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ABSTRACT 

Construction simulation is used to analyze uncertainties inherent to project activities and variations in 
work packages. However, existing simulation systems often fail to meaningfully contribute to the 
decision-making process due to their inability to evolve with changing project conditions. Equipping 
simulation models with sensing and reality capture technologies has been investigated as possible 
remedies to this problem. This, however, requires meticulous effort to procure, set up, operate, 
synchronize, and calibrate peripheral devices for data collection, transmission, and mining. Furthermore, 
sensor readings are often noisy and imperfect. The chaos theory explains how small variations in sensor 
readings used as simulation model input can lead to relatively large volatility in the output even in simple 
linear systems. This paper investigates a scientific methodology for generating more stable simulation 
models using an evolutionary algorithm that produces clean datasets by processing and significantly 
reducing noise in imperfect data obtained from consumer-grade sensors.  

1 INTRODUCTION  

1.1 Value of Simulation to Project Planning  

In planning project activities, the exact sequence of tasks (or events) that shape an activity may not be 
predetermined, and tasks may even be performed out of order or interchanged depending on resource 
availability and other constraints. This intrinsic fuzziness can further complicate the formulation of 
project attributes (e.g. cost, schedule, resource consumption) using mathematical terms. One potential 
solution to this problem is the use of discrete event simulation (DES) that is best suited to represent 
uncertainties in dynamic systems (AbouRizk et al. 2011; Martinez and Ioannou 1997). Despite recent 
advancements in simulation science, simulation models have not been yet fully accredited as an integral 
part of the decision-making process in construction projects due to barriers such as the intense initial 
effort required to set up and compile models (Oloufa, Ikeda, and Nguyen 1998), lack of flexibility (a.k.a. 
rigidity) of the simulation model, user incompetence, and specificity of the simulation environment 
(Hajjar and AbouRizk 2002). Recent studies have also discussed that most simulation systems in the 
construction domain are not capable of effectively processing construction-phase project data (Leite et al. 
2016), thus rendering the model obsolete for decision-making shortly after the project starts. To this end, 
integrating field data in simulation modeling has been explored in recent years. Such studies, however, 
have been mostly carried out in fields outside architecture, engineering, construction, and facility 
management (AEC/FM). Akhavian and Behzadan (2013) identified some of the efforts in dynamic data-
driven application simulation (DDDAS) as used in railway engineering simulation (Huang and Verbraeck 
2009), and supply change modeling in aerospace engineering (Tannock et al. 2007). The work also 
described limited efforts in data-driven construction simulation that were to a large extent focused on 
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equipment location data (Song and Eldin 2012). Further investigation shows some recent applications of 
DDDAS including sporadic studies in construction where for instance, Akhavian and Behzadan (2015) 
created data-driven models for equipment activity recognition, and Vasenev et al. (2014) proposed a data 
collection framework for decision-making.  

As previously discussed, barriers including the inability of existing simulation modeling techniques to 
integrate sensor data into the simulation, as well as the unregulated environment of sensing systems in 
AEC/FM still hinder the prospect of full adoption of high level data integration protocols in simulation 
modeling. The following Subsection explains the issue of inherent fuzziness in sensor data and potential 
problems it may cause for successful integration of data in simulation modeling. 

1.2 Inherent Fuzziness of Sensor Data   

In recent years, researchers have explored the potentials of advanced data sensing and computing 
technologies, and information modeling, to improve project planning and delivery in construction, and to 
establish new industry standards and paradigm shifts for decision-making throughout the life cycle of 
AEC/FM projects (Golparvar-Fard, Peña-Mora, and Savarese 2011; Leite et al. 2016). This proliferation 
of the use of sensor data in project planning, implementation, monitoring, and control (Spencer Jr, Ruiz-
Sandoval, and Kurata 2004) can be found in almost every project type as the technology has become 
ubiquitous and more affordable. For instance, work by Chae et al. (2012) in structural health monitoring, 
Razavi and Hass (2010) in on-site material tracking, and Choe et al. (2014) in site safety have all 
demonstrated the versatile applications of these new technologies.  

However, the abundance of data does not necessarily translate into effective data utilization. Barriers 
such as bias in data interpretation, high upfront costs (associated with procurement, installation, and 
maintenance), and inherent uncertainty in data compounded by the dynamic nature of construction 
projects can lead to technology gaps which reduce the reliability of results. Zamalloa and Krishnamachari 
(2007) identified several factors that cause variation and uncertainty in sensor reliability, and undermine 
the adoption of new technological advances in the construction industry, since handling, cleaning, and 
post-processing of raw sensor data requires special training and skillset that is otherwise not expected 
from a trained construction engineer or project manager (Lee et al. 2013). 

