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ABSTRACT 

A flying aircraft produces two coherent rotating vortices of air in its trail. If another aircraft flies into one 

of these vortices, it can experience an un-commanded roll. Because of the potential risk, wake separation 

standards exist to significantly reduce the probability of such events. Thus, wake encounters are inherently 

rare. As new procedures and technologies are proposed to increase the capacity of the airspace, rare-event 

simulation is necessary to evaluate to the safety of proposed changes. This paper  explores the performance 

of a rare-event splitting technique in the context of estimating probabilities of potential wake encounters. 

The goal is to identify good strategies for the splitting method while using a relatively simple model for the 

wakes. Suggestions for the choice of the level function and the locations of levels are given.  

1 INTRODUCTION 

When an aircraft flies, it produces two coherent rotating vortices of air in its trail. These vortices can persist 

for several minutes at high altitudes. If another aircraft flies into a wake vortex, it can experience an un-

commanded roll. Because of the potential risk, wake separation standards – which specify a minimum 

distant or minimum time between aircraft – exist to significantly reduce the probability of such events. 

Thus, wake encounters are inherently rare events.  

 While separation standards ensure safety, they also impose a limiting constraint in terms of increasing 

capacity of the airspace system. As new procedures, concepts, and technologies are proposed to improve 

airspace capacity, such changes must be demonstrated to be safe prior to implementation. Thus, common 

questions arise: Will a given procedure maintain the same level of safety that is observed today with respect 

to wake vortices? What is the minimum separation that can be achieved while still maintaining a given level 

of safety? Addressing such questions often involves Monte-Carlo simulation of rare events. 

 The main problem in estimating very small probabilities by standard Monte Carlo simulation is 

efficiency – to get a reasonable estimate of the probability, a huge number of simulation replications is 

needed, which might be too time consuming depending on the complexity of the system. For example, a 

simulation of several thousand flights might generate zero simulated encounters. In the literature, two 

common methods for rare-event simulation are splitting and importance sampling (e.g., Rubino and Tuffin 

2009). 

 The objective of this paper is to explore the performance of rare-event splitting techniques to estimate 

probabilities associated with wake encounters models. The goal is to identify good strategies for the 

splitting method while using a relatively simple model for the wakes. Future work will adapt the 

methodology to more complex wake models. The splitting method has been applied to other real world 

problems such as collision risk in aviation (Blom et al. 2006, Blom, Bakker, and Krystal 2009, de Oliveira 

et al. 2010), cascading blackouts (Shortle 2013), queueing networks (Garvels 2011) and network reliability 

(Murray, Cancela, and Rubino 2013). 
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The  risk of wake vortex encounters has been studied extensively in the terminal area during take-off  

and landing. One example a simulation-based risk assessment approach for landing aircraft is given in Kos 

et al. (2001).  Fewer studies have focused on wakes at cruise altitudes. One approach is to combine track 

data, which can either be historical surveillance data or synthesized tracks generated from a computer 

simulation, and a model of wake vortex behavior, such as the model from Robins and Delisi (2002). 

Hoogstraten et al. (2015) developed a simulation framework using recorded track data and a wake 

simulation model to analyze the risk of wake turbulence in upper airspace. Results include estimating the 

probability of encounter, determining the main factors contributing to risk and recommending mitigating 

measures. It was found that encounter geometry is an important contributing factor after weight, and most 

encounters happen when one or both aircraft are climbing or descending. Nelson (2006) reviewed a number 

of studies related to en-route wakes and argued that en-route encounters are likely to increase over time 

with increasing disparity in aircraft sizes (e.g., super heavy aircraft which generate powerful wakes sharing 

airspace with very light jets which are more susceptible to wakes).  

2 AIRCRAFT DYNAMICS AND WAKE VORTEX MODEL 

2.1 Aircraft Model 

In this paper, aircraft are modeled as point masses, where aircraft states include the along-track position, 

along-track airspeed, across-track position, and altitude. We consider the acceleration of each aircraft as 

the control parameter in the along-track dimension. Movements of the aircraft in all three dimensions are 

assumed to be independent from each other. An example of a more complex model with six coupled state 

variables, derived from basic aerodynamic principles, is given in Glover and Lygeros (2004). 

