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ABSTRACT

We study a direct Monte-Carlo-based approach for computing the worst-case expectation of two multidi-
mensional random variables given a specification of their marginal distributions. This problem is motivated
by several applications in risk quantification and statistics. We show that if one of the random variables
takes finitely many values, a direct Monte Carlo approach allows to evaluate such worst case expectation
with O(n−1/2) convergence rate as the number of Monte Carlo samples, n, increases to infinity.

1 INTRODUCTION

We focus on the problem of computing lower and upper bounds among any dependence structure for a
function of two random vectors whose marginal distributions are assumed to be known. This problem is
motivated from several applications in risk quantification and statistics. Before discussing its applications,
let us first describe it precisely.

Suppose that X ∈ Rd follows distribution µ and Y ∈ Rl follows distribution ν . We define Π(µ,ν) to
be the set of joint distributions π in Rd×l such that the marginal of the first d entries coincides with µ and
the marginal of the last l entries coincides with ν . In other words, for any probability measure π in Rd×l

(endowed with the Borel σ -field), if we let πX (A) = π
(
A×Rl

)
for any Borel measurable set A ∈Rd , and

πY (B) = π
(
Rd×B

)
for any Borel measurable set B ∈ Rl , then π ∈ Π(µ,ν) if and only if πX = µ and

πY = ν . We are interested in the quantity (focusing on minimization)

V = min{Eπ [c(X ,Y )] : π ∈Π(µ,ν)} (1)

where c(·, ·) ∈R is some cost function. Formulation (1) is well-defined as the class Π(µ,ν) is non-empty,
because the product measure π = µ×ν belongs to Π(µ,ν).

In operations research contexts, problem (1) arises as a means to obtain bounds for performance
measures in situations where dependence information is ambiguous. Such situations occur because, in
practice, accurately estimating the marginal distributions of random variables is often relatively easy, e.g.,
by goodness-of-fit against well-chosen parametric distributions. They also occur in scenarios where data
from different stochastic sources are collected independently (i.e., rather than in pairs), in which case no
dependence information between these sources can be inferred. Indeed, special (i.e., discrete) cases of (1)
have been analyzed in the distributionally robust optimization literature (e.g., Doan et al. 2015). Variants
of (1) to risk measures have also been studied, regarding both algorithmic approaches (e.g., Rüschendorf
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1983, Embrechts et al. 2013) and sharp bounds over specific geometric classes of marginals (e.g., Wang
and Wang 2011, Puccetti 2013, Puccetti and Rüschendorf 2013).

In statistics and machine learning contexts, the value of (1) is the Wasserstein distance (of order 1)
between X and Y when c(·, ·) is taken as a metric. The optimization can be viewed as the classical
Kantorovich relaxation to Monge’s problem in optimal transport (e.g., Rachev and Rüschendorf 1998,
Villani 2008), where solutions based on differential properties have been extensively studied. Wasserstein
distance is of central importance in probabilistic analysis (e.g., quantifying model discrepancies in Bayesian
settings (Minsker et al. 2014) and convergence rates of ergodic processes (Boissard and Le Gouic 2014),
among many others). The estimation of the distance itself is also suggested as a tool for statistical inference,
including the use in goodness-of-fit tests (Del Barrio et al. 1999, Del Barrio et al. 2005) and in applications
such as image recognition (Sommerfeld and Munk 2016). It has also been used to quantify model uncertainty
in stochastic optimization problems (e.g., Esfahani and Kuhn 2015, Blanchet and Kang 2016, Blanchet
and Murthy 2016, Gao and Kleywegt 2016) and in the application of distributionally robust optimization
in machine learning settings (Blanchet et al. 2016). As such, there have been growing studies on the
convergence behaviors of its empirical estimation. Central limit theorems (CLTs) on the empirical estimation
of (1), based on representations using quantile functions, have been investigated in the one-dimensional
case (e.g., Bobkov and Ledoux 2014, Del Barrio et al. 1999). More generally, concentration bounds have
been studied in the line of work including Horowitz and Karandikar (1994), Bolley et al. (2007), Boissard
(2011), Sriperumbudur et al. (2012), Trillos and Slepčev (2014) and Fournier and Guillin (2015), so do
laws of large numbers in some special cases (e.g., Dobrić and Yukich 1995).

