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ABSTRACT 

Construction industry has been constantly lagging behind in terms of efficiency and productivity growth. 

Simulation modeling can be used to improve the productivity of construction workflow processes through 

modeling uncertainties and stochastic events that may negatively impact project cost and schedule. In the 

research presented in this paper, mobile sensors coupled with machine learning techniques are used for 

ubiquitous data collection and human activity recognition (HAR), which will constitute the key input 

parameters of process simulation modeling. To assess the designed methodology, an experiment is carried 

out which replicates a warehouse quality control operation. Smartphones mounted on human bodies are 

used to collect multi-modal time-motion data. Support vector machine (SVM) is then applied to classify 

workers’ and inspectors’ activities, and activity durations are subsequently extracted. Finally, a simulation 

model is built using the output of the HAR phase and rigorously validated and used to analyze workflow 

processes, productivity, and bottlenecks. 

1 INTRODUCTION 

Despite its large footprint in the global economy, the construction industry has been traditionally lagging 

behind in productivity growth (U.S. Department of Commerce 2014). A key obstacle to achieving high 

productivity is that most construction projects occur in uncertain, dynamic, and transient environments. As 

a result, deviations from plans are very frequent, and many planning-phase assumptions render invalid once 

the actual work starts (Akhavian et al. 2015b), causing rework, delays, and cost overruns. Research has 

shown that traditional approaches to work progress analysis often fail to effectively and accurately identify 

key performance indicators (AbouRizk 2010). More recently, computer simulation has gained credibility 

due to its unique capability to model uncertainties and stochastic events (Akhavian et al. 2015b). In 

particular, simulation models representing various field processes can be used to improve work plans, 

optimize resource allocation and utilization, minimize costs or project duration, and increase overall project 

efficiency (AbouRizk 2010).

To achieve the best results from simulation, the model and inputs should accurately represent the real 

process (Gong et al. 2009). This requires a significant amount of time and resources to be spent on data 

collection for simulation input modeling. While being practically inefficient, the technical knowledge and 

training needed for manual data collection is also substantial and often beyond the common skill pool of 

construction practitioners. For this reason, automated data collection using sensors, RGB cameras, laser 

scanners, and inertial measurement units (IMUs) has become more relevant to construction applications. In 

this study, the authors designed and tested a methodology to use smartphone’s built-in IMU sensors for 

multi-modal time-motion data collection from field workers. Machine learning, specifically, multi-class 

support vector machine (SVM) algorithm is used for human activity recognition (HAR) from sensor data, 

2448978-1-5386-3428-8/17/$31.00 ©2017 IEEE



Nath, Shrestha, and Behzadan 

 

 

and activity duration and frequency information are subsequently extracted. This information is then 

transformed into input parameters for a discrete event simulation (DES) model. Finally, several iterations 

of the data-driven simulation model are run to analyze crew productivity as well as to optimize workflow 

processes. 

2 LITERATURE REVIEW 

There is a strong body of work highlighting the added value of simulation in the construction domain. 

Among others, previous work has explored simple on-site assessments (McCahill et al. 1993), modeling 

uncertainties due to factors such as weather (Carr 1979) , evaluating cost distribution and budgeting (Lai et 

al. 2008), reducing physical demands and controlling fatigue (Seo et al. 2016), and dealing with effects of 

temporal work space variability on planning (Akinci et al. 2002). Traditionally, expert judgments and 

historical datasets are the basis for estimating input data for a simulation model. However, in a complex 

system, relying on personal intuitions can yield unrealistic results and model drifts (Akhavian 2015). 