2.1.1 Along-Track Movements  

Our model simulates two aircraft – a leading aircraft and a trailing aircraft. Different control laws govern 

the along-track movements of the two aircraft. The leading aircraft tries to maintain a preferred target speed 

without considering the position or the speed of the trailing aircraft. Conversely, the trailing aircraft adjusts 

its velocity to maintain a target separation from the leading aircraft using a proportional-derivative (PD) 

controller. To model the along-track movement of the leading aircraft, we adopt the Ornstein-Uhlenbeck 

(OU) process to control the velocity, which is given by the following stochastic differential equation:  

 

( )l l tdv v dt dW      . 

 

Here, vl is the velocity (airspeed) of the leading aircraft,  is the target velocity,  is the reversion rate,  is 

the volatility parameter and Wt is the Wiener process (standard Brownian motion). Under this process, 

random perturbations occur, but the process is mean reverting, so the velocity tends to return to the preferred 

target average. In steady state, it can be shown that the velocity has a normal distribution with mean  and 

variance 2/2. The reversion rate and volatility parameter can be chosen so that the velocity stays in a 

desired interval around the target velocity with some specified probability. 

For the following aircraft, a PD controller is used to make the trailing aircraft track the leading aircraft 

as the reference point. The trailing aircraft tries to maintain a desired along-track separation D and to fly at 

the same speed as the leader. This yields the following stochastic differential equation 

 

( ) ( )f p l f d l f tdv k x D x dt k v v dt dW      , 
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where xf and vf (xl and vl) are the along-track position and velocity of the following (leading) aircraft, and 

D is the desired along track separation. In steady state, it can be shown that the mean and variance of the 

along track separation between the leading and trailing aircraft are 

[ ]l fE x x   and  
2

var[ ]
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l f

p d
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k k


  , 

and the variance of  the velocity of the following aircraft is 
2

var[ ]
2

f

d
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k


 . 

Using these results, the parameters kd, kp, and  can be chosen so that the aircraft separation and velocity 

have some prescribed variability. 

2.1.2 Vertical Movements 

For the vertical dimension, each aircraft tries to maintain a target altitude. A similar mean reverting OU 

process, with parameters z, z and z, is used to model vertical position. The parameters are chosen so that 

each aircraft remains within h feet of the target altitude 95% of the time. The stationary distribution is a 

normal distribution where the half-width of the 95% bound is 1.96𝜎𝑧/√2𝜌𝑧  = ℎ. Figure 1 shows a sample 

path of vertical movements of an aircraft. The axes are not to scale, and the actual motion would be 

represented as a smoother curve. 

 

Figure 1: Sample path for vertical trajectory of an aircraft (axes not to scale). 

For two aircraft in trail, both zl and zf (the altitudes of the leading and trailing aircraft) have normal 

distributions with mean z and variance 𝜎𝑧
2/2𝜌𝑧 so the relative vertical position of the trailing aircraft to 

the leading aircraft zl – zf has a normal distribution with mean zero and variance 𝜎𝑧
2/𝜌𝑧, since the vertical 

movements of the aircraft are assumed to be independent. Figure 2 shows a snapshot of the steady-state 

relative position of two aircraft in the along-track and vertical dimensions. The figure is obtained by 

simulating trajectories of 50,000 pairs of aircraft, according to the previously described control laws for 30 

simulated minutes, and recording their relative position at the end of the simulation. Figure 3 shows 

normalized histograms for the along track and vertical distances of the aircraft in steady state. The fitted 

probability density function matches the theoretical probability density function.  

2.1.3 Lateral Movements 

Similar to the vertical dimension, we use a mean reverting OU process for modeling the lateral motion of 

aircraft. This dimension is treated independently of the other two dimensions. The parameters of the process 

are again chosen in a way such that specified navigation performance targets are met (e.g., the aircraft 

remains within a certain distance of the centerline 95% of the time). 
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Figure 2: Snapshot of relative location of aircrafts in steady state.  

 

 Figure 3: Histograms for relative positions (along track and vertical) in steady state. 

