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ABSTRACT

Conditional Value-at-Risk (CVaR) is a widely used metric of risk in portfolio analysis, interpreted as the
expected loss when the loss is larger than a threshold defined by a quantile. This work is motivated by
situations where the CVaR is given, and the objective is to find the portfolio with the largest or smallest
quantile that meets the CVaR constraint. We define our problem within the classic stochastic multi-armed
bandit (MAB) framework, and present two algorithms. One that can be used to find the portfolio with
largest or smallest loss threshold that satisfies the CVaR constraint with high probability, and another that
determines the portfolio with largest or smallest probability of exceeding a loss threshold implied by a
CVaR constraint, also at some desired probability level.

1 INTRODUCTION

The MAB is a classic iterative decision learning problem in which the learner (agent) seeks to make an
optimal selection of a single arm from an initial S arms of the bandit available for selection. For every
iteration n the agent obtains a reward from arm s, Xs,n, where the aim is to select the optimal arm with high
probability. In the stochastic form of the problem, an underlying distribution that is not initially known
forms the basis for the rewards obtained at each iteration. Whilst the unobserved distribution for each arm
does not change throughout the problem, the reward observed, being random, does.

As one of the most extensively studied problems in decision theory and reinforcement learning, the
MAB has seen a wide range of applications in contemporary settings such as in medical research (Gittins
1989) and financial portfolio optimization (Shen, Wang, Jiang, and Zha 2015). An in-depth background
into this class of problems is given in the work of (Even-Dar, Mannor, and Mansour 2002) and (Bubeck
and Cesa-Bianchi 2012), well defining the range of MAB problems and providing the foundational context
and derivations for subsequent research. The successive elimination algorithms presented in (Even-Dar,
Mannor, and Mansour 2002) and (Even-Dar, Mannor, and Mansour 2006) broadly underpins the novel
work presented herein. In the last two papers the goal is to find the arm with largest expected reward, and
as such the MAB setting is related to the problem ranking and selection in stochastic simluation; see (Kim
and Nelson 2006) for an overview.

This work is motivated by situations where the maximum expected loss over a threshold is given,
and the agent wishes to discover the arm with largest or smallest threshold that satisfies the constraint,
or the arm with largest or smallest probability of exceeding the threshold that meets the constraint. Such
problems arise naturally in portfolio risk analysis, where the loss threshold is known as Value-at-Risk, and
the expected conditional loss over the worst 100α percent scenarios is known as Conditional Value-at-Risk
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at level α; see, for example, (Rockafellar and Uryasev 2000), (Rockafellar and Uryasev 2002), and (Brown
2007).

Essentially, our work involves bounding the error probability in a root estimation context, and as such
is related to MAB problems dealing with quantiles. The quantile-based learning setting given in (Szörényi,
Busa-Fekete, Weng, and Hüllermeier 2015) is formalized within the Probably Approximately Correct (PAC)
framework and is shown in the Qualitative PAC (QPAC) algorithm. QPAC uses qualitative ordinal data, that
would otherwise not be successfully analyzed within the traditional framework. The QPAC algorithm is an
adaptive elimination strategy and was further improved by the work of (David and Shimkin 2016) through
their MaxQ and Double-MaxQ algorithms. The quantity of interest for these algorithms is modified to
select the arm with the greatest α-quantile value.

We study the problem faced by an agent who has a constraint on the CVaR for a set of candidate
portfolios or activities, meaning that

E[Xs|Xs > ks,αs ] =C, (1)

where Xs is a random loss associated with a portfolio or activity s, ks,αs is the VaR, and C ∈ R is the
input constraint. The CVaR can be viewed as the expected loss for the fraction α of worst scenarios. The
constraint C can be interpreted as the amount of resources (be it money, people allocated to some task,
parts damaged, etc) that the agent can afford to lose or allocate in the worst or best 100α percent cases,
depending on the situation. The solution of the root problem also is called the buffered Probability of
Exceedance (bPOE) (Uryasev 2014), defined as the inverse of a CVaR level and is a generalization of the
so-called buffered Probability of Failure (bPOF), as defined in (Rockafellar and Royset 2010).

We consider two situations. First, the agent wishes to find the portfolio with largest or smallest threshold
quantile (known as the Value-at-Risk at level α), represented by the root ks,αs in (1). Second, the agent’s
objective is to identify the portfolio with largest or smallest probability α of exceeding the VaR, where the
root ks,αs is set to satisfy (1). In the former case the level αs plays no role in finding the VaR that satisfies
the CVaR constraint, while in the latter αs can be obtained from the root ks,αs .