Since classical methods for solving (1), based for instance on Euler-Lagrange equations, may not yield
straightforward computational schemes in general, we resort to Monte Carlo for an easy-to-implement
approximation. Our contribution is precisely to quantify the rate of convergence of such Monte Carlo
schemes. Our results also add to the literature of empirical Wasserstein estimation when these Monte Carlo
samples are viewed as data. We focus on the setting where one of the marginals, say Y , is a finite-support
distribution, and another, say X , is a multi-dimensional distribution that can be continuous. To approximate
V , we consider the drawn samples from the continuous variable X , and replace the infinite-dimensional
linear program (LP) in (1) by its sampled counterpart, which can be solved by standard LP solvers.

Our main result shows that the error of our procedure is O(n−1/2) where n is the sample size, independent
of the dimension d or l. We also identify the limiting distribution in the associated CLT. The closest work
to our results, as far as we know, is the recent work of Sommerfeld and Munk (2016), who derive a CLT
when both marginal distributions are finitely discrete. Our result here can be viewed as a generalization to
theirs when one of the distributions is continuous. We remark that our obtained rate differs from the typical
rate of O(n−1/d) in high-dimensional empirical Wasserstein estimation where d ≥ 3 is the dimension of the
marginal distributions. As we will see, the finite-support property of one of the marginals plays a crucial
role in applying classical results in sample average approximation (SAA) that maintain the standard Monte
Carlo rate in our scheme.

In the rest of this paper, we will first describe our algorithm, followed by our main results on the
convergence analysis.

2 ALGORITHMIC DESCRIPTION

Suppose that the distribution ν for Y has finite support {y1, ...ym} ⊂Rl . Supposing that X can be simulated,
we sample n i.i.d. observations X1, . . . ,Xn from µ , and approximate V by

Vn = min{Eπ [c(X ,Y )] : π ∈Π(µn,ν)} (2)

where µn is the empirical distribution of X constructed from the Xi’s, i.e.,

µn(A) =
1
n

n

∑
i=1

I(Xi ∈ A)
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for any Borel measurable A.
Note that (2) is a finite-dimensional LP, which can be written more explicitly as

min ∑
n
i=1 ∑

m
j=1 c(Xi,y j)pi j

subject to ∑
m
j=1 pi j =

1
n ∀i = 1, . . . ,n

∑
n
i=1 pi j = ν{y j} ∀ j = 1, . . . ,m

pi j ≥ 0 ∀i = 1, . . . ,n, j = 1, . . . ,m

(3)

where the decision variables pi j represent the probability masses on (Xi,y j), and ν{y j} denotes the mass on y j
under ν . Problem (3) is an assignment problem, which is a special type of minimum cost problem and can be
solved by, e.g., successive shortest path algorithms in polynomial time of order O(n2m+n(n+m) log(n+m))
(see, e.g., R.K.Ahuja et al. 2000 pp. 471, 500).

3 CONVERGENCE ANALYSIS

Our main result is a convergence analysis on Vn to V . We impose the assumptions:
Assumption 1 For each y j, c(.,y j) is non-negative and lower semicontinuous.

Assumption 2 Suppose that ν has finite support {y1, ...,ym} ⊂ Rl . We have

Eµ [c(X ,y j)
2]< ∞, ∀ j = 1, . . . ,m.

Denote

V ′ = max
β1,...,βm∈R

Eµ

[
min

j=1,...,m
{c(X ,y j)−β j}+

m

∑
j=1

β jν{y j}
]

(4)

which is the dual problem of (1) (see Lemma 1 for an explanation in the special case of finite-dimensional
settings). Under Assumptions 1 and 2, strong duality (known as the Kantorovich duality) holds and V ′ =V ;
see, e.g., Theorem 5.10 in Villani (2008).

In order to state our main result, we need to introduce a Gaussian random field G(·) : Rm→ R with
covariance structure given by

Cov(G(β ),G(β ′)) = Cov
(

min
j=1,...,m

{
c(X ,y j)−β j

}
, min

j=1,...,m

{
c(X ,y j)−β

′
j
})

for any β = (β j)
m
j=1 and β ′ = (β ′j)

m
j=1. Our main result is the following.