2.2 Modelling the Wake Vortex Region 

Every aircraft in flight generates wake vortices as a by-product of generating lift. The pressure difference 

below and above the wings causes the high pressure air from below the wing to go around the wingtip into 

the region where there is lower pressure above the wing. This rollup generates counter-rotating vortex trails 

from the wingtips. Wake vortices generally descend in altitude and can persist for several minutes. 

Wake vortex behavior can be quite complex. Factors affecting the wake behavior include the weight, 

air speed, wing shape and wing span of the generating aircraft as well as meteorological conditions such as 

air density, wind speed, wind direction, turbulence, and temperature stratification. A variety of models have 

been developed in the literature to capture this behavior (e.g., Robins and Delisi 2002). Many of these 

models involve numerically solving a set of differential equations. One challenge is that embedding these 

models into a simulation requires resolving the system of differential equations at every time step for every 

active aircraft in the simulation. This is because each new time step results in a new set of initial conditions 

and a new “starting point” for the wake of each aircraft. An aircraft may change altitude, heading, or 

airspeed at each time step resulting in new initial conditions for the wake. 

The purpose of this paper is to provide a proof-of-concept and some preliminary results on using a rare-

event splitting method in estimating the probability of potential wake vortex encounters. Since the focus is 

on implementation of the rare-event simulation methodology, the wake model is simplified as much as 
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possible. This characterization allows us to focus tests on basic properties of the splitting methodology. 

Future work will embed the more complicated models into this framework. 

We first consider a two dimensional model in which only along-track and vertical movements are 

considered for the aircraft (lateral movement is ignored). Wang and Shortle (2012) have shown via 

sensitivity analysis that the variability parameters in these two dimensions are key parameters in terms of 

reducing encounters. Figure 4 shows a high level geometric model of the wake region, characterized by a 

triangle in two dimensions. The dimensions of the region – namely the length of the wake region, the 

minimum predicted descent, and the maximum predicted descent – may be different for different aircraft 

with different velocities at varying meteorological conditions. The region does not predict the exact position 

of the wake, but rather defines an area that is likely to contain the wake. So if another aircraft enters the 

triangle, it may or may not hit the wake. We refer to these events as potential wake encounters. 

 

 

Figure 4: Wake region behind the leading aircraft in two dimensional model. 

 In the three-dimensional model we allow for lateral movement. In higher altitudes, the vortices remain 

spaced slightly less than a wingspan apart, drifting with the crosswind. To take into account the possible 

lateral drift of the wake vortices, the 3D model is a polyhedron in shape of a wedge which is shown from 

different views in Figure 5. The maximum lateral drift is an input for the model. The symmetry of  the 

model assumes that the crosswind is unknown with equal uncertainty in either direction. 

 

Figure 5: Wake region behind the leading aircraft in 3D model. 

Top view Side view

y
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3 SPLITTING METHODOLOGY 

The main challenge in using standard Monte Carlo simulation to estimate rare event probabilities is 

computation time. A typical approach is to simulate n i.i.d. replications and let Xi = 1 if the event occurs, 

and 0 otherwise. Then  𝛾 = ∑ 𝑋𝑖
𝑛
𝑖=1 𝑛⁄  is an unbiased estimator of the event probability , with var[𝛾] = 

(1 – ) / n. For a rare event, the relative error, which is the standard deviation of the estimator divided by 

its mean, is approximately 1 √𝛾𝑛⁄ .  For example, if  = 10-9, then to achieve a relative error of 10% requires 

at least 1011 replications, which may be intractable, particularly if the simulation time for each replication 

is non-trivial. Thus, other methods are needed. 

The main idea of the splitting technique (e.g., L’Ecuyer et al. 2009) is to split the simulation into 

separate independent runs when trajectories get “near” the rare event. This tends to focus computation effort 

on runs that are more likely to hit the rare event. One advantage is that the probability laws of the system 

remain unchanged and so the stochastic model capturing the system evolution can be developed 

independent of the splitting method.  

 We define our problem similar to the basic setting of splitting problems in the literature. We have a 

stochastic process X ≡ {Xt, t ≥ 0} with state space , where Xt is a strong Markov process. In our case, Xt 

consists of the positions and airspeeds of each aircraft (see state variables defined in the previous section). 