Alternately, to achieve more accurate results, simulation input data can be linked to and extracted from 

remotely distributed sensing devices on the jobsite. Among various types of sensors, wearable (i.e. mobile) 

sensors are being increasingly used for their ubiquity, affordability, unobtrusiveness, and ease of use (Chen 

et al. 2011).  HAR using wearable sensors has been researched intensively in fields such as elderly care (Jin 

et al. 2012) and sports (Avci et al. 2010). The idea of coupling machine learning and HAR has been explored 

more recently in construction (Golparvar-Fard et al. 2011; Yang et al. 2014). Akhavian and Behzadan 

(2015a) expanded the use of HAR and machine learning to extract activity durations for simulation input 

modeling. Building on past works, in this study, SVM is used for HAR and activity duration extraction for 

simulation input modeling. In particular, the aim of this research is to alleviate the need to collect large 

volumes of data, by investigating whether a relatively small batch of experimental data can be effectively 

used to conduct rigorous workflow analysis using DES. 

3 THE WAREHOUSE OPERATION EXPERIMENT DESIGN 

To demonstrate the designed methodology, a warehouse operation experiment is conducted. The goal of 

this operation is to transport an item (i.e. box) from a loading area to an inspection area, and if accepted, 

move it further through the system to a designated unloading area. As shown in Figure 1, the operation 

starts with a worker loading a box into a cart and pushing it to the inspection area. Next, an inspector lifts 

and inspects the box while the worker is waiting in the inspection area. After inspection, the inspector either 

accepts or rejects the box. Upon acceptance, the worker lowers the box onto the cart, pushes it to the 

unloading area, unloads the box and then pulls back to the loading area with the empty cart. If the box is 

rejected, however, the worker directly pulls back to the loading area with the empty cart. This operation is 

performed for a total of 30 cycles. To collect data, two smartphones are mounted on each person's body- 

one on the upper arm and another on the waist. Data are collected from the accelerometer, linear 

acceleration, and gyroscope sensors. 

 

Figure 1: The warehouse operation cycle. 

2449



Nath, Shrestha, and Behzadan 

 

 

4 DURATION EXTRACTION FOR HUMAN ACTIVITY RECOGNITION 

From the collected raw data, jerk (time derivative of acceleration), and magnitude of tri-axial data are 

calculated (Anguita et al. 2013). Similar to past research (Akhavian et al. 2015a), to have a continuous and 

orderly data stream, raw and extracted data (jerks and magnitudes) are processed into 180-Hz uniform time 

series by removing redundancies and interpolating missing data. Processed data are segmented into 2-

second windows (360 data points) with 50% overlap, key statistical features for each window are calculated, 

and each window is labeled with the proper activity class. To identify distinctive data features, ReliefF is 

applied to training data. Next, 5-fold cross-validation with SVM is applied using the first nth (n = 15 to 

576) ranked features. It is found that the first 125 ranked features yield the highest accuracy for classifying 

the worker’s activities, while the first 84 ranked features give best results for classifying the inspector’s 

activities. A Summary of the data preparation process is shown in Table 1. 

Table 1: Summary of the data preparation process. 

Category Summary 

Collected Sensor Data Accelerometer (X, Y, Z), Linear-Accelerometer (X, Y, Z), Gyroscope (X, Y, Z) 

Extracted Sensor Data Accelerometer-Jerk (X, Y, Z), Linear-Accelerometer-Jerk (X, Y, Z), 

Gyroscope-Jerk (X, Y, Z), Accelerometer-Magnitude, Linear-Accelerometer-

Magnitude, Gyroscope-Magnitude, Accelerometer-Jerk-Magnitude, Linear-

Accelerometer-Jerk-Magnitude, and Gyroscope-Jerk-Magnitude. 

Sampling Rate 180Hz after processed into time series of uniform interval. 

Window Size 360 data points (2 seconds) 

Statistical Features Mean, Maximum, Minimum, Standard Deviation, Mean-Absolute Deviation, 

Interquartile Range, Skewness, Kurtosis, Autoregressive Coefficients.  

No. of Extracted Features 576 

No. of Selected Features 125 for Worker, 84 for Inspector 

Feature Selection Algorithm ReliefF 

Classifier Algorithm Multi-class Support Vector Machine 

 

The entire dataset is divided into 3 parts, each containing 5 work cycles for each worker-inspector pair. 