1.3 Chaos Theory and Imperfect Sensor Data 

Most of the data collected by sensors is not crisp and well differentiated; they present an image of the real 
world with uncertain progressions and states (Izadi et al. 2015). The resulting volatility from imperfect 
sensor data can be described using chaos theory, a branch of mathematics that deals with systems that 
appear to be deterministic (e.g. a construction schedule) but can experience chaotic events. Chaos theory 
states that despite its deterministic nature, a dynamic system can behave in an unpredictable (i.e. chaotic) 
manner with changes in initial conditions. Lorenz (1963) expressed this as “the present determines the 
future, but the approximate present does not approximately determine the future”. If uncertain data from a 
sensor network is fed into a model describing a dynamic construction system, chaos theory implies that 
model performance can randomly alter with small changes in the accuracy of sensor data. 

The scenario in Figure 1 is used to show show the degree of volatility of a nondeterministic network 
to variations in the input data (Kiel and Elliott 1996). In this Figure, double arrows imply that the 
resource on a link can travel either way. Assuming that each node costs one resource unit, the total 
operation cost of moving 100 objects from node 1 to node 4 is calculated by adding the costs of individual 
activities (i.e. nodes). Initially (iteration 0), all outgoing links are assigned equal strength values, implying 
that each  link is equally likely to be picked by a resource leaving a node. In general, these strength values 
determine the probability of any outgoing link on which a resource flows between activities. This 
operation is repeated for five more iterations (numbered 1 through 5). In each iteration, a random subset 
of links are selected and their strength values (model input) altered by 10%. It can be verified that even a 
slight alteration in the input creates a large volatility in the total operation cost (model output). For 
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instance, in iteration 3 the strength value of only one link is altered by 10% compared to benchmark 
(iteration 0). This small change, however, results in a 6% decrease in the output. 

 

Figure 1: Sample nondeterministic network. 

2 RESEARCH OBJECTIVE AND CONTRIBUTIONS  

The work presented in this paper aims at designing a scientific methodology, inspired by chaos theory and 
built upon an evolutionary algorithm, capable of refining imperfect (noisy) sensor data and generating 
clean datasets that can be used for simulation input modeling. Practically, results of this work are sought 
to allow the use of low-cost sensors for data collection while minimizing the impact of inaccuracies on 
the overall quality of the simulation model. Ultimately, this approach promotes simulation-based 
decision-making by reducing the cost of data acquisition. 

3 METHODOLOGY  

In this Section, designed methodology of refining imperfect sensor data for simulation input modeling is 
explained. As seen in the activity cycle diagram (ACD) of Figure 2, the data collection experiment 
modeled a warehouse operation in which boxes were first transported from a loading area to an inspection 
area. The content of each box was inspected and if approved, the box was further moved to the unloading 
area. Otherwise, the box was removed from the system. 

 

Figure 2: ACD diagram of the cyclic warehouse operation. 
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The cyclic operation starts with a worker loading a box onto a cart and then pushing it to the 
inspection area. Next, an inspector lifts the box and inspects it, while, the worker waits in the inspection 
area. At the conclusion of inspection, the inspector either accepts the box or rejects it. Upon acceptance, 
the worker lowers the box onto the cart, pushes it to the unloading area, unloads the box and then pulls the 
empty cart back to the loading area. If the box is rejected, however, the inspector removes the box from 
the system, and the worker pulls back to the loading area with an empty cart. In both cases, the worker 
moves back to the loading area and the cycle starts over. This operation was performed for a total of 30 
cycles. Two smartphones were mounted on each performer's body (one on upper arm and another on 
waist). Data was collected from the built-in accelerometer, linear accelerometer, and gyroscope sensors of 
each smartphone. Next, a host of machine learning algorithms were used to recognize different activities 
and their durations as performed by each worker and inspector. Further details of the designed human 
activity recognition (HAR) process can be found in another publication by the authors (Nath and 
Behzadan 2017). 