Another potential application is online marketing, where each arm is an online marketing campaign
for some product. The constant C (an input) is the average quality (e.g., a function of age, income, gender,
etc) of the individuals wanted by the seller. 1−αs(C) is the fraction of people generated by the marketing
campaign who have an average quality C, with quality at least ks(C). Hence, the retailer wishes to find the
marketing campaign with lowest αs(C). In this case a sample Xs,i is the quality of individual i generated
by marketing campaign s.

In this paper we present a new approach to find the arms with largest or smallest Value-at-Risk and
CVaR level α under a loss constraint, within a PAC setting. From a technical standpoint, we extend the
classical PAC framework, involving mean estimators, to a novel situation involving root estimators. The
paper is organized as follows. Section 2 deals with the problem of finding the arm with largest VaR. The
problem of finding the arm with the largest CVaR at level α is treated in Section 3. Appendices at the rear
of the paper include proofs of the main results.

2 SELECTING THE LARGEST VALUE-AT-RISK

Without loss of generality, we work with the problem of finding the arm with the largest root k and the
one with largest CVaR level α . The problem of finding the arm with the smallest root or CVaR level is
handled by working with arms driven by the negative random variables −Xs.

More formally, consider a finite set of candidate arms S = {1, . . . ,S}. For each arm s ∈ S there is an
uncertain loss, defined by a random variable Xs with an unknown continuous distribution. The agent can
draw independent and identically distributed (i.i.d.) random samples Xs,1,Xs,2, . . . from a distribution with
a density fXs(·), and ks(C) is the root of

C = E[Xs|Xs > k].

The goal is to find the arm s∗ ∈ S with the largest root, ks∗(C) = maxs ks(C).
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The main assumptions we make are:

A1. C−E[Xs]≥ γ > 0, ∀s ∈ S .
A2. The random variables Xs,1,Xs,2, . . . , have bounded support over (a,b), ∀s ∈S , with −∞ < a <C <

b < ∞.
A3. The random variables Xs, for all s ∈ S , have a probability density function fXs(·) that is uniformly

bounded below by ζ > 0.

Assumptions A1 and A2 ensure that the root ks(C) is well defined, whilst Assumption A3 is used
to bound the error probability of the root estimator. In quantile estimation settings (see Section 2.3.2 of
(Serfling 2008)) a positive density is required in the neighborhood of the quantile to control the estimation
error; in the CVaR setting this assumption is extended to the entire support. Following this, the arm index
s is dropped unless it is needed.

The idea is to adapt the sequential elimination approach of (Even-Dar, Mannor, and Mansour 2002),
for which one needs to show that for 0 < δ < 1 there exists εn > 0 such that

P(|kn − k(C)|> εn)≤ 6δ
π2n2S

,

where kn is the root estimator based off n i.i.d. samples. The analysis is simplified by dealing exclusively
with the root of the function

g(k) = E[(X −C)I(X > k)],

the result of a simplification of

C = E[X |X > k] =
E[X ;X > k]
P(X > k)

⇐⇒ g(k) = 0.

Assumptions A1 and A2 guarantee that limk→−∞ g(k) = E[X ]−C < 0, and g(·) increases to reach its
maximum at C, with g(C) = E[(X −C)I(X >C)]> 0. From there g(k) decreases towards 0, as k approaches
b. It follows that there is only one root k(C)<C that solves g(k) = 0. One implication of Assumption A3
is that C−k(C)≥ ψ > 0 for some ψ > 0; see Lemma 5.1 in the Appendix for details. Intuitively, the error
probability in the root estimation gets larger as C approaches k(C). An illustration of the function g(·) is
shown in Figure 1.

Drawing i.i.d. samples X1, . . . ,Xn, the root is estimated by solving

1

n

n

∑
i=1

(Xi −C) I (Xi > k) = 0, (2)

where the left-hand side of (2) can be interpreted as an empirical g(·) function. More formally, let the
estimated root be given by

kn = inf

{
k ≥ a :

1

n

n

∑
i=1

(Xi −C) I (Xi > k)≥ 0

}
. (3)

There are three possibilities:

1. (1/n)∑n
i=1 Xi <C and (1/n)∑n

i=1 I (Xi >C)> 0, in which case monotonicity of (1/n)∑n
i=1 (Xi −C) I (Xi > k)

in k ensures that there is a unique root in (a,C).
2. (1/n)∑n

i=1 Xi ≥C, leading to kn = a.
3. (1/n)∑n

i=1 I (Xi >C) = 0, in which case kn = maxi=1,...,n Xi ≤C.
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Figure 1: g(·) for a truncated Normal(μ = 15,σ = 30) over the interval (−100,100) with C = 25.