Theorem 1 Under Assumption 2, Vn
p→V ′ as n→ ∞. Moreover,

n1/2 (Vn−V ′
)
⇒ G∗

as n→ ∞, where
G∗ = max

β=(β1,...,βm)∈S
G(β ) .

Here S is the set of all optimal solutions β = (β j)
m
j=1 ∈ Rm for the convex optimization problem

max
β1,...,βm∈R
∑

m
j=1 β j=0

Eµ

[
min

j=1,...,m
{c(X ,y j)−β j}+

m

∑
j=1

β jν{y j}
]
. (5)

Remark 1 The significance of this result is that one can approximate worst-case expectations by sampling
with a rate of convergence (as measured by the sample size of the continuous distribution) of order O(n−1/2).
As we mentioned earlier, this might be somewhat surprising given that standard empirical estimators for
Wasserstein distances exhibit a degradation which becomes quite drastic in high dimensions.
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3.1 Proof of Theorem 1

We first note that adding a constant to β j in the objective function of the dual does not change the objective
value. To remove this ambiguity we inroduce the next result.
Lemma 1 Define

V̂n := max
β j∈R, j=1,...,m.

∑
m
j=1 β j=0

{
1
n

n

∑
i=1

min
j=1,...,m

{
c(Xi,y j)−β j

}
+

m

∑
j=1

β jν{y j}

}
. (6)

We have Vn = V̂n.

Proof. The dual formulation of Vn, depicted as the LP (3), is given by

max 1
n ∑

n
i=1 αi +∑

m
j=1 β jν{y j}

subject to αi +β j ≤ c(Xi,y j) ∀i = 1, . . . ,n, j = 1, . . . ,m
(7)

where (αi)
m
i=1,(β j)

m
j=1 are the dual variables. Note that the constraint in (7) can be written as αi ≤

min j=1,...,m{c(Xi,y j)−β j} ∀i = 1, . . . ,n, which implies that (7) is equivalent to

max
β j∈R, j=1,...,m

{
1
n

n

∑
i=1

min
j=1,...,m

{
c(Xi,y j)−β j

}
+

m

∑
j=1

β jν{y j}

}
(8)

Since shifting any (β j)
m
j=1 to (β j +λ )m

j=1 by an arbitrary constant λ does not affect the objective value
of (8), we can always set λ =− 1

m ∑
m
j=1 β j to enforce the constraint ∑

m
j=1 β j = 0, so that (8) is equal to (6).

Finally, since (3) is feasible by choosing an independent distribution, strong duality holds. We therefore
conclude the lemma.

Next we show that V̂n can be further reduced to a problem with compact feasible region, which will
subsequently facilitate the invocation of classical results in SAA:
Proposition 2 Define

V̂ b
n := max

β j∈R,|β j|≤b, j=1,...,m
∑

m
j=1 β j=0

{
1
n

n

∑
i=1

min
j=1,...,m

{
c(Xi,y j)−β j

}
+

m

∑
j=1

β jν{y j}

}
. (9)

There exists some large enough constant b > 0 such that

Vn = V̂ b
n (10)

eventually, i.e., holds for any n > N for some N < ∞ almost surely.

Proof. By Lemma 1, we have

Vn = V̂n

= max

{
max

β j∈R,|β j|≤b, j=1,...,m
∑

m
j=1 β j=0

{
1
n

n

∑
i=1

min
j=1,...,m

{
c(Xi,y j)−β j

}
+

m

∑
j=1

β jν{y j}

}
,

max
β j∈R, j=1,...,m,|β j|>b for some j

∑
m
j=1 β j=0

{
1
n

n

∑
i=1

min
j=1,...,m

{
c(Xi,y j)−β j

}
+

m

∑
j=1

β jν{y j}

}}
. (11)
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Note that the first term inside the outer max is V̂ b
n by our definition (9). We will show that there exists a

deterministic b > 0 such that the first term dominates the second term eventually, which will then conclude
the proposition.