The output of the HAR step was then used to generate an activity transition matrix, called the 
dependency network assimilator (DNA). The DNA matrix corresponding to the sequence of activities in 
the real system as captured by the sensor data is denoted DNAextracted. Using prior knowledge of the 
activity progression sequence, an ideal transition matrix, DNAclean, was also created. As expected, 
DNAextracted and DNAclean are not necessarily identical as the sensor data and the HAR algorithms used to 
create DNAextracted are prone to inaccuracy. As a result, the choice of the DNA matrix used to create the 
underlying ACD of a simulation model corresponding to the warehouse operation, will influence the 
quality of the simulation output. In theory, the model produces the most realistic results with DNAclean. 
However, obtaining this DNA matrix is only possible under perfect conditions (i.e. 100% accuracy of 
sensor data and HAR algorithms). Therefore, the challenge is to use available information (i.e. extracted 
DNA matrix with intrinsic fuzziness) and still create a simulation model that can closely mimic the real 
system and predict its performance with high fidelity. Figure 3 shows the main building blocks of the 
designed methodology built upon a genetic algorithm (GA) to achieve this goal. 

 

Figure 3: Block diagram of the designed sensor data refinement methodology. 

In a nutshell, the DNAextracted matrix generated from sensor data and HAR algorithms is used to create 
a probabilistic ACD of the operation and the corresponding DES model in Stroboscope (Martinez 1996). 
Several iterations of the model are run, and given the probabilistic (uncertain) nature of the ACD, each 
iteration results in a new (and slightly different) DNA matrix (a.k.a. daughter population in GA terms). 
This new pool of DNA matrices undergoes fitness evaluation and new mother matrices are generated. 
New DNA matrices are then fed into the DES model, and the process is repeated until a satisfactory level 
of fitness is achieved. The combination of simulation and GA enables the production of a refined DNA 
matrix from the fuzzy sensor data. The following Subsections provide detailed discussions about this 
process. 
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4 THE SIMULATION MODEL 

The warehouse operation experiment consists of independent activities, each with discrete start and end 
times. These activities can be defined as separate nodes in a DES network connected by links carrying 
resources. These resources (i.e. worker, inspector, boxes) are defined and stored in queues.  

4.1 The Deterministic (Ideal) DES Model 

The ACD shown in Figure 2 illustrates a deterministic DES model of the warehouse operation 
experiment. The model’s accuracy in terms of logic and activity durations was validated through a point-
by-point comparison with the video recordings of the real experiment at random times. This validation 
also ensures deterministic (non-probabilistic) transitions between successive activities thus yielding a 
clean DNA matrix. As previously described, each element in the DNA matrix represents the strength (i.e. 
likelihood) of transitioning from a preceding node to a succeeding node. It should be noted that while 
most activities shown in Figure 2 are both a predecessor and a successor, some are only of one type. For 
instance, activity ‘load’ is only a preceding activity as it starts a cycle whereas activities ‘unload’ and 
‘remove’ are only succeeding activities as they end a cycle. Thus, the DNA matrix does not contain an 
equal number of preceding and succeeding activities, and consequently may not always be a square 
matrix. The DNAclean matrix, as shown in Figure 4(a) shows ideal transitions between activities. Rows (i = 
1…n) represent preceding activities and columns (j = 1…m) represent succeeding activities. As expected, 
most rows are binary (holding only one non-zero value) since each activity is only followed by one 
succeeding activity. The only exception to this rule is activity ’inspect’, which can be followed by either 
activity ‘lower’ or activity ‘reject’, depending on the inspection result. 

 
(a)                                                                                (b) 

Figure 4: (a) Clean (ideal) DNA matrix (ground truth), and (b) extracted (fuzzy) DNA matrix of the 
warehouse operation. 

4.2 The Nondeterministic (Probabilistic) DES Model  

The ACD that defines the nondeterministic DES model is directly generated from the output of the HAR 
algorithms. As previously discussed, this ACD and the resulting DES model almost always contain 
fuzziness due to imperfect (noisy) sensor data and/or inaccuracy of the HAR algorithms. This fuzziness 
implies that unlike in the real system, each node is likely to be proceeded by more than one node. A 
hypothetical scenario showing a nondeterministic ACD with four activities was illustrated in Figure 1. 
The fuzzy precedence logic obtained for the warehouse operation experiment results in the DNAextracted of 
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Figure 4(b). In contrast to DNAclean shown in Figure 4(a), some rows in DNAextracted contain multiple non-
zero values indicating varying degrees of fuzziness.  

