nlhpc.cl/),
Chile (NLHPC). The cluster is composed of four HP ProLiant SL250s Gen8 fat nodes and 128 HP ProLiant
SL230s Gen8 thin nodes, all of them running Red Hat Enterprise Linux Server release 7.3. Nodes are
interconnected by an Infiniband FDR 4X Mellanox 56Gbps network. Details about the nodes hardware is
detailed in Table 3.

Table 3: Nodes hardware.

Node Model Processor Qty Cores per Processor RAM
HP ProLiant SL230s Gen8 Intel Xeon E5-2660 2 10 48GB
HP ProLiant SL250s Gen8 Intel Xeon E5-2660 2 10 64GB

The simulation parameters used for the experiments correspond to: i) population size, ii) mutation rate
and iii) locus length. The values for the aforementioned parameters used in the experiments correspond
to a population size of 1000 individuals, 1000 generations, mutation rates with values 1e−6, 1e−7, 1e−8
and 1e−9, and locus lengths of 1MB, 10MB and 1000MB. The performance metrics were obtained
from the average of 100 executions. Execution times were obtained by taking measuring the code using
std::chrono from C++11 at milliseconds level. For that purpose, the code was instrumented to take
time measures on the isolated code segment that corresponds to the part where simulation cycles occur.
This procedure was performed to the code of each analyzed simulator.

On one hand, Figure 3(a) shows the mean run time obtained for all simulators using a locus of length
of 1 Megabyte. We observe that the mean run time of Libgdrift is lower than the other simulators
for all cases. Specifically, is 20.423%, 29.246% and 89.548% faster than Slim2 when using mutation
rates of 1e−9, 1e−8 and 1e−7 respectively. The best performance in terms of run time is achieved
by Libgdrift and occurs for a mutation rate of 1e−6, where our proposal is 6.802 times faster than
GPPGLib. This advantage is taken from the reduction of the algorithmic complexity of the simulation
cycle since the evaluation of mutations is performed at the end of each generation. Moreover, due to this
we may appreciate that as the mutation rate is increased the advantage between Libgdrift and the rest
is increased as well. On the other hand, Figure 3(b) shows the peak of memory usage obtained for all
simulators using a locus of length of 1 Megabyte. We observe that Libgdrift and fwdpp have similar
behavior in terms of memory usage. For mutation rates of 1e−9, 1e−8 and 1e−7, fwdpp uses 18.5674%
37.1215% and 29.3841% less memory respectively, but using a high mutation rate (1e−6), Libgdrift
show a gain of 54.8879% (note that all graphics are in logscale in both axis). This advantage shows the
effectiveness of our reference-based gene compression approach.
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Figure 3: Locus Length 1 MegaByte.
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Figure 4: Locus Length 10 MegaByte.

On one hand, Figure 4(a) shows the mean run time obtained for all simulators using a locus of length
of 10 Megabyte. We observe a similar behavior in comparison with the previous case (locus of length of 1
Megabyte). Libgdrift overcomes by 31.4051%, 80.9903% and 1004.63% to Slim2 for mutation rates
of 1e−9, 1e−8 and 1e−7 respectively, and by an 460.617% to GPPGLib for a mutation rate of 1e−6.
Furthermore, we may appreciate that as the locus length is increase, the gain in terms of acceleration is
increased as well, although that the gap between Libgdrift and GPPGLib is reduced when we use a
mutation rate of 1e−6. On the other hand, Figure 4(b) shows the peak of memory usage obtained for all
simulators using a locus of length of 10 Megabyte. In this case, fwdpp uses 553.515% and 206.011% less
memory than Libgdrift for mutation rates of 1e−9 and 1e−8 respectively. This behavior is explained
by the fact that our proposal explicitly stores the sequence of reference to be able to apply mutation
models, whereas other alternatives presented here do not explicitly store the DNA sequence. Nevertheless,
Libgdrift uses a quaternary base conversion approach for nucleotide representation allowing us to use
only two bits to store one nucleotide, that is, it requires just 0.25∗ locus length bytes to store the sequence
of reference into memory.Nevertheless, for high mutation rates; 1e−7 and 1e−6, Libgdrift overcomes
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Figure 5: Locus Length 100 MegaByte.

Table 4: Perf (http://web.eece.maine.edu/vweaver/projects/perf events) statistics with locus length of 100
MB.

Library LLC load misses L1 dcache load misses
SLiM2 2E+11 2,9E+11
fwdpp 2E+10 4,3E+11

GPPGLib 3E+10 9,5E+10
libgdrift 1E+09 1,1E+10

to fwdpp for 32.8064% and 138.192% respectively. These results demonstrate us that Libgdrift uses
an better approach for managing mutations.

The last experiment was executed using a locus of length of 100 Megabyte. Figure 5(a) shows the
mean run time obtained for all simulators. We appreciate a similar trend to both previous cases but the gap
between the Libgdrift curve and the rest is increased for high mutation rates. In this case, Libgdrift
is 132.494% and 1065.2% faster than Slim2when we use low mutation rates; 1e−9 and 1e−8 respectively,
and 1021.34% and 1667.06% faster than GPPGLib when we use high mutation rates; 1e−7 and 1e−6
respectively. This last experiment demonstrates that Libgdrift increases its performance with large-scale
workloads in comparison with the rest of simulators. Figure 5(b) shows the peak of memory usage obtained
for all simulators. On one hand, we observe that fwdpp shows a good performance in terms of memory
usage for low mutation rates; 1e−9 and 1e−8 with 1973.24% and 78.8292% of advantage respectively
(because we store the sequence of reference). On the other hand, Libgdrift shows a gain in term of
memory usage in comparison with fwdpp of 99.4402% and 125.778% for high mutation rates; 1e−7 and
1e−6.

Finally, in Table 4 we show the statistics related to the last level cache (LLC) load misses and the
L1 data cache load misses. In all cases, our proposal reports fewer misses than the other libraries. In
particular, for the LLC our proposal reports 0,6% of the total misses reported by the SLiM2, and for the
L1 the Libgdrift reports 2% of the total misses reported by the fwdpp.

6 CONCLUSIONS

In this paper, we presented a new library named Libgdrift for forward-in-time population genetics
simulations. Our proposal is devised to improve the performance of the simulations. In other words, we aim
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to reduce the running time and at the same time the memory storage required to run the simulations. The
Libgdrift library is based on a two-phase compression technique which allows to store four nucleotides
per byte, which helps to significantly reduce the amount of memory required during the execution of each
simulation.

To evaluate our proposal, we simulated the Wright-Fisher model. Results show that the Libgdrift
simulation library can dramatically reduce the running time and the memory storage required by other
well-known simulation software. Our contribution consists in a successful acceleration of forward-in-time
simulation algorithms.

As future work we plan to include a three-phase compressing approach with second order compression
(by compressing the gene of reference), and to study the effect of making effective mutations when the
number of accumulated mutations overcomes a predefined threshold. Also, we will evaluate other models
to study the flexibility of our library and implement the algorithm in a GPU based and/or Xeon Phi
co-processor version.
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