We define two disjoint subsets of , S and W, where W is the rare event set and S is a set of “safe” states 

considered as initial conditions to the simulation. In our case, the rare-event set W is the wake region. The 

set S is defined as a region that is behind and above the leading aircraft (Figure 6), where the lower right 

corner of the region is the target location of the trailing aircraft. 

 

 

Figure 6: Side view of the wake region behind the leading aircraft. 

The process starts at some state on the boundary of the safe set. It then leaves S and either eventually 

returns to S or reaches W. The goal is to estimate the probability  that a trailing aircraft enters W prior to 

returning to S, starting from a point on the boundary of S. Since the process tends to revert to the lower 

right-hand corner of S, the termination time of the simulation is not an issue. The rare-event probability is 

 
Pr{ ( ) reaches wake region before returning to safe region |

trailing aircraft has just left safe region}.

X t 
 

 

 To implement splitting, a set of intermediate level sets must be defined (as an example, see Figure 8). 

The simulation splits whenever it gets to a new level. We define a sequence of m levels {l0, l1, l2, …, lm} 

such that l0 is the boundary of S and lm is the boundary of W. Let Dk be the event that the trailing aircraft 

x (nautical miles)

z (ft)
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crosses level lk before returning to the safe state. Let p1 = Pr{D1} and pk = Pr{Dk | Dk-1} for k = 2, …, m.  

That is, pk is the probability of crossing level k given that level k-1 has been crossed. Since 𝐷𝑀 ⊂ 𝐷𝑀−1 ⊂
⋯ ⊂ 𝐷1, the probability of reaching the rare event before returning to the safe state is  = Pr{Dm} = 

Pr{D1}Pr{D2|D1} … Pr{Dm|Dm-1} = p1p2…pm. 

There are several variations of splitting described in the literature. A brief review of these variations 

can be found in L’Ecuyer et al. (2009). We use a fixed-effort splitting method, where the number n of 

simulation runs from each stage are fixed and pre-selected. In the first stage, we start n independent runs 

from the initial states (i.e., the boundary of the safe set), where the initial states are randomly generated 

based on the steady state probability distribution for the relative position of the trailing aircraft. At time 

zero, the leading aircraft is assumed to be at a fixed point. At each time step we update the position and 

velocity of both aircraft and continue until the relative position reaches level 1 or returns to the safe set. If 

the run reaches level 1, the simulation is stopped and the end state is saved in a set called L1. Let R1 be the 

number of runs reaching the first level. The probability of reaching level 1 is estimated as 𝑝1̂ = 𝑅1 𝑛⁄ .  In 

stage k ≥ 2, the initial states are generated by randomly sampling n states with replacement from the set Lk-

1. Each run is simulated independently until it reaches level k or goes back to level k-2, in which case the 

run is truncated. This is done to reduce time simulating trajectories back to the safe set.  

In doing this truncation, we have to correct the bias. This is done as follows. For each stage k, we 

randomly sample rk chains from all the killed chains in the stage, where rk is a pre-selected integer. For 

these selected chains, we continue simulating them until they return to the safe set or reach level k. Every 

chain that reaches level k gets a weight Wk = Mk / rk, where Mk is the number of killed chains in that stage. 

For example, if we have Mk = 100 killed chains and we select rk = 5 of these to simulate to completion, then 

each of these is representative of 100/5 = 20 killed chains. Therefore if a sampled chain reaches level k, it 

is cloned to ⌊𝑊𝑘⌋ or ⌊𝑊𝑘⌋ + 1 copies (since the number of copies must an integer), with probabilities 𝛿 =
𝑊𝑘 − ⌊𝑊𝑘⌋ and 1 − 𝛿 respectively. For k > 2, the probability of reaching level k form level k-1 is estimated 

as (Rk + Wk Sk) / n, where Rk is the number of chains that reach level 𝑘 without down crossing level k-2 and 

Sk is the number of chains that reach level k after down-crossing level k-2.   