4.3 Creating a Fuzzy DES Model in Stroboscope 

The presence of uncertainty in the precedence logic requires that additional elements be introduced and 
used in Stroboscope to model the fuzzy ACD. Hence, a standard modeling element called fork was used 
in the DES model to allow multiple outgoing links from each activity resembling the fuzzy behavior. 
Each outgoing link emanating from a fork has a numerical strength (weight) value which determines the 
likelihood of that node to be selected at random upon the conclusion of a particular instance of the fork 
(Martinez 1996). For each fork element in the DES model, strength values were defined using the values 
in DNAextracted shown in Figure 4(b). To implement this fuzzy model, given the Stroboscope syntax, three 
types of nodes with different implementation mechanisms must be defined: initiation node, simple node, 
and termination node. An initiation node is used to start a new cycle (e.g. box moving), a termination 
node is used to end a cycle, and a simple node is used in all other cases. Figure 5 shows a partial ACD 
diagram in which these nodes are implemented. The cycle starts with initiation node 1, proceeds to simple 
node 1, and then randomly continues onto simple nodes 2, 3, or 4, or ends in termination node 1, which 
then closes the cycle. In case resources need to be regenerated at the closure of a cycle, an action event 
can be invoked in Stroboscope. In particular, the nondeterministic model created in Stroboscope to 
represent the warehouse operation experiment contains 1 initiation (modeling activity ‘load’), 7 simple 
(modeling activities ‘push to inspect’, ‘lift to inspect’, ‘inspect’, ‘lower’, ‘push to unload’, ‘pull after 
unload’, and ‘pull after remove’), and 2 termination nodes (modeling activities ‘remove’ and ‘unload’). 

 

Figure 5: Partial fuzzy ACD diagram illustrating different node types. 

5 REFINING THE EXTRACTED ACTIVITY TRANSITION MATRIX  

5.1 Implementation of Evolutionary Algorithm 

In order to transform DNAextracted to DNArefined, a close-to-ideal DNA matrix, a new GA-based 
evolutionary technique is designed (Hassan et al. 2005) and implemented to enhance the existing 
capabilities of Stroboscope. GA (Reeves 2003) has been used in the past in different disciplines such as 
water contamination characterization (Preis and Ostfeld 2008), evaluating construction plans using data 
environment analysis (Torabi and Mahlooji 2017), site layout planning for construction projects 
(RazaviAlavi and AbouRizk 2016), and speech recognition based on random projections (Kataoka et al. 
2016). In general, a GA-based method uses five key operations to reach an optimal solution from a 
number of possible (but not optimal) solutions (Poli et al. 2008). In this research, these five principles are 
implemented to refine the extracted DNA matrix, as briefly described in the following paragraphs.  
 Stage 1 – Define the mother species: The DNAextracted generated from HAR is used as the initial 

mother species to create the first generation of daughter DNA matrices. Each element in the mother 

2465



Shrestha and Behzadan 
 
matrix is regarded as the strength value of a link and is represented by γ(ij), where i is the row index 
and j is the column index.  

 Stage 2 – Create population of daughters: A DES model is built and run for multiple iterations to 
produce a population of daughter DNA matrices, producing one daughter matrix per launch. In each 
iteration, forks are evaluated given the strength values of their outgoing links. This results in 
anomalies in activity transitions leading to a population of daughter DNA matrices with a band of 
uncertainty, which perfectly represents the natural uncertainty in transitions. 

 Stage 3 – Evaluate fitness: In this stage, daughter DNA matrices are assessed by the fitness function 
and receive fitness values. If this value is in the acceptable range, the corresponding daughter 
matrix is picked as the final matrix. In GA, this is termed the stopping condition. 

 Stage 4 – Create mating pool: The mating pool is the collection of matrices used to generate the 
next generation of mother DNA matrices. Daughter matrices are ranked based on the fitness 
parameter, ω, and a subset is selected to generate the next group of mother matrices. 

 Stage 5 – Produce a new generation: Once the mating pool is selected, the matrices in that pool are 
put through crossover, elitism, and mutation to derive six new mother DNA matrices (Davis 1991; 
Reeves 2003). Crossover combines parts of two or more daughter matrices, mutation changes 
random parts of certain daughter matrices, and elitism simply carries on daughter matrices that meet 
certain criteria to the next generation. 