In 3-fold, each part is used as test data, with the other two being the training data. For each fold, a classifier 

model is built using multi-class SVM and the annotated training data. Next, the model is applied to test data 

to predict activities. Predicted results from all three folds are then combined. Classifier confusion matrices 

are given in Figure 2, which shows that almost all activities are predicted with >80% accuracy.  

An activity instance is defined as a group of successive windows classified with the same label. The 

duration of an instance is calculated by counting the number of windows in that group. A false detection 

(FD) (a.k.a. outlier) is defined as an instance spanning over only one window, and is treated before duration 

extraction. Next, statistical distributions are fitted to durations of all instances of an activity. Table 2 

compares the sum of actual and predicted durations for each activity. It is seen that with one exception 

(activity ‘Reject’), extracted durations are within ~20% of true values. Potential reasons behind the failure 

of classifier algorithm to accurately detect ‘Reject’ are that it 1) had a fast pace and thus very few training 

data samples (few instances), and 2) was in between the transition of ‘Inspect’ and ‘Wait’, resulting in it 

being confused with these activities. 
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Worker Inspector 

  Wait Load Unload Lower Push Pull   Wait Lift Inspect Reject 

Wait 93.6% 1.2% 0.0% 1.6% 2.5% 1.2% Wait 99.4% 0.2% 0.4% 0.1% 

Load 0.9% 85.9% 1.4% 0.5% 4.7% 6.6% Lift 22.4% 70.1% 7.5% 0.0% 

Unload 0.7% 0.7% 73.7% 3.6% 15.3% 5.8% Inspect 2.8% 2.0% 95.0% 0.2% 

Lower 6.6% 0.7% 1.3% 82.1% 4.6% 4.6% Reject 22.2% 3.7% 37.0% 37.0% 

Push 0.3% 1.1% 1.0% 0.5% 95.9% 1.1%      

Pull 0.8% 0.3% 0.7% 0.3% 0.7% 97.3%      

Figure 2: Confusion matrices of the classifier’s predictions. 

Table 2: Comparison of actual and predicted activity durations. 

Activity Parameter 
Worker Inspector 

Wait Load Unload Lower Push Pull Wait Lift Inspect Reject 

Actual Duration (sec) 602.1 200.4 135 154.6 617.1 753.8 1850.7 105.8 457.6 27.2 

Predicted Duration (sec) 585 195 108 137 645 753 1903 83 460 13 

Error 3% 3% 20% 11% -5% 0% -3% 22% -1% 52% 

5 DISCRETE EVENT SIMULATION INPUT MODELING 

Generally, experimental data can be used in three ways in a simulation: selecting one of the observed data 

points every time, randomly using a sample from collected model, and fitting a theoretical data to the model 

(Law et al. 1991). In the context of this work where data from experiment is used as input to run a simulation 

mode, previous research has shown that the first two methods are inappropriate as they cannot fully capture 

the variability and range of the dataset (Akhavian 2015). Stroboscope can model Scaled Beta, Erlang, 

exponential, Gamma, Normal, PERT Beta, triangular, and uniform distributions (Martinez et al. 1994). In 

this research, these distributions are tested for goodness of fit in describing extracted activity durations 

using three tests: Chi-Square, Kolmogorov-Smirnov (K-S), and Anderson-Darling (A-D) (Banks 1998). 

Table 3 shows the results of the goodness-of-fit tests, their rankings, and the numerical total of the ranks 

for activity ‘Unload’. Since the Normal distribution resulted in the best total ranking, it was ultimately 

selected to describe the duration of activity ‘Unload’ in the simulation model. Similar analyses were 

conducted for all other activities. 

Table 3:  Ranking of the best fitted probability for activity ‘Unload’. 