4 TEST CASES AND RESULTS 

4.1 Test Case 

To test our methodology we consider a pair of aircraft in cruise phase. Using the NWRA AVOSS wake 

vortex prediction algorithm (Robins and Delisi 2002) we calculate approximate boundaries of our wake 

region. We choose a B737-800 aircraft as the leading aircraft, with a wing span of 34.32 m and a mass of 

66.36 tons (maximum landing weight). The altitude is set at 35,000 feet with air density equal to 0.38 kg/m3. 

The atmospheric parameters Eddy Dissipation Rate (EDR) and Brunt-Vaisala Frequency (BVF) are set to 

10-7 m2/s3 and 0 per second, respectively. Figure 7 shows the  predicted altitude and circulation of wake 

vortices using the AVOSS model with the selected parameters. The results are used as a rough reference 

point for setting the dimensions of the wake zone in Figure 4. 

Figure 7 : Decay and transport of wake vortices in time. 
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The leading aircraft flies at a target speed of 450 knots. The following aircraft flies on the same path 

maintaining a two minute separation (which equates to 15 nm) with a standard deviation of 5 seconds (.625 

nm). In the vertical dimension, the aircraft remain within 100 feet of the desired altitude at least 95% of the 

time.  

Assuming a critical circulation threshold of 180 m2/s for the back end of the wake zone equates to about 

100 seconds in Figure 7. We set the length of the wake zone as 12.5 nm, which is the distance equivalent 

of 100 seconds, assuming a speed of 450 knots. Since the trailing aircraft is trying to maintain two-minute 

separation, this corresponds to a 20-second buffer beyond the back end of the wake region. The altitude 

chart in Figure 7 indicates that the vortices descend about 135 m (or about 450 feet) in the first 100 seconds 

and about 325 m in the first 500 seconds (which equates to a rate of about 130 feet in 100 seconds). Since 

the shape of the wake region is assumed to be triangular (Figure 4), we use the initial descent rate (450 feet 

per 100 seconds) multiplied by 100 seconds to set the maximum predicted descent and the average descent 

rate (130 feet per 100 seconds) to set the minimum predicted descent.  

In simulating the motion of the two aircraft, we assume that the wake region is rigidly attached to the 

lead aircraft. That is, if the lead aircraft moves up, the entire wake region instantly shifts with it. In reality, 

only the portion of the zone very near the aircraft where the wake is generated would shift. Defining the 

wake region in this way is a simplification, but it eliminates the need for keeping a time history of the wake 

at each point.  In future work, this assumption will be relaxed using more complex wake models, though 

we do not expect the main results to change much. 

4.2 Splitting Schemes and Results 

The first splitting scheme is inspired by the triangular shape of the wake region and uses nested triangles 

around the wake region as intermediate levels (Figure 8). Two variations are implemented. In the first 

variation, the intermediate levels are evenly spaced in distance from each other. In the second variation, the 

intermediate levels are spaced in probability – meaning that the probability of reaching level j from level j-

1 is  approximately the same for all j. It should be noted that the probability of reaching level j depends on 

the starting point in level j-1 and not all points on the contour of a given level have the same probability of 

reaching the next level. 

 

 
Figure 8: Geometry of intermediate levels in first splitting scheme. 

Figure 9 shows the variance of the simulation estimator for different simulation experiments. The 

variance is proportional to the computation time required to achieve a given relative error, so an n-fold 

reduction in variance corresponds to an n-fold increase in simulation efficiency. Three different numbers 

of levels and two different level sets are used: 5, 7 and 10 levels and equal-distance and equal-probability 

levels. In each experiment, 100 replications are simulated with n = 2,000 runs simulated in each level for 

each replication. (For example, with 10 levels, each replication consists of 2,000 runs at each level for a 

total of 20,000 runs. With 5 levels, there are half as many runs. However, the levels are further apart, so it 

takes longer to simulate between one level and the next. So the total run time is similar in each case.) The 

Equally spaced in distance triangular levels Equally spaced in probability triangular levels

x (nautical miles)x (nautical miles)

z (ft) z (ft)
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levels that are evenly spaced in probability result in a smaller variance in comparison with levels that are 

evenly spaced in distance.  

 

Figure 9 : Sample variance using splitting with triangular intermediate levels. 