To this end, consider the second term in (11)

max
β j∈R, j=1,...,m,|β j|>b for some j

∑
m
j=1 β j=0

{
1
n

n

∑
i=1

min
j=1,...,m

{
c(Xi,y j)−β j

}
+

m

∑
j=1

β jν{y j}

}

≤ max
β j∈R, j=1,...,m,|β j|>b for some j

∑
m
j=1 β j=0

{
min

j=1,...,m

{
−β j

}
+

m

∑
j=1

β jν{y j}
}
+

1
n

n

∑
i=1

max
j=1,...,m

c(Xi,y j). (12)

We analyze

max
β j∈R, j=1,...,m,|β j|>b for some j

∑
m
j=1 β j=0

{
min

j=1,...,m

{
−β j

}
+

m

∑
j=1

β jν{y j}
}
. (13)

Denote M = max j=1,...,m |β j|, so that M > b for any β inside the feasible region. There must exist either a
β j∗ = M or β j∗ =−M. In the first case, we have

max
β j∈R, j=1,...,m,|β j|>b for some j

∑
m
j=1 β j=0

{
min

j=1,...,m

{
−β j

}
+

m

∑
j=1

β jν{y j}
}

≤ −M+


max ∑

m
j=1 β jν{y j}

subject to β j ≤M ∀ j = 1, . . . ,m
∑

m
j=1 β j = 0


= −M+M×


max ∑

m
j=1 β jν{y j}

subject to β j ≤ 1 ∀ j = 1, . . . ,m
∑

m
j=1 β j = 0

 (14)

where the last equality follows by a change of variable from β j to β j/M in the optimization. Note that the
optimal value of

max ∑
m
j=1 β jν{y j}

subject to β j ≤ 1 ∀ j = 1, . . . ,m
∑

m
j=1 β j = 0

is strictly less than 1. To see this, observe that the optimal value is at most 1 by using the first constraint.
The value of exactly 1 is attained under the first constraint by the unique solution β j = 1, j = 1, . . . ,m,
which is ruled out because it would violate the second constraint. With this claim, we conclude that (14)
is equal to θM for some θ < 0, which is bounded from above by θb.

In the second case, we have β j∗ =−M. Let j̃∗ = argmax j=1,...,m{β j}. By the constraint ∑
m
j=1 β j = 0 in

(13), we must have β j̃∗ ≥M/(m−1). Therefore, applying our argument for the first case gives that (13)
is bounded from above by θM/(m−1)≤ θb/(m−1) for the same θ < 0 chosen before.

Therefore, in either case (13) is bounded from above by θb/(m−1). Note that the first term inside
the outer max in (11), namely V̂ b

n , satisfies V̂ b
n ≥ (1/n)∑

n
i=1 min j=1,...,m c(Xi,y j) by plugging in the feasible

solution given by β j = 0, j = 1, . . . ,m. Thus, with the law of large numbers, by choosing b > 0 large enough
such that

θb
m−1

+Eµ

[
max

j=1,...,m
c(X ,y j)

]
< Eµ

[
min

j=1,...,m
c(X ,y j)

]
(15)
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the first term dominates the second term inside the outer max in (11) as n→ ∞ almost surely.

We are now ready to prove Theorem 1:

Proof of Theorem 1. Note that the function

F(X ,β ) := min
j=1,...,m

{
c(X ,y j)−β j

}
+

m

∑
j=1

β jν{y j} (16)

on β = (β j)
m
j=1 ∈ Rm is Lipschitz continuous in the sense that

|F(X ,β )−F(X ,β ′)| ≤ (1+‖ν‖)‖β −β
′‖

where ‖ · ‖ denotes the L2-norm, and ν is interpreted as a vector (ν{y j})m
j=1. This follows since∣∣∣∣ min

j=1,...,m

{
c(X ,y j)−β j

}
− min

j=1,...,m

{
c(X ,y j)−β

′
j
}∣∣∣∣≤ ‖β −β

′‖∞

and ∣∣∣∣∣ m

∑
j=1

β jν{y j}−
m

∑
j=1

β
′
jν{y j}

∣∣∣∣∣≤ ‖ν‖‖β −β
′‖

by the Cauchy-Schwarz inequality. Since the set B := {β ∈ Rm : ∑
m
j=1 β j = 0, |β j| ≤ b,∀ j = 1, . . . ,m} is

compact and Eµ [F(X ,β )2]< ∞ by Assumption 2, by using Theorem 5.7 in Shapiro et al. (2009), we have