The assumptions imply that the probability of cases 2 or 3 decay to zero exponentially in n. In case
1, given the ordered samples X(1) ≤ X(2) ≤ ·· · ≤ X(n), the root finding can be implemented as kn = X(m∗),
where

m∗ = min

{
m ≥ 1 :

n

∑
i=m

(
X(i)−C

)≥ 0

}
. (4)

The average complexity of sorting the samples and finding X(m∗) is of order O(n logn), as given in (Cormen,
Leiserson, Rivset, and Stein 2010).

2.1 Algorithm

Let Δs = ks∗(C)− ks(C)> 0 for all arms s 
= s∗. Algorithm 1, shown below, initializes each root ks,n to a,
and uses thresholds

εn =

(
log

(
π2n2S

3δ

)
1

2n

)1/2 b−a
ζ ψ

, for n = 1,2, . . . , (5)

to eliminate suboptimal arms. Theorem 1 shows that the root estimation error |ks,n − ks(C)| is larger than
εn with probability δ .

Theorem 1 Under Assumptions A1, A2, and A3,

P(|ks,n − ks(C)| ≤ εn,∀n,∀s = 1, . . . ,S)≥ 1−δ .

Algorithm 1 is a standard implementation of the sequential elimination algorithm of (Even-Dar, Mannor,
and Mansour 2002).
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Algorithm 1 Sequential VaR Elimination Algorithm

Set A = {1, . . . ,S}.

Set ks,n = a,∀s ∈ A
while |A |> 1 do

for arm s ∈ A do
Draw one sample from arm s and compute ks,n

if kmax,n = maxs′∈A {ks′,n}− ks,n > 2εn then
A = A \{s}

end if
end for
Set n = n+1

end while

Since P(|ks,n − ks(C)| ≤ εn)≥ 1−δ , Algorithm 1 selects the best arm with probability at least 1−δ
((Even-Dar, Mannor, and Mansour 2002)). As in (Glynn and Juneja 2015), the expected number of samples
E[Ns] generated by a suboptimal arm s 
= s∗ is

E[Ns]≤
∞

∑
n=1

P(kmax,n − ks,n < 2εn)≤
∞

∑
n=1

P(ks∗,n − ks,n < 2εn)≤ us +
∞

∑
n=us+1

P(ks∗,n − ks,n < 2εn)

for us = inf{n : 4εn ≤ Δs}. It easily follows that E[Ns] ≤ us + 2δ/S, meaning that the expected number
of samples over the suboptimal arms, ∑s
=s∗ E[Ns], is at most 2δ +∑s 
=s∗ us. Solving for n ≥ e such that
4εn = Δs, with εn as in (5), leads to the dominant term in ∑s
=s∗ E[Ns] being

8(b−a)2

ζ 2ψ2
log

(
π2S
3δ

)
∑

s
=s∗
Δ−2

s ,

for small δ ; see (Glynn and Juneja 2015).
Hence, finding an arm with largest root changes the expected number of samples by a factor of (ζ ψ)−2

in relation to the case where the goal is to select the arm with largest mean, where the expected number
of samples generated by a suboptimal arm is of order 8(b−a)2 log(π2S/(3δ ))∑s
=s∗ Δ−2

s .

3 SELECTING THE LARGEST CVAR LEVEL

In this section we get back to the problem of finding the arm with the largest CVaR level. More precisely,
for Fs(·) the distribution function of Xs, let

αs(C) = Fs(ks(C)),

where ks(C) is the root of
E[Xs|Xs > k] =C.

The goal of the agent is to find the arm s∗ with largest αs(C). Let αs,n be the empirical estimator of αs(C),
given by

αs,n = F̄(kn) =
1

n

n

∑
i=1

I(Xi ≤ kn), (6)

where F̄(·) is the empirical distribution function, and kn is defined in (3). It follows from (4) that αs,n = m∗/n

when (1/n)∑n
i=1 Xi <C and (1/n)∑n

i=1 I(Xi >C)> 0, so that computationally the problem is not any costlier
than that of finding the root kn.
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With a view towards the elimination algorithm, define the thresholds

εn =

(
log

(
π2n2S

δ

)
2

n

)1/2

×max

{
b−a
ψ2ζ

,
2(b−a)+(b−C)/n)

ψ
,1

}
, (7)

for n = 1,2, . . .. The maximands in (7) stem from coupling the empirical distribution to the empirical
g(·) function (cf., Eq. (2)); see the proof of Theorem 2. Intuitively, the difference between the true and
empirical CVaR levels is large if at least one of three events occur: The root estimator is far from the true
estimator, the empirical g(·) function at the true root k(C) deviates too much from the true g(·) function,
or if the empirical distribution is far from the true distribution at the root k(C).