5.2 Fitness Function 

The fitness function is selected based on the expected relationship between DNAextracted and DNArefined. In 
the warehouse operation experiment, several logical observations are made to reduce the complexity of 
the GA and help translate and preserve the physical constraints in the intermediate transition matrices 
generated by the GA. In GA terms, such logical rules are called hard constraints (Chan, Chua, and 
Kannan 1996). As stated earlier, rows in DNAclean are binary (only one non-zero element in each row) 
except where a decision is to be made as to where to move a resource after a decision node (e.g. inspector 
station). In that case, there may be more than one non-zero elements in one row. Thus, an overall binary 
matrix was taken as the final goal of the experiment. The node in which a decision is to be made is called 
a chance node. In each stage of the GA implementation, strength values of the outgoing links from a 
chance node are assumed to be known. For instance, in the warehouse operation experiment, the node 
‘inspect’ is classified as a chance node; here, the inspector makes a decision on whether to accept or reject 
a box. Thus, in the row of the DNA matrix corresponding to this node, the number of accepted vs. 
rejected boxes (as observed in the experiment and recognized during the HAR step) were inserted as non-
zero elements. In particular, HAR identified 20 instances of activity ‘lower’ (conducted by the worker 
immediately after the box was approved) and 10 instances of activity ‘reject’ (conducted by the inspector 
immediately after the box was rejected). Thus, 20 and 10 were used in the corresponding row of 
DNAextracted. 

The abovementioned hard constraints are used to define the mathematical boundaries for the GA 
when processing transition matrices using the steps described in previous Subsection. These constraints 
are expressed in Equations (1) through (4). In evaluating a DNA matrix generated by the GA, it is also 
noted that data collected by sensors and processed through HAR are not accurate but are still of quality 
sufficient to initiate the GA process. With this in mind, despite inherent fuzziness (uncertainty) in the 
input data, it can be assumed that in the presence of a large training dataset, when analyzing the 
DNAextracted, the strongest links (large non-zero values in the matrix) are more likely to be statistically 
reliable, and thus should to the most extent survive (and not utterly diminish) during the refinement 
process. The objective of the GA is to obtain a matrix with the highest fitness parameter (Equation 3).  

߱ௗሺ݅ሻ ൌ 	
୫ୟ୶ሺఊሺሻሻ

∑ ఊሺሻ
ೕసభ	

                                                             (1) 

߱ௗ ൌ 	⋁ ߱ௗሺଓሻ
ୀଵ              (2) 
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ܼ ൌ 	max ߱ௗ          (3) 
ܼ  0.95 OR generation number = 10       (4) 

5.3 Parameters of the Problem  

The parameters used to produce a feasible solution mainly depend on the quality of input data, desired 
accuracy of final results, available computation time, and processor quality. Considering these factors, for 
the warehouse operation experiment discussed in this paper, the following parameters are selected: 

Number of mothers in each generation: 3  Number of daughters generated by each mother: 5 
Number of daughters in each generation: 15 Number of generations: 10 
Acceptable parameter of fitness: 0.95 

Increasing the number of mothers and/or daughters in each generation adds to the complexity and 
processing time of the GA. Similarly, increasing the number of GA generations can improve the accuracy 
of the resulting matrices while also adding to the processing time. Thus, this parameter is often the best 
way to control the overall computation time. Finally, since DNAclean is a purely theoretical matrix and can 
be rarely achieved in practice, a realistic parameter of fitness is used to select the best possible DNArefined. 
Once the desired fitness is reached, the process stops. It is worth noting that the criteria governing the 
selection of these parameters are mainly qualitative and expected to vary depending on the application.  

6 RESULTS AND ANALYSIS 

6.1 Evaluating the Effectiveness of GA Implementation 

The developed GA implementation was applied to DNAextracted shown in Figure 4(b), which was used as 
the initial mother matrix. The first generation of mother matrices was created by processing the initial 
mother matrix using the GA-Stroboscope model. Each new daughter matrix was obtained by launching 
the GA-Stroboscope model using the proper mother matrix as input. Thus, in this case, the model was 
launched 5 times for each mother matrix and 15 times in each generation for 10 generations. After a total 
simulation time of 420 seconds and 10 generations, the DNArefined shown in Figure 6 is obtained. 

 

Figure 6: Refined (final) DNA matrix of the warehouse operation. 