Distribution 
K-S A-D Chi-Squared 

Total 
Statistic Rank Statistic Rank Statistic Rank 

Beta 0.28296 2 11.422 8 N/A 10 

Erlang 0.37122 6 2.6008 3 0.31304 3 12 

Exponential 0.55156 8 6.1967 5 1.7434 6 19 

Gamma 0.32795 4 2.1805 2 0.20342 1 7 

Normal 0.30586 3 1.6871 1 0.219 2 6 

PERT 0.27188 1 9.3159 7 0.38599 4 12 

Triangular 0.42002 7 6.964 6 1.2962 5 18 

Uniform 0.34273 5 5.6715 4 N/A 9 
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Table 4 shows selected distribution and its parameters for each activity. In addition, classification 

results were used to determine the probability of a box accepted or rejected. For instance, it was found that 

29 instances of activity ‘Load’ followed activity ‘Pull’ which implies that in total, 29 boxes were moved in 

the system. Similarly, 20 instances of activity ‘Unload’ followed activity ‘Push’ which means that 20 boxes 

were accepted by the Inspector. Therefore, it was inferred that the ratio of accept/reject must be 20:9. 

Table 4: Selected distributions and their parameters for activity durations. 

Agent Activity Distribution Parameters 

Worker Load Gamma a = 22.57 

b = 0.28418 

Unload Scaled Beta Low = -29.258 

High = 21.09 

α1 = 196.84 

α2 = 92.451 

Lower Normal μ = 1.3086 

σ = 6.4737 

Push to Inspect Gamma a = 120.05 

b = 0.08776 

Push to Unload Uniform Low = 11.709 

High = 19.291 

Pull after Reject Normal μ = 3.7786 

σ = 12.5 

Pull after Unload Normal μ = 6.3539 

σ = 28.091 

Inspector Lift Normal μ = 0.91676 

σ = 3.0741 

Inspect Normal μ = 4.4341 

σ = 14.375 

Reject Uniform Low = 1.6515 

High = 3.5487 

6 SIMULATION MODEL IMPLEMENTATION 

In DES, activities are modelled as interdependent discrete events (Akhavian et al. 2011). Stroboscope is an 

object-oriented DES authoring language (Martinez et al. 1994), and has been used in various applications 

such as earthmoving (Marzouk and Moselhi 2003), and planning and management of bridge construction 

(Zaeri and Rotimi 2014). The activity cycle diagram (ACD) for the warehouse operation experiment is 

shown in Figure 3. General descriptions of network elements can be found in (Martinez et al. 1994). In the 

ACD of Figure 3, boxes start in ‘BoxToMove’ and arrive in either ‘BoxDelivered’ or ‘BoxRejected’. This 

model moves three types of resources (boxes, workers, and inspectors) on nodes and links. A decision node 

is referred to as a ‘Fork’. Fork ‘InspectionOutcome’ in Figure 3 and its link strengths (used to decide where 

to send a box) are defined as follows, 

 
FORK INSPECTIONOUTCOME BOX; /Defining the fork 

STRENGTH B9 20; /Number of boxes accepted 

STRENGTH B7 9; /Number of boxes rejected 

 

To better mimic the real world, a new resource called ‘Space’ is also introduced in two places to limit 

the number of simultaneous instances of ‘Load’ and ‘Inspect’ activities. Also, given that activities ‘Inspect’ 

and ‘Remove’ are modelled as two separate activities, it must be ensured that when a box is rejected, it is 
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removed by the same inspector. This is done by attaching the inspector and box using an Assembler node 

(node ‘A’ in Figure 3) and creating a new resource called ‘InspectorwithBox’. The inspector and box are 

later disassociated using a Disassembler (node ‘D’ in Figure 3). These two new nodes are defined as follows, 

 
ASSEMBLER ASSEMBLERBEFOREINSPECT INSPECTORWITHBOX;  

DISASSEMBLER DISASSEMBLERBEFORELOWER INSPECTORWITHBOX; 

 

Figure 3: ACD diagram for the generated DES model. 