Figure 10 shows the level probabilities from the previous experiments – that is, the probability of 

reaching level j starting from level j-1 prior to returning to the safe set. The probability of reaching the first 

level is significantly smaller than the other level probabilities, even when we try to use levels that are evenly 

spaced in probability. This is a result of the difference in geometry between the boundary of the safe region 

where the simulation starts and the boundaries of the levels as shown in Figure 6. 

 

Figure 10: Level probabilities in 10-level and 7-level sets. 

To solve this problem, we introduce a different scheme for intermediate levels as shown in Figure 11. 

The idea is to have levels with similar geometry near the safe region boundary and then transition to levels 

with similar geometry to the wake region closer to the rare event. Figure 12 compares the variances achieved 

by this new level set with the variances achieved by the previous level set (nested triangles). This new 

scheme offers smaller variance and in this experiment is also about 2 times faster than the previous schemes 

due to simpler calculations that are needed to check if the trailing aircraft reached the first three intermediate 

levels.  

𝑝 𝑝 
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Figure11: New level sets for splitting method. 

In addition, a number of standard Monte Carlo simulation experiments are performed with a similar 

computing budget. The standard simulation approach is significantly less efficient than splitting, since no 

potential wake encounters are observed in any of these experiments (so the estimated encounter probability 

is zero). 

 

Figure 12 : Comparison of variances for 7 intermediate levels with different locations and geometries. 

Experiments with a three-dimensional model are done in a similar manner to the first splitting scheme 

adding a lateral dimension to the trajectories of the aircrafts and the boundaries of the wake region. Since 

aircraft are trying to remain at the centerline of the path and perturbations are not extreme, the lateral 

(across-track) deviation of the aircraft is not large enough to help the trailing aircraft avoid the wake region 

(which is conservative in size). The lateral dimension is unique in that the aircraft is trying to flying through 

the middle of the zone in this dimension. In the along-track and vertical dimensions, the aircraft is trying to 

fly behind and above the zone. The probability of a potential encounter is similar to the two dimensional 

model. 

5 CONCLUSIONS 

This paper demonstrated a proof-of-concept for using a rare-event splitting technique in simulating potential 

wake encounters. This work can be used in evaluating risk in high density environments where encounters 

Wake Region

Safe Region
Level 1

Level 2

Level 4

Level 3

x (nautical miles)

z (ft) 
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are more likely to occur. While standard Monte-Carlo simulation did not generate any hits of the rare event 

set (for the problems and computational budgets considered in this paper), the splitting method was able to 

generate results in reasonable time. Key decisions in implementing splitting are the choice of the level 

function and the locations of the levels. It was found that levels that are equally spaced in probability 

provide lower variance than levels that are equally spaced in distance. This is consistent with the standard 

theory of splitting (e.g., L’Ecuyer et al. 2009). A level function that attempted to mirror the shape of both 

the rare-event set and the safe set was also found to reduce the variance. 

 The wake model used in this approach was very simple – a geometric triangle. The rationale for this 

choice was to focus testing on the splitting method using a “first-order” approximation of the wake. Future 

work will integrate more complex wake models into this framework. For example, one of the authors has 

developed a stochastic wireframe implementation of the NASA APA models, called WakeWISE. Future 

work will also test dynamic wake separation concepts in which the separation requirement is not a static 

distance, but a distance that changes as a function of atmospheric parameters (e.g., crosswinds) and/or the 

state of the leading aircraft (speed and weight). More advanced variations of splitting dealing with hybrid 

stochastic systems can also be used to estimate encounter probabilities in which discrete system failures are 

considered.  

REFERENCES  

Blom, H. A. P., J. Krystul, G. J. Bakker, M. B. Klompstra, and B. Klein Obbink. 2006. “Free Flight 

Collision Risk Estimation by Sequential Monte Carlo Simulation”. In Stochastic Hybrid Systems; 

Recent Developments and Research Trends, edited by C. G. Cassandras and J. Lygeros, 247–279. New 

York: Taylor & Francis.  