Comparing this DNA matrix with DNAclean of Figure 4(a), it is inferred that DNArefined resembles 
DNAclean more closely than DNAextracted of Figure 4(b). For example, most of the 17 erroneous transitions 
from DNAextracted have been treated, with only 4 fuzzy transitions remaining. Moreover, 8 out of the 11 
rows are now perfectly binary as opposed to only 3 in DNAextracted. As previously stated, a key factor in 
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evaluating matrices in each step of the GA is the average of the fitness function for the entire matrix. In 
DNAextracted, this parameter was only 0.74 whereas in DNArefined it increased to 0.96, as shown in Table 1. 
This increase of 30% establishes the effectiveness of the GA implementation. Moreover, this value is 
sufficiently close to the fitness parameter of DNAclean which was 0.97. Another measure of the 
effectiveness of the GA implementation is that with each new generation of daughter matrices, the 
average of the fitness parameter steadily increases, as shown in Table 1, thus implying that each iteration 
improves the fitness of the transition matrix. 

Table 1: The Average Fitness Parameter for each generation 

Generation 1 2 3 4 5 6 7 8 9 10 
Average Fitness 0.74 0.8 0.84 0.85 0.87 0.89 0.92 0.95 0.96 0.96 

6.2 Investigating the Impact of DNA Refinement on DES Results 

The ultimate goal of refining imperfect sensor data is to produce a more reliable input for simulation 
modeling from a noisy input. To assess the success of achieving this goal, each of the three DNAs (clean, 
extracted, and refined) is used to create a DES model of the warehouse operation experiment. Each model 
is then run for multiple iterations (while incrementing the number of boxes to inspect) and simulation 
results from all three models are compared to check if the DES model built using DNArefined does in fact 
resemble the real system more closely. As presented in Figure 7 and Figure 8, two quantifiable parameters 
(i.e. total time to process each box, and variations in unit cost) are selected to evaluate these DES models. 

 

Figure 7: Analysis of inspection time per box obtained from clean, extracted, and refined DNAs. 

 

Figure 8: Analysis of unit cost discrepancy obtained from extracted and refined DNAs (baseline of 0% 
represents the unit cost obtained using the clean DNA). 
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In Figure 8, cost is obtained by considering total labor cost (one worker and one inspector) according 
to the Bureau of Labor Statistics (BLS) (2015) data at $15.34/hour for the worker and $33.92/hour for the 
inspector. As illustrated in Figure 7 and  Figure 8, for both parameters, the output of the simulation model 
created from DNArefined is in closer agreement with the output of the simulation model built using 
DNAclean, while the output of the simulation model built from DNAextracted is far off from the ground truth. 
For instance, per Figure 7, the average discrepancy in inspection time (in seconds) per box reduces from 
23.8 between DNAclean and DNAextracted to only 7.4 between DNAclean and DNArefined. Similarly, as seen in 
Figure 8, the discrepancy in unit cost is reduced from 52.8% on average to 16.5%. Both parameters show 
major improvement in the accuracy of the simulation output compared to ground truth values. 

7 SUMMARY AND CONCLUSIONS 

Sensing technologies have significantly expanded and become more ubiquitous thus creating a potentially 
expanded role in project planning, implementation, monitoring, and control. However, since most 
construction simulation systems lack the ability to fully capture and incorporate process-level data, the 
plethora of data captured from construction sites often goes unused. Another major challenge in working 
with sensor data is the noise in data causing a massive underutilization of data in decision-making. If used 
to create simulation inputs, this innate fuzziness can potentially propagate in the model and result in 
volatile outputs, further contributing to unreliable and inaccurate simulation results. 

In this paper, the authors investigated whether low quality data captured by consumer-grade sensors 
can be reliably used to generate stable simulation input models. In particular, human activity data in a 
warehouse operation experiment was collected by smartphone sensors, and processed using machine 
learning methods. Next, evolutionary techniques and DES modeling was deployed to refine the noise in 
collected data. This resulted the fitness of the activity transition matrix (a.k.a. DNA) of the warehouse 
operation experiment to improve from 0.76 to 0.96 (compared with 0.97ground truth value of 0.97). The 
refined data was then used to create a simulation model of the operation, and the model output was 
compared with the ground truth in terms of two measures: total time to process each box, and variation in 
unit cost. Results showed that the model built from DNArefined outperformed the model built from 
DNAextracted. 

It must be added that data accuracy can be also affected by ambient factors. For instance, in outdoor 
applications, GPS signals can be disrupted, and data leakage can occur which in turn, induces exponential 
error propagation when individual sensors feed data to a large network. Given that most such issues 
would not be dealt effectively with improvements in sensor technology, the work presented in this paper 
can be of significant value to refining imperfect sensor data for a variety of data-dependent platforms. 
This research contributes to the body of knowledge by enabling the transformation of imperfect sensor 
data to cleaner datasets for generating more stable simulation models of real systems. 
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