The robustness of the simulation model and its scalability was validated using three simulations. In 

Simulation 1 the model was run 30 times with 1 worker and 1 inspector moving 30 to 900 boxes. Results 

in terms of ratio of expected (from real system) and obtained (from simulation) total time, inspector’s idle 

time, and worker’s idle time are shown in Figure 4. This Figure shows that the obtained time is within 10% 

of the experimental results for all three parameters thus validating the scalability of the model. 

 

Figure 4: Ratio of expected and simulation times for Simulation 1. 

In Simulation 2, the model was run with 30 boxes for 1,000 iterations. Results in terms of total time of 

the operation and idle time of the inspector are shown in Figure 5. This Figure shows that on average, 

simulation results are 6% lower than experimental results. This can be attributed to the seamless transition 

between simulated activities unlike in the real system where transitions take time. Furthermore, the activity 

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30E
x
p

ec
te

d
 t

im
e/

T
im

e 

fr
o

m
 s

im
u
la

ti
o

n
 i

n
 %

Iteration number 
Total_Time Idle_time_Inspector Idle_time_Worker

2453



Nath, Shrestha, and Behzadan 

 

 

recognition algorithm removes FDs from the data, thus contributing to the slight difference by weeding out 

the extreme values. 

 

Figure 5: Simulation robustness in estimating total time and inspector’s idle time. 

Finally, simulation 3 was used to examine activity durations. In particular, 1,000 boxes were moved 

and average activity durations were collected. Comparison ratios between real world and simulation results 

are shown in the radar chart of Figure 6. As seen in this Figure, while the ratio of the durations from 

simulation model and durations from HAR is the most accurate of the three ratios, which highlights the 

validity of the simulation model, the least accurate ratio is the ratio of durations from HAR and observed 

durations, suggesting deficiencies in the quality of collected sensor data. Also, the ratio of durations from 

the simulation model and the observed durations is on average 90%, which is a decent approximation of 

the real world by the developed simulation model.  

Figure 6: Simulation robustness in estimating activity durations. 

7 WORKFLOW ANALYSIS  

7.1 Process optimization  

In the optimization stage, the cost to move each box with different worker-inspector combinations was 

examined. Workers and inspectors were assigned an hourly cost of $15.34 and $33.92, respectively (BLS 

2015). The initial workflow simulation examined the trends in cost with variations in the number of workers 
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and inspectors (Figure 7). Results show that unit cost for inspecting a box, in this particular case, is 

minimum with 25 workers and 6 inspectors (Figure 7). 
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Figure 7: Unit cost of inspecting a box for various worker-inspector combinations. 

Evidentially, bottlenecks play an important role in project cost. In this experiment, with one inspector 

and more than four workers, an increase in the number of workers increases the cost, whereas with 10 

inspectors the bottleneck is removed thus, cost decreases when the number of workers increases (Figure 7). 

As expected, worker’s efficiency decreases with an increase in the number of workers, and increases with 

an increase in the number of inspectors (Figure 8a). Furthermore, inspector’s efficiency rises to 100% 

(Figure 8b) whereas worker’s efficiency remains below 80% (Figure 8a). In the experiment, workers wait 

idly during ‘Inspect’ and ‘Reject’ activities, hence creating the lower cap on efficiency. The effect of 

bottlenecks in this experiment can be also observed in that the number of workers required for inspector’s 

efficiency to reach 100% increases as the number of inspectors increases (Figure 8b). 

 
(a) 

 
(b) 

Figure 8: Productive time for different combinations of workers and inspectors. 