Blom, H. A. P., G. J. Bakker, and J. Krystul. 2009. “Rare Event Estimation for a Large-Scale Stochastic 

Hybrid System with Air Traffic Application”. In Rare Event Simulation Using Monte Carlo Methods, 

edited by G. Rubino and B. Tuffin, 193–214. West Sussex, United Kingdom: Wiley.  

De Oliveira, I. R., L. F. Vismari, P. S. Cugnasca, J. B. Camargo, G. J. Bakker, and H. A. P. Blom. 2010.  

“A Case Study of Advanced Airborne Technology Impacting Air Traffic Management”. In 

Computational Models, Software Engineering and Advanced Technologies in Air Transportation, Next 

Generation Applications, edited by L. Weigang et al., 177–214. 

Garvels, M. J. J. 2011. “A Combined Splitting-Cross Entropy Method for Rare-Event Probability 

Estimation of Queueing Networks”. Annals of Operations Research 189 (1):167–85. 

Glover, W., and J. Lygeros. 2004.  “A Stochastic Hybrid Model for Air Traffic Control Simulation”. In 

Hybrid Systems: Computation and Control, edited by R. Alur and G. J. Pappas, 372–386. Berlin: 

Springer-Verlag. 

Hoogstraten, M., H. G. Visser, D. Hart, V. Treve, and F. Rooseleer. 2015. “Improved Understanding of En 

Route Wake-Vortex Encounters”. Journal of Aircraft  52:981–989. 

Kos, J., H. A. P. Blom, L. J. P. Speijker, M. B. Klompstra, and G. J. Bakker. 2001. “Probabilistic Wake 

Vortex Induced Accident Risk Assessment”.  Air Transportation Systems Engineering, edited by G. L. 

Donohue and A. G. Zellweger, 513–531. Reston, VA: American Institute of Aeronautics and 

Astronautics. 

L’Ecuyer, P., F. Le Gland, P. Lezaud, and B. Tuffin. 2009. “Splitting Techniques”. In Rare Event 

Simulation Using Monte Carlo Methods, edited by G. Rubino and B. Tuffin, 39–61. West Sussex, 

United Kingdom: Wiley. 

Murray, L., H. Cancela, and G. Rubino. 2013. “A Splitting Algorithm for Network Reliability 

Estimation”.  IIE Transactions 45(2):177–89. 

Nelson, R. 2006. “Trailing Vortex Wake Encounters at Altitude - A Potential Flight Safety Issue?”. AIAA 

Atmospheric Flight Mechanics Conference and Exhibit. 

2564



Zare-Noghabi and Shortle 

 

Robins, R., and D. Delisi. 2002. “NWRA AVOSS Wake Vortex Prediction Algorithm Version 3.1.1”. 

National Aeronautics and Space Administration, Langley Research Center. 

Rubino, G., and B. Tuffin. 2009. “Introduction to Rare Event Simulation”. In Rare Event Simulation Using 

Monte Carlo Methods, edited by G. Rubino and B. Tuffin, 1–13. West Sussex, United Kingdom: Wiley. 

Shortle, J. 2013. “Efficient Simulation of Blackout Probabilities Using Splitting”. Electrical Power and 

Energy Systems  44:743–751. 

Wang, Z., and J. Shortle. 2012. “Sensitivity Analysis of Potential Wake Encounters to Stochastic Flight-

Track Parameters”. In Proceedings of the International Conference on Research in Air Transportation, 

Berkeley, CA, 1–8. 

AUTHOR BIOGRAPHIES 

AZIN ZARE NOGHABI is a Ph.D. student in the department of Systems Engineering and Operations 

Research and works as a graduate research assistant in the Center for Air Transportation Systems Research 

at George Mason University. Her research interests are in air transportation safety and applications of rare 

event simulation in the aviation domain. Her email address is azarenog@gmu.edu. 

 

JOHN SHORTLE is a professor of Systems Engineering and Operations Research at George Mason 

University and a member of the Center for Air Transportation Systems Research. His research interests 

include simulation, queueing, and analysis of rare events with applications in air transportation, energy, and 

telecommunications. He is the current president of the INFORMS Simulation Society. He received his 

Ph.D. in industrial engineering and operations research from U.C. Berkeley. His e-mail address is 

jshortle@gmu.edu. 

2565