As in the last section, assume Δs =αs∗(C)−αs(C)> 0 for all arms s 
= s∗. Algorithm 2 uses the thresholds
in (7) to eliminate suboptimal arms. Theorem 2, whose proof appears in the Appendix, establishes the key
condition for the algorithm to work.

Theorem 2 Under Assumptions A1, A2, and A3, for εn as in (7) we have

P(|αs,n −αs(C)| ≤ εn,∀n,∀s = 1, . . . ,S)≥ 1−δ .

The sequential elimination algorithm for CVaR level selection is detailed next.

Algorithm 2 Sequential CVaR Level Elimination Algorithm

Set A = {1, . . . ,S}.

Set αs,n = 0,∀s ∈ A
while |A |> 1 do

for arm s ∈ A do
Sample from arm s and compute αs,n

if maxs′∈A {αs′,n}−αs,n > 2εn then
A = A \{s}

end if
end for
Set n = n+1

end while

As with Algorithm 1, Theorem 2 implies that the arm with largest CVaR level α is selected with
probability at least 1−δ .

Likewise, the total expected number of samples ∑s 
=s∗ E[Ns] generated by the suboptimal arms is

∑
s 
=s∗

E[Ns]≤ 2δ + ∑
s 
=s∗

us

for us = inf{n > e : 4εn ≤ Δs}. For small δ > 0, a standard argument shows that the dominant term in

∑s
=s∗ E[Ns] is

32

(
max

{
b−a
ψ2ζ

,
2(b−a)

ψ
,1

})2

log

(
π2S
δ

)
∑

s
=s∗
Δ−2

s ,

where the impact of the (b−C)/n term showing in (7) is of order smaller than log(1/δ ).

4 CONCLUDING REMARKS

Conditional Value-at-Risk is a widely used metric of portfolio risk. Motivated by situations where the
maximum expected loss over a threshold is given, in this paper we have demonstrated a novel approach to
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find the arms with largest or smallest Value-at-Risk and CVaR level within a PAC setting. This approach
can be generalized to random variables with bounds on 1+ν moments (i.e., E|X |1+ν ≤ B, for some finite
known constant B, and ν > 0), rather than bounded support; see (Hepworth, Atkinson, and Szechtman
2017).

5 APPENDICES

A. Proof of Theorem 1:
Suppose that kn < k(C)− ε , for ε > 0; the case kn > k(C)+ ε is treated below. Then, from (3),

0 ≤ 1

n

n

∑
i=1

(Xi −C) I (Xi > kn)

=
1

n

n

∑
i=1

(Xi −C) I (kn < Xi ≤ k (C))+
1

n

n

∑
i=1

(Xi −C) I (Xi > k (C))

≤ 1

n

n

∑
i=1

(Xi −C) I (k (C)− ε < Xi ≤ k (C))+
1

n

n

∑
i=1

(Xi −C) I (Xi > k (C)) ,

since Xi <C on the event {Xi < k(C)− ε}. It follows that, since C > k(C),

1

n

n

∑
i=1

(Xi −C) I (Xi > k (C))

≥−1

n

n

∑
i=1

(Xi −C) I (k (C)− ε < Xi ≤ k (C))

≥ (C− k (C))
1

n

n

∑
i=1

I (k (C)− ε < Xi ≤ k (C)) .