V̂ b
n

p→V b (17)

and √
n(V̂ b

n −V b)⇒ G∗,b (18)

where

V b = max
β j∈R,|β j|≤b, j=1,...,m

∑
m
j=1 β j=0

Eµ

[
min

j=1,...,m
{c(X ,y j)−β j}+

m

∑
j=1

β jν{y j}
]

(19)

and
G∗,b = max

β=(β1,...,βm)∈Sb
G(β )

with Sb denoting the set of optimal solutions for (19) and G(·) is defined as in Theorem 1 but restricted
to the domain B.

By Proposition 2, we have
√

n(V̂ b
n −Vn)

p→ 0 as n→ ∞. Thus, together with (17), we have

Vn
p→V b

and together with (18), we have √
n(Vn−V b)⇒ G∗,b

by Slutsky’s Theorem.
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To conclude the theorem, we show that V b =V ′, and Sb = S so that G∗,b = G∗. By using essentially
the same argument as for Proposition 2 (with the empirical expectation replaced by Eµ [·]) and choosing
the same b as in (15), we have

V ′ = max
β j∈R, j=1,...,m

Eµ

[
min

j=1,...,m
{c(X ,y j)−β j}+

m

∑
j=1

β jν{y j}
]

= max
β j∈R, j=1,...,m

∑
m
j=1 β j=0

Eµ

[
min

j=1,...,m
{c(X ,y j)−β j}+

m

∑
j=1

β jν{y j}
]

by shifting any (β j)
m
j=1 to (β j− (1/m)

m

∑
k=1

βk)
m
j=1 which does not affect the objective value and

enforces the constraint
m

∑
j=1

β j = 0

= max

{
max

β j∈R,|β j|≤b, j=1,...,m
∑

m
j=1 β j=0

Eµ

[
min

j=1,...,m
{c(X ,y j)−β j}+

m

∑
j=1

β jν{y j}
]
,

max
β j∈R, j=1,...,m,|β j|>b for some j

∑
m
j=1 β j=0

Eµ

[
min

j=1,...,m
{c(X ,y j)−β j}+

m

∑
j=1

β jν{y j}
]}

where

V b

= max
β j∈R,|β j|≤b, j=1,...,m

∑
m
j=1 β j=0

Eµ

[
min

j=1,...,m
{c(X ,y j)−β j}+

m

∑
j=1

β jν{y j}
]

> max
β j∈R, j=1,...,m,|β j|>b for some j

∑
m
j=1 β j=0

Eµ

[
min

j=1,...,m
{c(X ,y j)−β j}+

m

∑
j=1

β jν{y j}
]

so that V ′ =V b and Sb = S.

4 ADDITIONAL DISCUSSION AND EXTENSIONS

Finally, we briefly discuss the challenge in generalizing our procedure to the case when both X and Y
are continuous. Here, one may attempt to sample both variables (assuming both can be simulated) and
formulate a sampled program like (2) or (3). However, the analog of its reformulation in (6) and (9) will
have a growing number of variables β j and an analogous limit in (5) that involves an infinite-dimensional
variable, which challenges the use of standard SAA machinery. In fact, consider a special example where
X ,Y ∼U [0,1]d and c(x,y) = ‖x−y‖. In this case, (1) corresponds to the Wasserstein distance (of order 1)
between X and Y , which is of course 0. It is known that sampling X and keeping Y continuous will give, for
d ≥ 3, an expected optimal value of (2) that is of order n−1/d , i.e., C1n−1/d ≤ EVn ≤C2n−1/d for all n for
some C1,C2 > 0 (e.g., Problem 5.11 in van Handel 2014). Thus, the convergence rate deteriorates with the
dimension and the standard Monte Carlo rate O(n−1/2) cannot be maintained without assuming additional
structure or infomation available to the modeler on the primal problem. It is of interest to investigate
reasonable assumptions which are useful in applications and which would mitigate such rate-of-convergence
deterioration.
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