7.2 Productivity and Cost Analyses 

In the further analysis stage, various simulation model parameters were altered to examine the relationship 

between the productivity at minimum cost and cost at maximum productivity. This analysis is an illustration 

of the various possible applications of the parametric model built to analyze the data. In particular, 18,000 

iterations were run by varying the input parameters as follows: number of workers from 1 to 30, number of 

inspectors from 1 to 10, inspector spaces from 1 to 3, worker spaces from 1 to 5, and number of boxes from 

100, to 1,000, 10,000 and 100,000. For each simulation, total cost, total simulation time, inspector’s idle 

time, and worker’s active time were recorded. 
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With the goal of evaluating the effect of physical space as expressed by ‘Worker’s Space’ and 

‘Inspector’s Space’, each combination of worker’s space, inspector’s space, and number of boxes was taken 

as a unique optimization problem and the numbers of workers and inspectors were taken as variables. For 

each of the 60 optimizations, the combination of number of workers and number of inspectors with the 

minimum cost and their productivity, and the combination of number of workers and number of inspectors 

with the maximum productivity and the cost at that combination were recorded. Finally, the difference 

between productivity at minimum cost and maximum productivity, as well as cost at maximum productivity  

and minimum cost were calculated in percentage. Figure 9 illustrates the relationship between the 

percentage difference in cost and percentage difference in productivity. One interesting observation that 

can be drawn is that for most of the combinations, the percentage increase in cost is significantly more than 

the percentage increase in productivity. This suggests that increasing productivity from the productivity at 

lowest cost can be very costly.  

 

Figure 9: Difference between productivity and cost at maximum productivity and minimum cost. 

8 DISCUSSION 

In this research, first, wearable sensor data and machine learning were used for HAR. Seven out of 10 

activities were recognized with >80% accuracy. For activities ‘Push’ and ‘Pull’ for worker, and ‘Wait’ and 

‘Inspect’ for inspector, accuracies were even higher (>95%). Activity durations were extracted from 

classifier predictions. For 6 activities, extracted durations were within 5% of true values. For activities ‘Pull’ 

for worker, and ‘Inspect’ for inspector, extracted durations were within 1% of true values. From extracted 

durations, best statistical distributions were selected as inputs in a data-driven simulation model. Three 

versions of the simulation were run in multiple iterations to test robustness and scalability. Simulation 

results with uniformly distributed number of boxes from 30 to 900 showed that on average, output durations 

were within 10% of the experimental average. The second simulation with 30 boxes and 1000 iterations 

showed that on average, output durations were 6% lower than true values. For workflow optimization, space 

constraints and various crew combinations were used. Simulation results showed that in the presence of 

only one inspector (bottleneck), cost increased with an increase in the number of workers. But for other 

cases, cost decreased when the number of workers increased. Moreover, worker’s efficiency decreased with 

an increase in the number of workers, but increased when the number of inspector increased. Results also 

showed that inspector’s efficiency can reach 100%, but worker’s efficiency is capped at below 80%. 
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Furthermore, simulation results showed that for various combinations of numbers of workers and number 

of inspectors, the percentage increase in cost is significantly more than the percentage increase in 

productivity. 

It is worth mentioning that although incorporating positional data for example from the smartphone’s 

built-in global positioning system (GPS) sensor could have added some (marginal) value to the data analysis, 

it would have as well taken away from the flexibility of conducting experiments in an indoor environment. 

As shown in Figure 2, even without the inclusion of positional data, almost all activities were predicted 

with very high accuracy. Also, the limited number of work cycles in the experiment presented in this paper 

resulted in a relatively small dataset, which in turn necessitated the use of more data collection nodes (i.e. 

smartphones) on each person to accommodate for the lack of distinctive features in collected data. In future 

experiments, increasing the number of cycles as well as capturing data from more sensors in each 

smartphone will help authors move toward using only one data collection node (e.g. smartphone) on each 

person. Finally, it should be noted that while some of the observations and conclusions made in this paper 

may be specific to the experiment conducted in this research, as well as the nature of data collected from 

the individuals who performed various activities, the designed methodology and overall approach to 

problems such as process optimization, and productivity and cost analyses using sensor data and machine 

learning is generalizable to other types of operations of arbitrary length and complexity. 
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