Then it must hold that

P(kn < k(C)− ε)

≤ P

(
1

n

n

∑
i=1

(Xi −C)I(Xi > k(C))≥ (C− k(C))
1

n

n

∑
i=1

I(k(C)− ε < Xi ≤ k(C))

)

≤ exp

(
−2n

(
(C− k(C))P(k(C)− ε < Xi ≤ k(C))

b−a

)2
)

by Hoeffding’s Lemma. Hence, by Assumption A3 and Lemma 5.1 below,

P(kn < k(C)− ε)≤ exp(−2nψ2ε2ζ 2/(b−a)2). (8)

Going in the other direction, if kn > k(C)+ ε then (3) results in

1

n

n

∑
i=1

(Xi −C)I(Xi > k(C)+ ε)< 0 ≤ 1

n

n

∑
i=1

(Xi −C)I(Xi > kn),

where this covers the third possibility for the root kn discussed in Section 2. Also, since E[(X −C)I(X >
k(C))] = 0,

E[(X −C)I(X > k(C)+ ε)] = E[(C−X)I(k(C)< X ≤ k(C)+ ε)]
> (C− k(C))P(k(C)< X ≤ k(C)+ ε)
≥ ψεζ ,

(9)
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by Assumption A3 and Lemma 5.1. If follows that

P(kn > k(C)+ ε)

≤ P

(
1

n

n

∑
i=1

(Xi −C)I(Xi > k(C)+ ε)< 0

)

= P

(
E[(X −C)I(X > k(C)+ ε)]− 1

n

n

∑
i=1

(Xi −C)I(Xi > k(C)+ ε)≥ E[(X −C)I(X > k(C)+ ε)]

)

≤ P
(

E[(X −C)I(X > k(C)+ ε)]− 1

n

n

∑
i=1

(Xi −C)I(Xi > k(C)+ ε)≥ ψεζ
)

≤ exp

(
−2n

(
ψεζ
b−a

)2
)
,

(10)

by (9) and Hoeffding’s Lemma. In summary,

P(|kn − k(C)|> ε)≤ 2exp

(
−2n

(
ψεζ
b−a

)2
)
.

From here, the results are fed into the sequential elimination approach of (Even-Dar, Mannor, and Mansour
2006) to get the elimination algorithm, as follows. For 0 < δ < 1 selected by the agent, set

P(|kn − k(C)|> εn)≤ 2exp

(
−2n

(
ψεζ
b−a

)2
)

=
6δ

π2n2S
.

Solving for εn,

εn =

(
log

(
π2n2S

3δ

)
1

2n

)1/2 b−a
ζ ψ

.

Thus, for any n = 1,2, . . ., and εn as above,

P(|ks,n − ks(C)|> εn)≤ 6δ
π2n2S

,

so that we obtain
∞

∑
n=1

P(|ks,n − ks(C)|> εn)≤ δ
S

∞

∑
n=1

6

π2n2
=

δ
S
,

and due to Basel’s problem,
∞

∑
n=1

1

n2
=

π2

6
.

Hence,

P(∪n,s|ks,n − ks(C)|> εn)≤ ∑
s,n

P(|ks,n − ks(C)|> εn)≤
S

∑
s=1

δ
S
≤ δ .

It follows that,
P(|ks,n − ks(C)| ≤ εn,∀n,∀s = 1, . . . ,S)≥ 1−δ ,

and the proof is complete.
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Lemma 5.1 Setting ψ to

ψ =
b−C

2
b−C

2
ζ

1− b−C
2

ζ
> 0

satisfies C− k(C)≥ ψ .

Proof of Lemma 5.1: We argue that

E[X | X >C−ψ]≥C

which implies that C− k(C)≥ ψ . Indeed,

E[X | X >C−ψ] =
E[XI(X >C−ψ)]

P[X >C−ψ]

=
E[XI(C−ψ < X ≤C+ b−C

2
)]

P[X >C−ψ]
+

E[XI(X >C+ b−C
2
)]

P[X >C−ψ]

≥ E[(C−ψ)I(C−ψ < X ≤C+ b−C
2
)]

P[X >C−ψ]
+

E[(C+ b−C
2
)I(X >C+ b−C

2
)]

P[X >C−ψ]

= (C−ψ)
P[C−ψ < X ≤C+ b−C

2
]

P[X >C−ψ]
+ (C+

b−C
2

)
P[X >C+ b−C

2
]

P[X >C−ψ]

= (C−ψ)

(
1− P[X >C+ b−C

2
]

P[X >C−ψ]

)
+(C+

b−C
2

)
P[X >C+ b−C

2
]

P[X >C−ψ]

≥ (C−ψ)

(
1−P[X >C+

b−C
2

]

)
+(C+

b−C
2

)P[X >C+
b−C

2
]

≥ (C−ψ)

(
1−P[X >C+

b−C
2

]

)
+(C+

b−C
2

)(b−C− b−C
2

)ζ

≥ (C−ψ)

(
1− b−C

2
ζ
)
+(C+

b−C
2

)(
b−C

2
)ζ

≥C−ψ
(

1− b−C
2

ζ
)
+

b−C
2

b−C
2

ζ .

We just need to ensure ψ is small enough so that the right hand side is at least C. By inspection,

ψ ≤
b−C

2
b−C

2
ζ

1− b−C
2

ζ
,

which completes the proof.

B. Proof of Theorem 2:
Eq. (6) leads to,

P
(

αn −α > ε
)
≤ P

(
F̄(kn)− F̄(k(C))> qε

)
+P

(
F̄(k(C))−F(k(C))> (1−q)ε

)
, (11)

for 0 < q < 1 and ε > 0. For the first term

P(F̄(kn)− F̄(k(C))> qε) = P

(
1

n

n

∑
i=1

I(k(C)< Xi ≤ kn)> qε

)
.
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If (1/n)∑n
i=1 I(k(C)< Xi ≤ kn)> qε then

1

n

n

∑
i=1

(Xi −C)I(Xi > kn)− 1

n

n

∑
i=1

(Xi −C)I(Xi > k(C)) =
1

n

n

∑
i=1

(C−Xi)I(k(C)< Xi ≤ kn)≥ (C− kn)qε.

Since 0 ≤ (1/n)∑n
i=1(Xi −C)I(Xi > kn)≤ (b−C)/n, for 0 < ξ < ψ ,

P

(
1

n

n

∑
i=1

I(k(C)< Xi ≤ kn)> qε

)

≤ P

(
1

n

n

∑
i=1

(C−Xi)I(Xi > k(C))> (C− kn)qε − (b−C)/n

)

= P

(
1

n

n

∑
i=1

(C−Xi)I(Xi > k(C))> (C− kn)qε − (b−C)/n;kn − k(C)> ξ

)

+P

(
1

n

n

∑
i=1

(C−Xi)I(Xi > k(C)

)
> (C− kn)qε − (b−C)/n;kn − k(C)≤ ξ )

≤ P(kn − k(C)> ξ )+P

(
1

n

n

∑
i=1

(C−Xi)I(Xi > k(C))> (ψ −ξ )qε − (b−C)/n

)
,

by Assumption A3 and Lemma 5.1. Hence,

P(F̄(kn)− F̄(k(C))> qε)≤ exp

(
−2n

(
ψξ ζ
b−a

)2
)
+ exp

(
−2n

(
(ψ −ξ )qε − (b−C)/n

b−a

)2
)
,

by (10) and Hoeffding’s Lemma, for n > (b−C)/((ψ −ξ )qε). Regarding the second term in (11),

P(F̄(k(C))−F(k(C))> (1−q)ε)≤ exp(−2n(1−q)2ε2).

In summary,

P(αn −α > ε)≤ exp

(
−2n

(
ψξ ζ
b−a

)2
)
+ exp

(
−2n

(
(ψ −ξ )qε − (b−C)/n

b−a

)2
)
+ exp(−2n(1−q)2ε2)

≤ 3exp

(
−2n

(
min

{
ψξ ζ
b−a

,
(ψ −ξ )qε − (b−C)/n

b−a
,(1−q)ε

})2
)
.

To shorten the proof set ξ = ψ/2 and q = 1/2 (but they could be optimized), so that

P(αn −α > ε)≤ 3exp

(
−2n

(
min

{
ψ2εζ

2(b−a)
,
ψε/2− (b−C)/n

2(b−a)
,ε/2

})2
)
,

for n > 2(b−C)/(ψε). The analysis of P(αn < α − ε) is similar and results in an identical exponential
bound; the proof is omitted for the sake of brevity. The conclusion is that,

P(|αn −α|> ε)≤ 6exp

(
−2n

(
min

{
ψ2εζ

2(b−a)
,
ψε/2− (b−C)/n

2(b−a)
,ε/2

})2
)
,
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for n > 2(b−C)/(ψε). As in the proof of Theorem 1, for 0 < δ < 1 chosen by the agent, εn is set so that

6exp

(
−2n

(
min

{
ψ2εnζ

2(b−a)
,
ψεn/2− (b−C)/n

2(b−a)
,εn/2

})2
)

≤ 6δ
π2n2S

,

leading to,

εn =

(
log

(
π2n2S

δ

)
2

n

)1/2

max

{
b−a
ψ2ζ

,
2(b−a)+(b−C)/n)

ψ
,1

}
.

By standard arguments, as in the proof of Theorem 1, it follows that,

P(|αs,n −αs(C)| ≤ εn,∀n,∀s = 1, . . . ,S)≥ 1−δ ,

which completes the proof.
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